Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T10:09:06.932Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 October 2017

Philip A. Allen
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Sediment Routing Systems
The Fate of Sediment from Source to Sink
, pp. 364 - 402
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, R., Dunne, T., and Guyot, J. L. 2006. Geomorphic controls on Andean denudation rates. Journal of Geology, 114, 85–99.Google Scholar
Aalto, R., Maurice-Bourguin, L., Dunne, T., Montgomery, D. R., Nittrouer, C. A., and Guyot, J.-L. 2003. Episodic sediment accumulation on Amazonian flood plains influenced by ElNiño/southern oscillation. Nature, 425, 493–496.Google Scholar
Abrams, D. M., Lobkovsky, A. E., Petrof f, A. B., Straub, K. M., McElroy, B., Mohrig, D. C., Kudrolli, A. and Rothman, D. H. 2009. Growth laws for channel networks incised by groundwater flow. Nature Geoscience, 2, 193–196.Google Scholar
Adams, E. W., and Schlager, W. 2000. Basic types of submarine slope curvature.. Journal SedimentaryResearch, 70, 814–828.Google Scholar
Adams, J. 1985. Large scale tectonic geomorphology of the Southern Alps, New Zealand: summary. Pages 105–128 of : Morisawa, M., and Hack, J. T. (eds),. Tectonic Geomorphology. Boston: Allen and Unwin.
Agnew, D. C. 1992. The time-domain behavior of power-law noises. Geophysical Research Letters, 19, 333–336.Google Scholar
Ahnert, F. 1970. Functional relationships between denudation, relief and uplift in large mid-latitudedrainage basins.. American Journal of Science, 270, 243–263.Google Scholar
Alexander, C., Walsh, J., Sumner, B., Orpin, A., and Kuehl, S. 2006. Continental slope delivery andstorage on an active margin: The Waipaoa margin example. American Geophysical Union FallMeeting, Abstract, OS12A-03.Google Scholar
Alizai, A., Clift, P. D., Giosan, L., Van Laningham, S., Hinton, R., Tabrez, A. R., and Danish, M. 2011. Pb isotopic variability in the modern and Holocene Indus River system measured by ionmicroprobe in detrital K-feldspar grains. Geochimica et Cosmochimica Acta, 75, 4771–4795.Google Scholar
Alizai, A., Clift, P. D., and Still, J. 2016. Indus Basin sediment provenance constrained using garnetgeochemistry.. Journal Asian Earth Sciences, 126, 29–57.Google Scholar
Allen, P. A. 1997. Earth Surface Processes. Oxford, UK: Blackwell Science.
Allen, P. A. 2005. Striking a chord.. Concepts Essay, Nature, 434, 961.Google Scholar
Allen, P. A. 2008a. From landscapes into geological history. Nature, 451, 274–276.Google Scholar
Allen, P. A. 2008b. Time scales of tectonic landscapes and their sediment routing systems. Pages 7–28 of : Gallagher, K., Jones, S. J., and Wainwright, J. (eds),. Earth's Dynamic Surface: Catastropheand Continuity in Landscape Evolution. Special Publication Geological Society London 296.
Allen, P. A. 2014. Earth Dramas: Ancient Mysteries and Modern Controversies. Amazon KindlePublications.
Allen, P. A., and Allen, J. R. 2013. Basin Analysis: Principles and Application to Petroleum PlayAssessment. Oxford, UK: Blackwell-Wiley.
Allen, P. A., and Densmore, A. L. 2000. Sediment flux from an uplifting fault block. Basin Research, 12, 367–380.Google Scholar
Allen, P. A., and Heller, P. L. 2012. The timing, distribution and significance of tectonically generatedgravels in terrestrial sediment routing systems. Pages 111–130 of : Busby, C., and Azor, A. (eds). Syntectonic Basin Development, Active to Ancient: Recent Advances. Oxford: Wiley-Blackwell.
Allen, P. A., and Hovius, N. 1998. Sediment supply from landslide-dominated catchments: implica-tions for basin-margin fans. Basin Research, 10, 19–35.Google Scholar
Allen, P. A., Crampton, S., and Sinclair, H. D. 1991. Inception and early evolution of the North AlpineForeland Basin, Switzerland. Basin Research, 3, 143–163.Google Scholar
Allen, P. A., Burgess, P. M., Galewsky, J., and Sinclair, H. D. 2001. Flexural-eustatic numericalmodel for drowning of the Eocene perialpine carbonate ramp and implications for Alpinegeodynamics. Bulletin Geological Society America, 113, 1052–1066.Google Scholar
Allen, P. A., Bennett, S. D., Cunningham, M. J. M., Carter, A., Gallagher, K., Lazzaretti, E., Galewsky, J., Densmore, A. L., Phillips, A. W. E., Naylor, D., and Solla Hach, C. 2002. Thepost-Variscan thermal and denudational history of Ireland. Pages 371–399 of : Doré, A. G., Cartwright, J. A., Stoker, M. S., Turner, J. P., and White, N. (eds),. Exhumation of the NorthAtlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration. GeologicalSociety London Special Publication 196.
Allen, P. A., Armitage, J. J., Carter, A., Duller, R. A., Michael, N. A., Sinclair, H. D., Whitchurch, A. L., and Whittaker, A. C. 2013. The Qs problem: sediment volumetric balance of proximalforeland basin systems. Sedimentology, 60, 102–130.Google Scholar
Allen, P. A., Eriksson, P. G., Alkmim, F. F., Betts, P. G., Catuneanu, O., Meng, Q., Mazumder, R., and Young, G. M. 2015a. Classification of basins, with special reference to Proterozoicexamples. Pages 5–28 of : Mazumder, R., and Eriksson, P. G. (eds),. Precambrian Basins of India: Stratigraphic and Tectonic Context. Memoir Geological Society London, 43.
Allen, P. A., Armitage, J. J., D'Arcy, M., Roda-Boluda, D., and Whittaker, A. C. 2015b. Fragmen-tation model for the grain size mix of sediment supplied to basins. Journal of Geology, 123, 405–427.Google Scholar
Allen, P. A., Michael, N., D'Arcy, M., Boluda, D. C., Whittaker, A. C., Duller, R. A., and Armitag, J. J. 2016. Fractionation of grain size in terrestrial sediment routing systems. Basin Research, 27, 1–23.Google Scholar
Aller, R. C., Blair, N. E., Xia, Q., and Rude, P. D. 1996. Remineralization rates, recycling, and storageof carbon in Amazon shelf sediments. Continental Shelf Research, 16, 753–786.Google Scholar
Allison, M. A. 1998. Historical changes in the Ganges-Brahmaputra delta front. Journal of CoastalResearch, 14, 480–490.Google Scholar
Alvarez, W. 1999. Drainage on evolving fold-thrust belts: a study of transverse canyons in theApennines. Basin Research, 11, 267–284.Google Scholar
Amos, C. L., and Judge, J. T. 1991. Sediment transport on the eastern Canadian continental shelf. Continental Shelf Research, 11, 1037–1068.Google Scholar
Anderson, R. S. 1994. Evolution of the Santa Cruz Mountains, California, through tectonic growthand geomorphic decay. Journal Geophysical Research, 99, 20, 161–20, 179.Google Scholar
Anderson, R. S., and Anderson, S. P. 2010. Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge, UK: Cambridge University Press.
Anderson, R. S., and Humphrey, N. F. 1990. Interaction of weathering and transport processes inthe evolution of arid landscapes. Pages 349–361 of : Cross, T. A. (ed),. Quantitative DynamicStratigraphy. Englewood Cliffs, New Jersey: Prentice Hall.
