Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T11:08:09.932Z Has data issue: false hasContentIssue false

Chapter 2 - Genetics of Intellectual Disability

from Section 1 - Understanding Intellectual Disability

Published online by Cambridge University Press:  14 January 2019

Mark Scheepers
Affiliation:
2gether NHS Trust
Mike Kerr
Affiliation:
Cardiff University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amir, R. E. et al. (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23, 185–8. doi: 10.1038/13810Google Scholar
Blau, N., Van Spronsen, F. J. & Levy, H. L. (2010) Phenylketonuria. The Lancet, 376(9750), 1417–27. doi: 10.1016/S0140-6736(10)60961-0CrossRefGoogle ScholarPubMed
Butler, M. G. (2011) Prader–Willi syndrome: Obesity due to genomic imprinting, Current Genomics, 12(3), 204–15, doi: 10.2174/138920211795677877Google Scholar
Carter, N. (2007) Methods and strategies for analyzing copy number variation using DNA microarrays. Nature Genetics, 39, S16S21. doi: 10.1038/ng2028.MethodsGoogle Scholar
Cassidy, S. B. & Driscoll, D. J. (2009) Prader–Willi syndrome. European Journal of Human Genetics, 17(1), 313. doi: 10.1038/ejhg.2008.165CrossRefGoogle ScholarPubMed
Cederbaum, S. (2002) Phenylketonuria: An update. Current Opinion in Pediatrics, 14(6), 702–6.Google Scholar
Chahrour, M. & Zoghbi, H. Y. (2007) The story of Rett syndrome: From clinic to neurobiology. Neuron, 56(3), 422–37. doi: 10.1016/j.neuron.2007.10.001CrossRefGoogle ScholarPubMed
Coe, B. P. et al. (2014) Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature Genetics, 46(10). doi: 10.1038/ng.3092Google Scholar
Cooper, G. M. et al. (2011) A copy number variation morbidity map of developmental delay. Nature Genetics, 43(9), 838–46. doi: 10.1038/ng.909Google Scholar
Crawford, D. C., Acuña, J. M. & Sherman, S. L. (2001) FMR1 and the fragile X syndrome: human genome epidemiology review. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 3(5), 359–71. doi: 10.1097/00125817-200109000-00006Google Scholar
D’Angelo, D. et al. (2015) Defining the effect of the 16p11.2 duplication on cognition, behavior, and medical comorbidities. JAMA Psychiatry, 10032, 1. doi: 10.1001/jamapsychiatry.2015.2123Google Scholar
Doherty, J. L. & Owen, M. J. (2014) Genomic insights into the overlap between psychiatric disorders: Implications for research and clinical practice. Genome Medicine, 6(4), 29. doi: 10.1186/gm546Google Scholar
Giaroli, G. et al. (2014) Does rare matter? Copy number variants at 16p11.2 and the risk of psychosis: A systematic review of literature and meta-analysis. Schizophrenia research, 159(2–3), 340–6. doi: 10.1016/j.schres.2014.09.025CrossRefGoogle ScholarPubMed
Gilissen, C. et al. (2014) Genome sequencing identifies major causes of severe intellectual disability. Nature, 511(7509), 344–7. doi: 10.1038/nature13394CrossRefGoogle ScholarPubMed
Guy, J. et al. (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science, 315(5815), 1143–7. doi: 10.1126/science.1138389Google Scholar
Habel, A. et al. (2014) Towards a safety net for management of 22q11.2 deletion syndrome: Guidelines for our times. European Journal of Pediatrics, 173(6), 757–65. doi: 10.1007/s00431-013-2240-zGoogle Scholar
Hooper, S. R. et al. (2013) A longitudinal examination of the psychoeducational, neurocognitive, and psychiatric functioning in children with 22q11.2 deletion syndrome. Research in Developmental Disabilities, 34(5), 1758–69. doi: 10.1016/j.ridd.2012.12.003Google Scholar
Horsler, K. & Oliver, C. (2006) The behavioural phenotype of Angelman syndrome. Journal of Intellectual Disability Research, 50(1), 3353. doi: 10.1111/j.1365-2788.2005.00730.xGoogle Scholar
Iafrate, A. J. et al. (2004) Detection of large-scale variation in the human genome. Nature Genetics, 36(9), 949–51. doi: 10.1038/ng1416Google Scholar
Jacobs, P. A. & Strong, J. A. (1959) A case of human intersexuality having a possible XXY sex-determining mechanism. Nature, 183(4657), 302–3. Available at: www.ncbi.nlm.nih.gov/pubmed/13632697Google Scholar