Anderson, R. S., Repka, J. L., and Dick, G. S. 1996. Dating depositional surfaces using in situproduced cosmogenic radionuclides. Geology, 24, 47–51.Google Scholar
Anderson, R. Y., and Kirkland, D. W. 1960. Origin of varves, and cycles of Jurassic TodiltoFormation, New Mexico. American Association of Petroleum Geologists Bulletin, 44, 27–52.Google Scholar
Anderson, S. P. 2005. Glaciers show direct linkage between erosion rate and chemical weatheringfluxes. Geomorphology, 67, 147–157.Google Scholar
Anderson, S. P., Drever, J. I., and Humphrey, N. F. 1997. Chemical weathering in glacial environ-ments. Geology, 25, 399–402.Google Scholar
Andrews, J. T. 2000. Icebergs and iceberg-rafted detritus (IRD) in the North Atlantic: facts andassumptions. Oceanography, 13, 100–108.Google Scholar
Armitage, J. J., Duller, R. A., Whittaker, A. C., and Allen, P. A. 2011. Transformation of tectonic andclimatic signals from source to stratigraphy. Nature Geoscience, 4, 231–235.Google Scholar
Armitage, J. J., Duller, R. A., Dunkley Jones, T., Whittaker, A. C., and Allen, P. A. 2013. Temporalbuffering of climate-driven sediment flux cycles by transient catchment response. Earth andPlanetary Science Letters, 369, 200–210.Google Scholar
Arribas, J., and Tortosa, A. 2003. Detrital models in sedimenticlastic sands from low-order streamsin the Iberian Range, Spain: the potential for sand generation by different sedimentary rocks. Sedimentary Geology, 159, 275–303.Google Scholar
Artoni, A. 2007. Growth rates and two-mode accretion in the outer orogenic wedge-foreland basinsystem of the Central Apennines (Italy). Italian Journal Geosciences, 126, 531–556.Google Scholar
Attal, M., and Lavé, J. 2009. Pebble abrasion during fluvial transport: Experimental results andimplications for the evolution of sediment load along rivers. Journal of Geophysical Research, 114, F04023, 1–22.Google Scholar
Avouac, J. P. 1993. Analysis of scarp prof iles: evaluation of errors in morphologic dating. JournalGeophysical Research, 98, 6745–6754.Google Scholar
Aziz, H. A., Hilgen, F. J., van Luijk, G. M., Sluijs, A., Kraus, M. J., Pares, J. M., and Gingerich, P. D. 2008. Astronomical climate control on paleosol stacking patterns in the upper Paleocene-lowerEocene Willwood Formation, Bighorn Basin, Wyoming. Geology, 36, 531–534.Google Scholar
Baartman, J. E. M., Temme, A. J. A. M., Veldkamp, T., Jetten, V. G., and Schoorl, J. M. 2013. Exploring the role of rainfall variability and extreme events in long-term landscapedevelopment. Catena, 109, 25–38.Google Scholar
Babault, J., Bonnet, S., Crave, A., and van den Dreissche, J. 2005. Influence of piedmont sedimen-tation on erosion dynamics of an uplifting landscape: an experimental approach. Geology, 33, 301–304.Google Scholar
Bailey, R. J., and Smith, D. G. 2010. Scaling in stratigraphic data series: implications for practicalstratigraphy. First Break, 28, 57–66.Google Scholar
Baldwin, J. A., Whipple, K. X., and Tucker, G. E. 2003. Implications of the shear stress river incisionmodel for the time scale of post-orogenic decay of topography. Journal Geophysical Research, 108, 2158.Google Scholar
Bally, A. W., and Snelson, S. 1980. Realms of subsidence. Pages 9–75 of : Miall, A. D. (ed),. Facts andPrinciples of World Petroleum Occurrence. Canadian Society Petroleum Geologists Memoir, 6.Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C. J. 2003. Sea-land oxygen isotopic relationships from planktonic foraminfera and spelothems in theEastern Mediterranean region and their implication for paleorainfall during interglacial periods. Geochimica Cosmochimica Acta, 67, 3181–3199.Google Scholar
Barnes, J. B., and Heins, W. A. 2009. Plio-Quaternary sediment budget between thrust belt erosionand foreland deposition in the central Andes, southern Bolivia. Basin Research, 21, 91–109.Google Scholar
Barrell, J. 1917. Rhythms and the measurement of geologic time. Geological Society of AmericaBulletin, 28, 745–904.Google Scholar
Barrier, L., Proust, J. N., Nalpas, T., Robin, C., and Guillocheau, F. 2010. Control of alluvialsedimentation at foreland basin active margins: a case-study from the northeastern Ebro Basin(southeastern Pyrenees, Spain). Journal Sedimentary Research, 80, 728–749.Google Scholar
Beamud, E., Muñoz, J. A., Fitzgerald, P. G., Baldwin, S. L., Garces, M., Cabrera, L., and Metcalf, J. R. 2010. Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonicconglomerates: constraints on the exhumation of the South-Central Pyrenees. Basin Research, 13, 309–331.Google Scholar
Beaumont, C., Kooi, H., and Willett, S. 2000. Coupled tectonic-surface process models withapplications to rifted margins and collisional orogens. Pages 29–55 of : Summerfield, M.A. (ed). Geomorphology and Global Tectonics. Chichester, UK: Wiley.
Beckmann, B., Floegel, S., Hof fmann, P., Schulz, M., and Wagner, T. 2005. Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response. Nature, 437, 241–244.Google Scholar
Bernard, C. Y., Laruelle, G. G., Slomp, C. P., and Heinze, C. 2010. Impact of changes of river fluxesof silica on the global marine silica cycle: a model comparison. Biogeosciences, 7, 441–453.Google Scholar
Bernard, C. Y., Dürr, H. H., Heinze, C., Segschneider, J., and Maier-Reimer, E. 2011. Contributionof riverine nutrients to the silicon biogeochemistry of the global ocean – a model study. Biogeosciences, 8, 551–564.Google Scholar
Berner, R. 1989. Biochemical cycles of carbon and sulfur and their effect on atmospheric oxygenover Phanerozoic time. Palaeogeography, Palaeoclimatology, Palaeoecology, 75, 97–122.Google Scholar
Berner, R. A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemicaland environmental significance. American Journal of Science, 282, 451–473.Google Scholar
Berner, R. A. 1999. A new look at the long-term carbon cycle. GSA Today, 9, 1–6.Google Scholar
Best, T. C., and Griggs, G. B. 1991. A sediment budget for the Santa Cruz littoral cell, California. Pages 35–50 of : Osbourne, R. H. (ed),. From Shoreline to Abyss: Contributions in MarineGeology in Honor of Francis Parker Shepard. Society of Economic Paleontologists and Mineralogists Special Publication 46.Google Scholar
Beusen, A. H. W., Bouwman, A. F., Dürr, H. H., Dekkers, A. L. M., and Hartmann, J. 2009. Globalpatterns of dissolved silica export to the coastal zone: Results from a spatially explicit globalmodel. Global Biogeochemical Cycles, 23, GB0A02.Google Scholar
Bhattacharya, J. P., and Giosan, L. 2003. Wave-influenced deltas: geomorphological implications forfacies reconstruction. Sedimentology, 50, 187–210.Google Scholar
Bickle, M., Bunbury, J., and Chapman, H., Harris, N. B. W., Fairchild, I. J., and Ahmad, T. 2003. Fluxes of Sr into the headwaters of the Ganges. Geochimica Cosmochimica Acta, 67, 2567–2584.Google Scholar
Bierman, P., and Steig, E. 1996. Estimating rates of denudation using cosmogenic isotope abundancesin sediment. Earth Surface Processes and Landforms, 21, 125–139.Google Scholar
Bierman, P. R. 1994. Using in situ produced cosmogenic isotopes to estimate rates of landscapeevolution: A review from the geomorphic perspective. Journal of Geophysical Research, 99, 13, 885–13, 896.Google Scholar
Bierman, P. R., and Caffee, M. W. 2002. Cosmogenic exposure and erosion history of ancientAustralian landforms. Geological Society of America Bulletin, 114, 787–803.Google Scholar
Bierman, P. R., and Nichols, K. K. 2004. Rock to sediment - slope to sea with 10Be - rates of landscapechange. Annual Reviews Earth and Planetary Sciences, 32, 215–255.Google Scholar
Bishop, P., Hoey, T. B., Jansen, J. D., and Artza, I. L. 2004. Knickpoint recession rate and catchmentarea: the case of uplifted rivers in eastern Scotland. Earth Surface Processes and Landforms, 30, 767–778.Google Scholar
Bitelli, M., Campbell, G.S., and Flury, M. 1999. Characterization of particle size distribution in soilswith a fragmentation model. Soil Science Society of America Journal, 63, 782–788.Google Scholar
Blair, N. E., and Aller, R. S. 2012. The fate of terrestrial organic carbon in the marine environment. Annual Reviews Marine Science, 4, 401–423.Google Scholar
Blair, N. E., Leithold, E. L., and Aller, R. C. 2004. From bedrock to burial: the evolution of particulateorganic carbon across coupled watershed-continental margin systems. Marine Chemistry, 92, 141–152.Google Scholar
Blatt, H., and Jones, R. L. 1975. Proportions of exposed igneous, metamorphic, and sedimentaryrocks. Geological Society of America Bulletin, 86, 1085–1088.Google Scholar
Blum, J. D., and Erel, Y. 1995. A silicate weathering mechanism linking increases in marine S-87/Sr-86 with global glaciation. Nature, 373, 415–418.Google Scholar
Blum, M., and Garvin, M. 2010. Role of incised valley systems in source-to-sink sediment routingand storage: Examples from the Late Quaternary northern Gulf of Mexico margin. AmericanAssociation Petroleum Geologists Search and Discovery Article, 50248.Google Scholar
Blum, M., Martin, J., Milliken, K., and Garvin, N. 2013. Paleovalley systems: insights fromQuaternary analogs and experiments. Earth Science Reviews, 116, 128–169.Google Scholar
Blum, M. D., and Aslan, A. 2006. Signatures of climate vs. sea-level change within incised valley-fill successions: Quaternary examples from the Texas Gulf Coast. Sedimentary Geology, 190, 177–211.Google Scholar
Blum, M. D., and Hattier-Womack, J. 2009. Climate change, sea level change, and fluvial sedimentsupply to deepwater depositional systems. Pages 15–39 of : Kneller, B., Martinsen, O. J., and McCaffrey, B. (eds),. External Controls on Deepwater Depositional Systems. Society EconomicPaleontologists Mineralogists, 92.Google Scholar
Blum, M. D., and Törnquist, T. E. 2000. Fluvial responses to climate and sea-level change: a reviewand look forward. Sedimentology, 47, 2–48.Google Scholar
Bodet, F., and Schärer, U. 2000. Evolution of the SE Asian continent from U-Pb and Hf isotopes insingle grains of zircon and baddeleyite from large rivers. Geochimica et Cosmochimica Acta, 64, 2067–2091.Google Scholar
Bond, G. 1979. Evidence for some uplifts of large magnitude in continental platforms. Tectono-physics, 61, 285–305.Google Scholar
Bonnet, C., Malavieille, J., and Mosar, J. 2008. Surface processes versus kinematics of thrust belts:impact on rates of erosion, sedimentation and exhumation – insights from analogue models. Bulletin Geological Society France, 179, 297–314.Google Scholar
Bornhold, B. D., Yang, Z. S., Keller, G. H., Prior, D. B., Wiseman, W. J., Wang, Q., Wright, L. D., Xu, W. D., and Zhuang, Z. Y. 1986. Sedimentary framework of the modern Huang He (YellowRiver) delta. Geo-Marine Letters, 6, 77–83.Google Scholar
Boswell, P. G. H. 1933. On the Mineralogy of Sedimentary Rocks. London: Thomas Murby andCompany.
Bouquillon, A., France-Lanord, C., Michard, A., and Tiercelin, J. 1990. Sedimentology and isotopicchemistry of the Bengal Fan sediments: the denudation of the Himalaya. Proceedings OceanDrilling Program Scientific Research, 116, 43–58.Google Scholar
Brack, P., Mundil, R., Oberli, F., Meier, M., and Rieber, H. 1996. Biostratigraphic and radiometricage data question the Milankovitch characteristics of the Latemar cycles (southern Alps, Italy). Geology, 24, 371–375.Google Scholar
Bradley, W. H. 1929. The varves and climate of the Green River epoch. U. S. Geological SurveyProf essional Paper, 158, 87–110.Google Scholar
Braun, J. 2005. Quantitative constraints on the rate of landform evolution derived from low-temperature thermochronology. Reviews in Mineral Geochemistry, 58, 351–374.Google Scholar
Braun, J., van der Beek, P., and Batt, G. 2006. Quantitative Thermochronology: Numerical Methodsfor the Interpretation of Thermochronological Data. Cambridge, UK: Cambridge UniversityPress.
Bray, D. I. 1982. Regime equations for gravel-bed rivers. Pages 517–542 of : Hey, R. D., Bathurst, J. C., and Thorne, C. R. (eds),. Gravel-Bed Rivers; Fluvial Processes, Engineering and Management. Chichester, UK: Wiley.
Brewer, I. D., Burbank, D. W., and Hodges, K. V. 2003. Modelling detrital cooling age populations:insights from two Himalayan catchments. Basin Research, 15, 305–320.Google Scholar
Bridge, J. S. 2003. Rivers and Floodplains: Forms, Processes and Sedimentary Record. Oxford, UK:Blackwell Publishing.
Bridge, J. S., and Demicco, R. V. 2008. Earth Surface Processes, Landforms and Sediment Deposits. Cambridge University Press.
Bridge, J. S., and Mackey, S. D. 1993. A revised alluvial stratigraphy model. Pages 319–337 of :Marzo, M., and Puigdefàbregas, C. (eds),. Alluvial Sedimentation. International Association of Sedimentologists Special Publication 15.Google Scholar
Brocklehurst, S. H., and Whipple, K. X. 2004. Hypsometry of glaciated landscapes. Earth SurfaceProcesses and Landforms, 29, 907–926.Google Scholar
Brommer, M. B., Weltje, G. J., and Trincardi, F. 2009. Reconstruction of sediment supply from massaccumulation rates in the northern Adriatic Basin (Italy) over the past 19, 000 years. Journal of Geophysical Research, 114, F02008.Google Scholar
Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., and Yiou, F. 1995. Denudation ratesdetermined from the accumulation of in situ-produced 10Be in the Luquillo ExperimentalForest, Puerto Rico. Earth and Planetary Science Letters, 129, 93–202.Google Scholar
Brown, R. W., Summerfield, M. A., and Gleadow, A. J. W. 1994. Apatite fission track analysis:its potential for the estimation of denudation rates, and implications for models of long-termlandscape development. Pages 23–53 of : Kirby, M. J. (ed),. Process Models and TheoreticalGeomorphology. New York: John Wiley and Sons Ltd.
Brunel, C., Certain, R., Sabatier, F., Robin, N., Barusseau, J.-P., Aleman, N., and Raynal, O. 2014. 20th century sediment budget trends of the Western Gulf of Lions shoreface (France): An appli-cation of an integrated method for the study of sediment coastal reservoirs. Geomorphology, 204, 625–637.Google Scholar
Bull, W. B. 1962. Relations of alluvial fan size and slope to drainage basin size and lithology inwestern Fresno County, California. United States Geological Survey Prof essional Paper 450-B.
Bull, W. B. 1964. Geomorphology of segmented alluvial fans in western Fresno County, California. United States Geological Survey Prof essional Paper 353-E.