Jamuar, S. S. et al. (2014) Somatic mutations in cerebral cortical malformations. New England Journal of Medicine, 371(8), 733–43. doi: 10.1056/NEJMoa1314432Google Scholar
Karmiloff-Smith, A. et al. (2016) The importance of understanding individual differences in Down syndrome. F1000Research, 5, 389. doi: 10.12688/f1000research.7506.1Google Scholar
Khwaja, O. S. et al. (2014) Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America, 111(12), 4596–601. doi: 10.1073/pnas.1311141111Google Scholar
Kirov, G. et al. (2014) The penetrance of copy number variations for schizophrenia and developmental delay. Biological Psychiatry, 75(5), 378–85. doi: 10.1016/j.biopsych.2013.07.022Google Scholar
LaFramboise, T. (2009) Single nucleotide polymorphism arrays: A decade of biological, computational and technological advances. Nucleic Acids Research, 37(13), 4181–93. doi: 10.1093/nar/gkp552Google Scholar
Ledbetter, D. H. et al. (1981) Deletions of chromosome 15 as a cause of the Prader–Willi syndrome. New England Journal of Medicine, 304(6), 325–9. doi: 10.1056/NEJM198102053040604Google Scholar
Lehner, T., Senthil, G. & Addington, A. M. (2014) Convergence of advances in genomics, team science, and repositories as drivers of progress in psychiatric genomics. Biological Psychiatry, 77(1), 614. doi: 10.1016/j.biopsych.2014.01.003Google Scholar
Lejeune, J. et al. (1959) Les chromosomes humains en culture de tissus. Comptes rendus hebdomadaires des séances de l’Académie des sciences, (248), 602–3.Google Scholar
Lejeune, J. et al. (1963) Ségrégation familiale d’une translocation 5–13 déterminant une monosomie et une trisomie partielles du bras court du chromosome 5: Maladie du ‘cri du chat’ et sa ‘réciproque’. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 257, 3098–102. Available at: www.ncbi.nlm.nih.gov/pubmed/14095841Google Scholar
Lubs, H. A., Stevenson, R. E. & Schwartz, C. E. (2012) Fragile X and X-linked intellectual disability: Four decades of discovery. American Journal of Human Genetics, 90(4), 579–90. doi: 10.1016/j.ajhg.2012.02.018Google Scholar
Lynch, M. (2010) Rate, molecular spectrum, and consequences of human mutation. Proceedings of the National Academy of Sciences, 107(3), 961–8. doi: 10.1073/pnas.0912629107Google Scholar
MacDonald, J. R. et al. (2014) The Database of Genomic Variants: A curated collection of structural variation in the human genome. Nucleic Acids Research, 42, D986–92. doi: 10.1093/nar/gkt958Google Scholar
McRae, J. F. et al. (2017) Prevalence and architecture of de novo mutations in developmental disorders. Nature, 542(7642), 433–8. doi: 10.1038/nature21062Google Scholar
Miller, D. T. et al. (2010) Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. American Journal of Human Genetics, 86(5), 749–64. doi: 10.1016/j.ajhg.2010.04.006Google Scholar
Monks, S. et al. (2014) Further evidence for high rates of schizophrenia in 22q11.2 deletion syndrome. Schizophrenia Research, 153(1–3), 231–6. doi: 10.1016/j.schres.2014.01.020Google Scholar
Najmabadi, H. et al. (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 478(7367), 5763. doi: 10.1038/nature10423CrossRefGoogle ScholarPubMed
Neul, J. L. & Zoghbi, H. Y. (2004) Rett Syndrome: A prototypical neurodevelopmental disorder. Neuroscientist, 10(2), 118–28. doi: 10.1177/1073858403260995Google Scholar
O’Donovan, M. C. & Owen, M. J. (2016) The implications of the shared genetics of psychiatric disorders. Nature Medicine, 22(11). doi: 10.1038/nm.4196Google Scholar
Ou, Z. et al. (2008) Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 10(4), 267–77. doi: 10.1097/GIM.0b013e31816b64c2Google Scholar
Palmer, E. et al. (2014) Changing interpretation of chromosomal microarray over time in a community cohort with intellectual disability. American Journal of Medical Genetics. Part A, 164A(2), 377–85. doi: 10.1002/ajmg.a.36279Google Scholar
Pelc, K., Cheron, G. & Dan, B. (2008) Behavior and neuropsychiatry manifestations in Angelman syndrome. Neuropsychiatric Disease and Treatment, 4(3), 577–84. doi: 10.2147/NDT.S2749Google Scholar
Pieretti, M. et al. (1991) Absence of expression of the FMR-1 gene in fragile X syndrome. Cell, 66(4), 817–22. Available at: www.ncbi.nlm.nih.gov/pubmed/1878973Google Scholar