Bull, W. B. 1977. The alluvial fan environment. Progress in Physical Geography, 1, 222–270.Google Scholar
Bull, W. B. 1984. Tectonic geomorhology. Journal of Geological Education, 32, 310–324.Google Scholar
Bull, W. B. 1991. Geomorphic Responses to Climate Change. New York: Oxford University Press. Burbank, D. W., and Anderson, R. S. 2001. Tectonic Geomorphology. Oxford, UK: Blackwell Publishing Ltd.
Burbank, D. W., and Vergés, J. 1994. Reconstruction of topography and related depositional systems during active thrusting. Journal Geophysical Research, 99, 20, 281–20, 297.Google Scholar
Burbank, D. W., Beck, R. A., and Mulder, T. 1996. The Himalayan foreland basin. Pages 149–188 of : Yin, A., and Harrison, M. (eds),. The Tectonic Evolution of Asia. Cambridge University Press.
Burger, R. L., Fulthorpe, C. S., and Austin, J. A. 2001. Late Pleistocene channel incisions in the southern Eel River Basin, northern California: implications for tectonic vs. eustatic influenceson shelf sedimentation patterns. Marine Geology, 177, 317–330.Google Scholar
Burgess, P. M. 2016. Identifying ordered strata: Evidence, methods and meaning. Journal Sedimen-tary Research, 86, 148–167.Google Scholar
Burgess, P. M., and Hovius, N. 1998. Rates of delta progradation during highstands: Consequencesfor timing of deposition in deep marine systems. Journal of the Geological Society, 155, 217–222.Google Scholar
Burgess, P. M., and Prince, G. D. 2015. Non-unique stratal geometries: implications for sequencestratigraphic interpretations. Basin Research, 27, 351–365.Google Scholar
Burkhard, M., and Sommaruga, A. 1998. Evolution of the Swiss Molasse basin: structural relationswith the Alps and Jura belt. Pages 279–298 of : Mascle, A., Puigdefábregas, C., Luterbacher, H. P., and Fernández, M. (eds),. Cenozoic Foreland Basins of Western Europe. SpecialPublication Geological Society London, 134.Google Scholar
Burt, T. P., and Allison, R. J. 2010. Sediment cascades. Pages 1–15 of : Burt, T. P., and Allison, R. J.(eds),. Sediment Cascades in the Environment: An Integrated Approach. Chichester: John Wileyand Sons.
Busby, C., and Pérez, A. A. 2011. Tectonics of Sedimentary Bains: Recent Advances. London: John Wiley and Sons.
Cantuneanu, O., and Zecchin, M. 2016. Unique vs. non-unique stratal geometries: Relevance tosequence stratigraphy. Marine and Petroleum Geology, 78, 184–195.Google Scholar
Carrétier, S., and Lucazeau, F. 2005. How does alluvial sedimentation at range fronts modify theerosional dynamics of mountain catchments?. Basin Research, 17, 361–341.Google Scholar
Carson, M. A., and Kirkby, M. J. 1972. Hillslope Form and Process. Cambridge, UK: CambridgeUniversity Press.
Carter, R. M., Abbott, S. T., Fulthorpe, C. S., and Haywick, D. W. 1991. Application of global sea-level and sequence stratigraphic models in Southern Hemisphere Neogene strata from NewZealand. Pages 41–65 of : Macdonald, D. I. M. (ed),. Sedimentation, Tectonics and Eustasy:Sea-level Changes at Active Margins. International Association Sedimentologists SpecialPublication 12.
Carvajal, C. R., and Steel, R. J. 2006. Thick turbidite successions from supply-dominated shelvesduring sea-level highstand. Geology, 34, 665–668.Google Scholar
Carvajal, C., and Steel, R. 2009. Shelf-edge architecture and bypass of sand to deep water: Influenceof sediment supply, sea level and shelf-edge processes. Journal of Sedimentary Research, 79, 652–672.Google Scholar
Carvajal, C., and Steel, R. 2012. Source-to-sink sediment volumes within a tectono-stratigraphicmodel for a Laramide shelf-to-deep-water basin: Methods and results. Pages 131–151 of : Busby, C., and Azor Perez, A. (eds),. Tectonics of Sedimentary Basins: Recent Advances. Oxford UK: Wiley-Blackwell.
Carvajal, C., Steel, R., and Petter, A. 2009. Sediment supply: the main driver of shelf-margin growth. Earth Science Reviews, 96, 221–248.Google Scholar
Castelltort, S., and Van Den Driessche, J. 2003. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record?. Sedimentary Geology, 157, 3–13.Google Scholar
Castelltort, S., Whittaker, A. C., and Vergés, J. 2015. Tectonics, sedimentation and surface processes:from the erosional engine to basin deposition. Earth Surface Processes and Landforms, 40, 2–9.Google Scholar
Catuneanu, O. 2006. Principles of Sequence Stratigraphy. Amsterdam: Elsevier.
Cavinato, G. P., Carusi, C., Dall'Asta, M., and Piacentini, T. 2002. Sedimentary and tectonic evolution of Plio-Pleistocene alluvial and lacustrine deposits of the Fucino Basin (central Italy). Sedimentary Geology, 148, 29–59.Google Scholar
Chappell, J., and Shackleton, N. J. 1986. Oxygen isotopes and sea level. Nature, 324, 137–140.Google Scholar
Charreau, G., Gumiaux, C., Avouac, J. P., Augier, R., Chen, J., Barrier, L., Gilder, S., Dominguez, S., Charles, N., and Wang, Q. 2009. The Neogene Xiju Formation, a diachronous prograding gravelwedge at the front of the Tien Shan: climatic and tectonic implications. Earth and PlanetaryScience Letters, 287, 298–310.Google Scholar
Chester, R. 1990. Marine Geochemistry. Springer Science and Business Media.
Church, M., and Rood, K. 1983. Catalogue of Alluvial River Channel Regime Data. University of British Columbia, Department of Geography Report.
Clarke, A. 1991. Pages 119–158 of : Maines, D. (ed),. Social worlds/arenas theory as organizationaltheory. Social Organization and Social Progress: Essays in Honour of Anselm Strauss. NewYork: Aldine de Gruyter.Google Scholar
Clevis, Q., de Jager, G., Nijman, W., and de Boer, P. L. 2004a. Stratigraphic signatures of translationof thrust-sheet-top basins over low-angle detachment faults. Basin Research, 16, 145–163.Google Scholar
Clevis, Q., de Boer, P. L., and Nijman, W. 2004b. Differentiating the effect of episodic tectonism andsea level fluctuations in foreland basins filled by alluvial fans and axial deltaic systems: insightsfrom a three-dimensional stratigraphic forward model. Sedimentology, 51, 809–835.Google Scholar
Clift, P., and Gaedicke, P. 2002. Accelerated mass flux to the Arabian Sea during the middle to lateMiocene. Geology, 30, 207–210.Google Scholar
Clift, P. D. 2006. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to theocean. Earth & Planetary Science Letters, 241, 571–580.Google Scholar
Clift, P. D., and Giosan, L. 2014. Sediment fluxes and buffering in the post-glacial Indus Basin. BasinResearch, 26, 369–385.Google Scholar
Clift, P. D., Layne, G. D., and Blusztajn, J. 1994. Marine sedimentary evidence for monsoonstrengthening, Tibetan uplift and drainage evolution in East Asia. Pages 255–282 of : Continent-Ocean Interactions in the East Asian Marginal Seas. Washington, DC: American GeophysicalUnion.Google Scholar
Clift, P. D., Shimizu, N., Layne, G. D., Blusztajn, J. 2001a. Development of the Indus Fan and itssignificance for the erosional history of the western Himalaya and Karakorum. GeologicalSociety America Bulletin, 113, 1039–1051.Google Scholar
Clift, P. D., Shimizu, N., Layne, G. D., and Blusztajn, J. 2001b. Tracing patterns of unroof ing in theEarly Himalaya through microprobe Pb analysis of detrital K-feldspars in the Indus Molasse, India. Earth and Planetary Science Letters, 188, 475–491.Google Scholar
Clift, P. D., Lee, J. I., Hildebrand, P., Shimizu, N., Layne, G. D., Blusztajn, J., Blum, J. D., Garzanti, E., and Khan, A. A. 2002. Nd and Pb isotope variability in the Indus River system:Implications for sediment provenance and crustal heterogeneity in the Western Himalaya. Earthand Planetary Science Letters, 200, 91–106.Google Scholar
Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Van Long, H., and Calves, G. 2008a. Correlationof Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 1, 875–880.Google Scholar
Clift, P. D., Hoang, V. L., Hinton, R., Ellam, R., Hannigan, R., Tan, M. T., and Nguyen, D. A. 2008b. Evolving East Asian river systems reconstructed by trace element and Pb and Nd isotopevariations in modern and ancient Red River-Song Hong sediments. Geochemistry GeophysicsGeosystems, 9, Q04039.Google Scholar
Cockburn, H. A. P., and Summerfield, M. A. 2004. Geomorphological applications of cosmogenicisotope analysis. Progress in Physical Geography, 28, 1–42.Google Scholar
Cof aigh, C. Ó., Andrews, J. Y., Jennings, A. E., Dowdeswell, J. A., Hogan, K. A., Kilfeather, A. A., and Sheldon, C. 2013. Glacimarine lithof acies, provenance and depositional processes on aWest Greenland trough-mouth fan. Journal Quaternary Science, 28, 13–26.Google Scholar
Cogné, N., Chew, D., and Stuart, F. M. 2014. The thermal history of the western Irish of fshore. Geological Society London, 171, 779–792.Google Scholar
Colby, B. R. 1963. Fluvial sediments – a summary of source, transportation, deposition andmeasurement of sediment discharge. Bulletin United States Geological Survey, 1181-A, 56 pages.Google Scholar
Coleman, J. M., Roberts, H. H., and Stone, G. W. 1998. Mississippi River delta: an overview. Journalof Coastal Research, 14, 698–716.Google Scholar
Colombo, F. 2005. Quaternary telescopic-like alluvial fans, Andean Ranges, Argentina. Pages 69–84 of : Harvey, A. M., Mather, A. E., and Stokes, M. (eds),. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. Geological Society London Special Publication 251.Google Scholar
Connell, S. D., Kim, W., Paola, C., and Smith, G. A. 2012. Fluvial morphology and sediment fluxsteering of axial-transverse boundaries in an experimental basin. Journal Sedimentary Research, 82, 310–325.Google Scholar
Constantine, J. A., and Dunne, T. 2008. Meander cutof f and the controls on the production of oxbowlakes. Geology, 36, 23–26.Google Scholar
Cookman, J. L., and Flemings, P. B. 2001. STORMSED1. 0: hydrodynamics and sediment transportin a 2-D, steady state, wind- and wave-driven coastal circulation model. Computers &Geosciences, 27, 647–674.Google Scholar
Covault, J. A., and Fildani, A. 2014. Continental shelves as sediment capacitors or conveyors;source-to-sink insights from the tectonically active Oceanside shelf, southern California, USA. Pages 315–326 of : Chiocci, F. L., and Chivas, A. R. (eds),. Continental Shelves of theWorld: Their Evolution During the Last Glacio-Eustatic Cycle. Geological Society of London Memoir 41.Google Scholar
Covault, J. A., and Graham, S. 2010. Submarine fans at all sea-level stands: Tectono-morphologicand climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38, 939–942.Google Scholar
Covault, J. A., Romans, B. W., Fildani, A., McGann, M., and Graham, S. A. 2000. Rapid climaticsignal propagation from source to sink in a Southern Californian sediment routing system. Journal of Geology, 118, 247–259.Google Scholar
Covault, J. A., Normark, W. R., Romans, B. W., and Graham, S. A. 2007. Highstand fans in theCalifornia Borderland: the overlooked deep-water depositional system. Geology, 35, 783–786.Google Scholar
Covault, J. A., Craddock, W. H., Romans, B. W., Fildani, A., and Gosai, M. 2013. Spatial andtemporal variations in landscape evolution: Historic and longer-term sediment flux throughglobal catchments. Journal of Geology, 121, 35–56.Google Scholar
Covault, J. A., Romans, B. W., Graham, S. A., Fildani, A., and Hilley, G. E. 2011. Terrestrial sourceto deep-sea sink sediment budgets at high and low sea levels: insights from tectonically activeSouthern California. Geology, 39, 619–622.Google Scholar
Covey, M. 1986. The evolution of foreland basins to steady state: evidence from the western Taiwanforeland basin. Pages 77–90 of : Allen, P. A., and Homewood, P. (eds),. Foreland Basins. Black-well Scientific Publications, Oxford: International Association of Sedimentologists SpecialPublication 8.Google Scholar
Cowie, P. A., Gupta, S., and Dawers, N. H. 2000. Implications of fault array evolution for synriftdepocentre development: Insights from a numerical fault growth model. Basin Research, 12, 241–261.Google Scholar
Cowie, P. A., Attal, M., Tucker, G. E., Whittaker, A. C., Naylor, M., Ganas, A., and Roberts, G. P. 2006. Investigating the surface processes response to fault interaction and linkage using anumerical modelling approach. Basin Research, 18, 231–266.Google Scholar
Crampton, S. E., and Allen, P. A. 1995. Recognition of forebulge unconformities associated with earlystage foreland basin development: example from the North Alpine Foreland Basin. BulletinGeological Society America, 79, 1495–1514.Google Scholar
Cronin, M. F., Tozuka, T., Biastoch, A., Durgadoo, J. V., and Beal, L. M. 2013. Prevalence of strongbottom currents in the greater Agulhas system. Geophysical Research Letters, 40, 1772–1776.Google Scholar
Cross, T. A., and Lessinger, M. A. 1998. Sediment volume partitioning: rationale for stratigraphicmodel evaluation and high-resolution stratigraphic correlation. Pages 171–195 of : F., Gradstein, K., Sandvik, and Milton, N. (eds),. Sequence Stratigraphy: Concepts and Applications, SpecialPublication. Oslo: Norwegian Petroleum Society.Google Scholar
Cui, Y. T., and Parker, G. 1998. The arrested gravel front: stable gravel-sand transitions in rivers –Part 2: general numerical solution. Journal of Hydraulic Research, 36, 159–182.Google Scholar
Culling, W. E. H. 1960. Analytical theory of erosion. Journal of Geology, 68, 336–344.Google Scholar