Portnoï, M. F. (2009) Microduplication 22q11.2: A new chromosomal syndrome. European Journal of Medical Genetics. Elsevier Masson SAS, 52(2–3), 8893. doi: 10.1016/j.ejmg.2009.02.008Google Scholar
Redon, R. et al. (2006) Global variation in copy number in the human genome. Nature, 444(7118), 444–54. doi: 10.1038/nature05329Google Scholar
Rees, E. et al. (2014) Evidence that duplications of 22q11.2 protect against schizophrenia. Molecular Psychiatry, 19(1), 3740. doi: 10.1038/mp.2013.156Google Scholar
Rees, E. et al. (2016) Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA Psychiatry, 73(9), 963–9. doi: 10.1001/jamapsychiatry.2016.1831Google Scholar
Rousseau, F. et al. (2011) The fragile X mental retardation syndrome 20 years after the FMR1 gene discovery: an expanding universe of knowledge. Clinical Biochemist. Reviews, 32(3), 135–62. Available at: www.ncbi.nlm.nih.gov/pubmed/21912443Google Scholar
Schneider, M. et al. (2014) Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: Results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. American Journal of Psychiatry, 171(6), 627–39. doi: 10.1176/appi.ajp.2013.13070864Google Scholar
Scriver, C. R. (2007) The PAH gene, phenylketonuria, and a paradigm shift. Human Mutation, 28(9), 831–45. doi: 10.1002/humu.20526Google Scholar
Sebat, J. et al. (2004) Large-scale copy number polymorphism in the human genome. Science, 305(5683), 525–8. doi: 10.1126/science.1098918Google Scholar
Shprintzen, R. J. (2008) Velo-Cardio-Facial Syndrome: 30 years of study. Developmental Disabilities Research Reviews, 14(1), 310. doi: 10.1002/ddrr.2.Velo-Cardio-FacialCrossRefGoogle ScholarPubMed
Sigafoos, J., O’Reilly, M. F. & Lancioni, G. E. (2009) Cri-du-chat. Developmental Neurorehabilitation, 12(3), 119–21. doi: 10.1080/17518420902975720Google Scholar
Tjio, J. H. & Levan, A. (1956) The chromosome number of man. Hereditas, 42, 16. doi: 10.1111/j.1601-5223.1956.tb03010.xGoogle Scholar
Van Buggenhout, G. & Fryns, J.-P. (2009) Angelman syndrome (AS, MIM 105830). European Journal of Human Genetics, 17(11), 1367–73. doi: 10.1038/ejhg.2009.67Google Scholar
Verri, A. et al. (2010) Klinefelter’s syndrome and psychoneurologic function. Molecular Human Reproduction, 16(6), 425–33. doi: 10.1093/molehr/gaq018Google Scholar
de Villiers, J. & Porteous, M. (2012) Genetic testing of adults with intellectual disability. Psychiatrist, 36(11), 409–13. doi: 10.1192/pb.bp.111.038216Google Scholar
Visootsak, J. & Graham, J. M. (2006) Klinefelter syndrome and other sex chromosomal aneuploidies. Orphanet Journal of Rare Diseases, 1, 42. doi: 10.1186/1750-1172-1-42Google Scholar
Vissers, L. E. et al. (2010) A de novo paradigm for mental retardation. 42(12), 1109–12. doi: 10.1038/ng.712CrossRefGoogle Scholar
Vissers, L. E. L. M., Gilissen, C. & Veltman, J. A. (2015) Genetic studies in intellectual disability and related disorders. Nature Reviews Genetics, 17(1), 918. doi: 10.1038/nrg3999Google Scholar
Weiss, L. A. et al. (2008) Association between microdeletion and microduplication at 16p11.2 and autism. New England Journal of Medicine, 358(7), 667–75. doi: 10.1056/NEJMoa075974Google Scholar
Wiseman, F. K. et al. (2015) A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nature Reviews Neuroscience, 16(9), 564–74. doi: 10.1038/nrn3983CrossRefGoogle ScholarPubMed
Wolfe, K., Strydom, A. et al. (2017) Chromosomal microarray testing in adults with intellectual disability presenting with comorbid psychiatric disorders. European Journal of Human Genetics: EJHG, 25(1), 6672. doi: 10.1038/ejhg.2016.107CrossRefGoogle Scholar
Wolfe, K., Stueber, K. et al. (2017) Genetic testing in intellectual disability psychiatry: Opinions and practices of UK child and intellectual disability psychiatrists. Journal of Applied Research in Intellectual Disabilities, 23, 112. doi: 10.1111/jar.12391Google Scholar
Zufferey, F. et al. (2012) A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders. Journal of Medical Genetics, 49(10), 660–8. doi: 10.1136/jmedgenet-2012-101203Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×