Curray, J. R., Emmel, F. J., and Moore, D. G. 2002. The Bengal Fan: morphology, geometry, stratigraphy and processes. Marine and Petroleum Geology, 19, 1191–1223.Google Scholar
Dacey, M. F., and Krumbein, W. C. 1979. Models of breakage and selection for particle size distributions. Mathematical Geology, 11, 193–222.Google Scholar
Dade, W. B., and Friend, P. F. 1998. Grain-size, sediment transport regime and channel slope in alluvial rivers. Journal of Geology, 106, 661–675.Google Scholar
Dade, W. B., and Verdeyen, M. E. 2007. Tectonic and climatic controls of alluvial-fan size and source- catchment relief. Journal Geological Society London, 164, 353–358.Google Scholar
Dadson, S. J., Hovius, N., Chen, H., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M.-C., Stark, C. P., Lague, D., and Lin, J. -C. 2003. Links between erosion, runof f variability andseismicity in the Taiwan orogen. Nature, 426, 648–651.Google Scholar
Das, A., Krishnaswami, S., and Kumar, A. 2006. Sr and 87Sr/86Sr in rivers draining the DeccanTraps (India): implications to weathering, Sr fluxes and marine 87Sr/86Sr record around K/T. Geochemistry, Geophysics, Geosystems, 7, Q06014.Google Scholar
Das, A., Krishnaswami, S., Sarin, M., Pande, K. 2005. Chemical weathering in the Krishna Basinand Western Ghats of the Deccan Traps, India: rates of basalt weathering and their controls. Geochimica Cosmochimica Acta, 69, 2067–2084.Google Scholar
Davidson, S. K., and Hartley, A. J. 2010. Towards a quantitative method for estimating paleohydrol-ogy from clast size and comparison with modern rivers. Journal Sedimentary Research, 80, 688–702.Google Scholar
Davidson, S. K., and North, C. P. 2009. Geomorphological regional curves for prediction of drainagebasin area and screening modern analogues for rivers in the rock record. Journal SedimentaryResearch, 79, 773–792.Google Scholar
Dawers, N. H., and Anders, M. H. 1995. Displacement-length scaling and fault linkage. Journal of Structural Geology, 17, 607–614.Google Scholar
Deb, D., and Sen, A. K. 2013. Rosin's law and size distribution of particles in regolith like samples -an analysis. Planetary and Space Science, 82, 79–83.Google Scholar
DeCelles, P. G. 1988. Lithologic provenance modeling applied to the Late Cretaceous synorogenicEcho Canyon conglomerate, Utah: a case of multiple source areas. Geology, 16, 1039–1043.Google Scholar
DeCelles, P. G., and Cavazza, W. 1999. A comparison of fluvial megafans in the Cordilleran (UpperCretaceous) and modern Himalayan foreland basin systems. Bulletin Geological Society of America, 111, 1315–1334.Google Scholar
DeCelles, P. G., and Giles, K. A. 1996. Foreland basin systems. Basin Research, 8, 105–124.Google Scholar
Degens, E. T., and Ittekot, V. 1985. Particulate organic carbon: an overview. Pages 7–27 of : Degens, E. T., Kempe, S., and Herrera, R. (eds),. Transport of Carbon and Minerals in Major WorldRivers, Part 3. Mitt. Geol. Palont. Inst. Univ. Hamburg, SCOPE/UNEAP, Sonderband 58.Google Scholar
Dendy, F. E., and Bolton, G. C. 1976. Sediment yield-runof f-drainage basin area relationships in theUnited States. Journal Soil and Water Conservation, 32, 264–266.Google Scholar
Denny, C. S. 1965. Alluvial Fans in the Death Valley Region, California and Nevada. United StatesGeological Survey Prof essional Paper 466.Google Scholar
Densmore, A. L., and Hovius, N. 2000. Topographic fingerprints of bedrock landslides. Geology, 28, 371–374.Google Scholar
Densmore, A. L., Anderson, R. S., MacAdoo, B. G., and Ellis, M. A. 1997. Hillslope evolution bybedrock landslides. Science, 275, 369–372.Google Scholar
Densmore, A. L., Ellis, M. A., and Anderson, R. S. 1998. Landsliding and the evolution of normalfault-bounded mountain ranges. Journal Geophysical Research, 103, 15, 203–15, 219.Google Scholar
Densmore, A. L., Dawers, N. H., Gupta, S., Guidon, R., and Goldin, T. 2004. Footwall topographicdevelopment during continental extension. Journal Geophysical Research, 103, F03001.Google Scholar
Densmore, A. L., Allen, P. A., and Simpson, G. 2007a. Development and response of a coupledcatchment-fan system under changing tectonic and climatic forcing. Journal of GeophysicalResearch, 112, 1–16.Google Scholar
Densmore, A. L., Gupta, S., Allen, P. A., and Dawers, N. H. 2007b. Transient landscapes at fault tips. Journal Geophysical Research, Earth Surface, 112, F03S08.Google Scholar
DePloey, J., Kirkby, M. J., and Ahnert, F. 1991. Hillslope erosion by rainstorms - a magnitudefrequency analysis. Earth Surface Processes and Landforms, 16, 399–409.Google Scholar
Deptuck, M. E., Piper, D. J. W., Savoye, B., and Gervais, A. 2008. Dimensions and architecture of late Pleistocene submarine lobes of f the northern margin of East Corsica. Sedimentology, 55, 869–898.Google Scholar
Di Giulio, A., Ceriani, A., Ghia, E., and Zucca, F. 2003. Composition of modern stream sands derivedfrom sedimentary source rocks in a temperate climate (Northern Apennines, Italy). SedimentaryGeology, 158, 145–161.Google Scholar
Dickinson, W. R., and Suczek, C. 1979. Plate tectonics and sandstone compositions. AmericanAssociation Petroleum Geologists Bulletin, 63, 2164–2182.Google Scholar
Dingus, L. 1984. Effects of stratigraphic completeness on interpretations of extinction rates acrossthe Cretaceous-Tertiary boundary. Paleobiology, 10, 420–43.Google Scholar
Dingus, L., and Sadler, P. M. 1982. The effects of stratigraphic completeness on estimates of evolutionary rates. Systematic Zoology, 31, 400–412.Google Scholar
Divins, D. L. 2003. NGDC Total Sediment Thickness of the World's Oceans and Marginal Seas. www. ngdc. noaa. gov/mgg/sedthick/sedthick. html.
Dorobek, S. L. 1995. Synorogenic carbonate platforms and reefs in foreland basins: Controls on strati-graphic evolution and platform/reef morphology. Pages 127–147 of :. Stratigraphic Evolution of Foreland Basins. SEPM (Society for Sedimentary Geology) Special Publication, 52.Google Scholar
Dosseto, A., Bourdon, B., Gaillardet, J., Allégre, C., and Filizola, N. 2006. Time scale and conditionsof weathering under tropical climate: study of the Amazon Basin with U-series. Geochimica etCosmochimica Acta, 70, 71–89.Google Scholar
Douglas, I. 1967. Man, vegetation, and the sediment yield of rivers. Nature, 215, 925–928.Google Scholar
Dowdeswell, J. A., Kenyon, N. H., Elverhoi, A., Laberg, J. S., Hollender, F. J., Mienert, J., and Siegert, M. J. 1996. Large-scale sedimentation on the glacier-influenced Polar North Atlanticmargins: long-range side-scan sonar evidence. Geophysical Research Letters, 23, 3535–3538.Google Scholar
Dowdeswell, J. A., Ottesen, D., Evans, J., Cof aigh, C. O., and Anderson, J. B. 2008. Submarineglacial landforms and rates of ice-stream collapse. Geology, 36, 819–822.Google Scholar
Doyle, P., and Bennett, M. R. 1998. Unlocking the Stratigraphic Record: Advances in ModernStratigraphy. Chichester, UK: John Wiley and Sons Ltd.
Drinkwater, N. J., and Pickering, K. T. 2001. Architectural elements in a high-continuity, sand-prone turbidite system, Late Precambrian Kongsfjord Formation, northern Norway: applicationto reservoir characterization. Bulletin American Association Petroleum Geologists, 85, 1731–1757.Google Scholar
Drummond, C. N., and Wilkinson, B. H. 1996. Stratal thickness frequencies and the prevalence of orderedness in stratigraphic sequences. Journal of Geology, 104, 1–18.Google Scholar
Dubille, M., and Lavé, J. 2015. Rapid grain size coarsening at sandstone/conglomerate transition:similar expression in Himalayan modern rivers and Pliocene molasse deposits. Basin Research, 27, 26–42.Google Scholar
Duller, R. A., Whittaker, A. C., Fedele, J. J., Springett, J., Smithells, R., and Allen, P. A. 2010. Fromgrain size to tectonics. Journal of Geophysical Research Earth Surface, 115, F03022.Google Scholar
Duller, R. A., Whittaker, A. C., Swinehart, J. B., Armitage, J. J., Sinclair, H. D., Bair, A. R., and Allen, P. A. 2012. Abrupt landscape change post 6 Ma on the central Great Plains, USA. Geology, 40, 871–874.Google Scholar
Dunne, T., and Leopold, L. B. 1978. Water in Environmental Planning. San Francisco, USA: W. H. Freeman.
Dunne, T., Mertes, L. A. K., Meade, R. H., Richey, J. E., and Forsberg, B. R. 1998. Exchangesof sediment between the flood plain and channel of the Amazon River in Brazil. BulletinGeological Society of America, 110, 450–467.Google Scholar
Dupont-Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., Dai, S., and Fang, X. M. 2007. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 445, 635–638.Google Scholar
Durán, R., Canals, M., Luis Sanz, J., Lastras, G., Amblas, D., and Micallef, A. 2012. Morphologyand sediment dynamics of the northern Catalan continental shelf, northwestern MediterraneanSea. Geomorphology, 204, 1–20.Google Scholar
Dürr, H. H., Meybeck, M., Hartmann, J., Laruelle, G. G., and Roubeix, V. 2009. Global spatialdistribution of natural riverine silica inputs to the coastal ocean. Biogeosciences, Discussion, 6, 1345–1401.Google Scholar
Duval, B., Cramez, C., and Vail, P. R. 1998. Stratigraphic cycles and major marine source rocks. Pages 43–51 of : De Graciansky, P. C., Hardenbol, J., Jacquin, T., and Vail, P. R. (ed). Mesozoicand Cenozoic Sequence Stratigraphy of European Basins. SEPM (Society for SedimentaryGeology) Special Publication 60.Google Scholar
Dzhamalov, R. G., and Safronova, T. I. 2001. On estimating chemical discharge into the world oceanwith groundwater. Water Resources Research, 29, 680–686.Google Scholar
Eberl, D. D., Drits, V. A., and Srodon, J. 1998. Deducing growth mechanisms for minerals from theshapes of crystal size distributions. American Journal of Science, 298, 499–533.Google Scholar
Egholm, D. L., Petersen, V. K., Knudsen, M. F., and Larsen, N. K. 2012. Coupling the flow of ice, water, and sediment in a glacial landscape evolution model. Geomorphology, 141, 47–66.Google Scholar
Einsele, G., and Hinderer, M. 1997. Terrestrial sediment yield and the lifetimes of reservoirs, lakes, and larger basins. Pages 288–310 of : Schlager, W., and Kroonenberg, S. (eds),. Predictions inGeology. Geologische Rundschau 86.Google Scholar
Einsele, G., Ratschbacher, L., and Wetzel, A. 1996. The Himalaya-Bengal Fan denudation-accumulation system during the last 20 Ma. Journal of Geology, 104, 163–184.Google Scholar
Ellis, M. A., Densmore, A. L., and Anderson, R. S. 1999. Evolution of mountainous topography inthe Basin and Range Province. Basin Research, 11, 21–42.Google Scholar
Elverhoi, A., Hooke, R. LeB., and Solheim, A. 1998. Late Cenozoic erosion and sediment yield fromthe Svalbard-Barents Sea region: Implications for understanding erosion of glacierized basins. Quaternary Science Reviews, 17, 209–241.Google Scholar
Erel, Y., Blum, J. D., and Roueff, E., Jiwchar, G. 2004. Lead and strontium isotopes as monitors of experimental granitoid mineral dissolution. Geochimica Cosmochimica Acta, 68, 4649–4663.Google Scholar
Ertel, J. R., Hedges, J. I., Devol, A. H., Richey, J. A., and Ribeiro, M. de N. G., 1986. Dissolvedhumic substances of the Amazon River system. Limnology and Oceanography, 31, 739–754.Google Scholar
Evan, A. T., Foltz, G. R., Zhang, D., and Vimont, D. J. 2011. Influence of African dust on ocean-atmosphere variability in the tropical Atlantic. Nature Geoscience, 4, 762–765.Google Scholar
Farraj, A. al-, and Harvey, A. M. 2005. Morphometry and depositional style of Late Pleistocenealluvial fans: Wadi Al-Bih, northern UAE and Oman. Pages 85–94 of : Harvey, A. M., Mather, A. E., and Stoles, M. (eds),. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. SpecialPublication Geological Society London 251.Google Scholar
Fedele, J. J., and Paola, C. 2007. Similarity solutions for fluvial sediment fining by selectivedeposition. Journal of Geophysical Research, 112, F02038.Google Scholar
Felletti, F., and Bersezio, R. 2010. Quantification of the degree of confinement of a turbidite-filled basin: A statistical approach based on bed thickness distribution. Marine and PetroleumGeology, 27, 515–532.Google Scholar
Ferguson, R. 2010. Emergence of abrupt gravel to sand transitions along rivers through sortingprocesses. Geology, 31, 159–162.Google Scholar
Fernandes, N. F., and Dietrich, W. F. 1997. Hillslope evolution by diffusive processes: the time scalefor equilibrium adjustments. Water Resources Research, 33, 1307–1318.Google Scholar
Filleaudeau, P. Y., Mouthereau, F., and Pik, R. 2012. Thermo-tectonic evolution of the south-central Pyrenees from rifting to orogeny: insights from detrital zircon U/Pb and (U-Th)/Hethermochronometry. Basin Research, 24, 401–417.Google Scholar
Fischer, A. G. 1986. Climatic rhythms recorded in strata. Annual Reviews of Earth and PlanetarySciences, 14, 351–376.Google Scholar
Fischer, A. G., and Schwarzacher, W. 1984. Cretaceous bedding rhythms under orbital control? Pages 163–175 of : Berger, A. L., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B. (eds). Milankovitch and Climate: Understanding the Response to Astronomical Forcing. Dordrecht/Boston/Lancaster, 510 pages: Reidel.Google Scholar
Fischer, H. B., List, E. J., Koh, C. Y., Imberger, J., and Brooks, N. H. 1979. Mixing in Inland andCoastal Waters. San Diego, USA: Academic Press.
Fitzgerald, P. G., Sorkhabi, R. B., Redfield, T. F., and Stump, E. 1995. Uplift and denudation of the central Alaska Range: a case-study in the use of apatite fission track thermochronology todetermine absolute uplift parameters. Journal Geophysical Research, 100, 21, 075–21, 091.Google Scholar
Flemming, B. W. 1981. Factors controlling shelf sediment dispersal along the southeast Africancontinental margin. Marine Geology, 42, 259–277.Google Scholar
Flint, S. S., and Bryant, I. D. 1993. The Geological Modelling of Hydrocarbon Reservoirs and Outcrop Analogues. International Association of Sedimentologists Special Publication 15.Google Scholar
Flood, R. D., Piper, D. J. W., and Klaus, A. and Shipboard Scientific Party 1995. Proceedings OceanDrilling Program Initial Report 155. College Station, Texas, USA: Ocean Drilling Program.
Foltz, G. R., and McPhaden, M. J. 2008. Trends in Saharan dust and tropical Atlantic climate during1980–2006. Geophysical Research Letters, 35, L20802.Google Scholar
Ford, M. 2004. Depositional wedge-tops: interaction between low basal friction external orogenicwedges and flexural foreland basins. Basin Research, 16, 361–375.Google Scholar
Forzoni, A., Storms, J. E. A., Whittaker, A. C., and de Jager, G. 2014. Delayed delivery from thesediment factory: modeling the impact of catchment response time to tectonics on sedimentflux and fluvio-deltaic stratigraphy. Earth Surface Processes and Landforms, 39, 689–704.Google Scholar
Fournier, F. 1960. Climat et Erosion; la Relation entre Erosion du Sol par l'Eau et les PrecipitationsAtmosphériques. Paris: Presses Universitaires de France.
France-Lanord, C., and Derry, L. A. 1997. Organic carbon burial forcing of the carbon cycle fromHimalayan erosion. Nature, 390, 65–67.Google Scholar
Francis, J. R. D. 1973. Experiments on the motion of solitary grains along the bed of a water stream. Philosophical Transactions Royal Society London, 332A, 443–472.Google Scholar
Friedrichs, C. T., and Wright, L. D. 1986. Gravity-driven sediment transport on the continental shelf:implications for equilibrium prof iles near river mouths. Coastal Engineering, 51, 795–811.Google Scholar
Fu, B., Lin, A., Kano, K., Maruyama, T., and Guo, J. 2003. Quaternary folding of the eastern TianShan, northwest China. Tectonophysics, 369, 79–101.Google Scholar
Gaillardet, J., Dupré, B., Louvat, P., and Allegrè, C. J. 1999. Global silicate weathering and CO2consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3–30.Google Scholar
Gaillardet, J., Millot, R., and Dupré, B. 2003. Chemical denudation rates of the western Canadianorogenic belt: the Strikine terrane. Chemical Geology, 201, 257–279.Google Scholar
Gallagher, K. 2012. Transdimensional inverse thermal history modeling for quantitative ther-mochronology. Journal Geophysical Research, 117, B04208.Google Scholar
Gallagher, K., Brown, R., and Johnson, C. 1998. Fission track analysis and its application togeological problems. Annual Review of Earth and Planetary Sciences, 26, 519–572.Google Scholar
Galloway, W. E. 2005. Gulf of Mexico Basin depositional record of Cenozoic North Americandrainage basin evolution. Pages 409–423 of : Blum, M., Marriott, S., and Leclair, S. (eds). Fluvial Sedimentology VII. International Association Sedimentologists Special Publication 35.Google Scholar
Galloway, W. E., Ganey-Curry, P., and Whiteaker, T. L. 2009. Regional controls from temporaland spatial distribution of continental slope and abyssal plain reservoir systems of the Gulfof Mexico Basin. American Association Petroleum Geologists Search and Discovery Article, 50226.Google Scholar
Galloway, W. E., Whiteaker, T. L., and Ganey-Curry, P. 2011. History of Cenozoic North Americandrainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7, 938–973.Google Scholar
Galy, A., and France-Lanord, C. 2001. Higher erosion rates in the Himalaya: geochemical constraintson riverine fluxes. Geology, 29, 23–26.Google Scholar
Galy, V., France-Lanord, C., Beyssac, P., Faure, P., Kudrass, H., and Palhol, F. 2007. Efficient organiccarbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature, 450, 407–410.Google Scholar
Galy, V., France-Lanord, C., Beyssac, O., Lartiges, B., and Rahman, M. 2011. Organic carbon cyclingduring Himalayan erosion: processes, fluxes and consequences for the global carbon cycle. Pages 163–179 of : Lal, R., Sivakumar, M. V. K., Faiz, M. A., Mustafizur Rahman, A. H. M., and Islam, K. R. (eds),. Climate Change and Food Security in South Asia.
Ganti, V., Lamb, M. P., and McElroy, B. 2014. Quantitative bounds on morphodynamics andimplications for reading the sedimentary record. Nature Communications, 5, 3298.Google Scholar
Garcia-Castellanos, D., Vergés, J., Gaspar-Escribano, J., and Cloetingh, S. 2003. Interplay betweentectonics, climate and fluvial transport during the Cenozoic evolution of the Ebro Basin (NEIberia). Journal of Geophysical Research-Solid Earth, 108, 8. 1–8. 18.Google Scholar
Garrels, R. M., and Mackenzie, F. T. 1971. Evolution of Sedimentary Rocks. New York: W. W. Norton.
Garver, J. I., Soloviev, A. V., Bullen, M. E., and Brandon, M. T. 2000. Towards a more complete record of magmatism and exhumation in continental arcs using detrital fission track ther-mochronometry. Physics and Chemistry of the Earth, Part A, 25, 565–570.Google Scholar
Garzanti, E., Doglioni, C., Vezzoli, G., and Andò, S. 2007. Orogenic belts and orogenic sedimentprovenance. Journal of Geology, 115, 315–334.Google Scholar
Gasparini, N. M., Tucker, G. E., and Bras, R. L. 1999. Downstream fining through selective particlesorting in an equilibrium drainage network. Geology, 27, 1079–1082.Google Scholar
Gawthorpe, R. L., and Hurst, J. M. 1993. Transfer zones in extensional basins: their structural styleand influence on drainage development and stratigraphy. Journal Geological Society London, 150, 1137–1152.Google Scholar
Gawthorpe, R. L., and Leeder, M. R. 2000. Tectono-sedimentary evolution of active extensionalbasins. Basin Research, 12, 195–218.Google Scholar
Geddes, A. 1960. The alluvial morphology of the Indo-Gangetic Plain: its mapping and geographicalsignificance. Institute of British Geographers, Transactions and Papers, 28, 253–276.Google Scholar
Gee, M. J. R., Masson, D. G., Watts, A. B., and Allen, P. A. 1999. The Saharan Debris Flow: aninsight into the mechanics of long-runout submarine debris flows. Sedimentology, 46, 317–335.Google Scholar
Geyer, W. R., Hill, P. S., and Kineke, G. C. 2004. The transport, transformation and dispersal of sediment by buoyant coastal flows. Continental Shelf Research, 24, 927–949.Google Scholar
Gibbs, R. J. 1970. Mechanisms controlling world water chemistry. Science, 170, 1088–1090.Google Scholar
Gibling, M. R. 2006. Width and thickness of fluvial channel bodies and valley fills in the geological record: A literature compilation and classification. Journal Sedimentary Research, 76, 731–770.Google Scholar
Godard, V., Tucker, G. E., Burch Fisher, G., Burbank, D. W., and Bookhagen, B. 2013. Frequency- dependent landscape response to climatic forcing. Geophysical Research Letters, 40, 859–863.Google Scholar
Goldstein, S. L., O'Nions, R. K., and Hamilton, P. J. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70, 221–236.Google Scholar
Goldsworthy, M., Jackson, J., and Haines, J. 2002. The continuity of active fault systems in Greece. Geophysical Journal International, 148, 596–618.Google Scholar
Goodbred, A. L., and Kuehl, S. A. 1998. Floodplain processes in the Bengal Basin and the storage of Ganges-Brahmaputra River sediment: an accretion study using 137Cs and 210Pb geochronology. Sedimentary Geology, 121, 239–258.Google Scholar
Goodbred, S. and Kuehl, S., 2003. Sedimentary Geology of the Bengal Basin, Bangladesh, in relationto the Asia-Greater India collision and the evolution of the eastern Bay of Bengal. Sedimentary Geology(Special Issue), 155, 175–424.Google Scholar
Goodbred, S. L., and Kuehl, S. A. 1999. Holocene and modern sediment budgets for the Ganges-Brahmaputra river system: Evidence for highstand dispersal to floodplain, shelf and deep-seadepocenters. Geology, 27, 559–562.Google Scholar
Graham, S. A., Tolson, R. B., DeCelles, P. G., Ingersoll, R. V., Bargar, E., Caldwell, M., Cavazza, W., Edwards, D. P., Follo, M. F., Handschy, J. F., Lemke, L., Moxon, I., Rice, R., Smith, G. A., and White, J. 1986. Provenance modelling as a technique for analysing source terrane evolution andcontrols on foreland sedimentation. Pages 425–436 of : Allen, P. A., and Homewood, P. (eds). Foreland Basins. International Association of Sedimentologists Special Publication 8.Google Scholar
Graham, S. T., Famiglietti, J. S., and Maidment, D. R. 1999. Five minute, 1/2 degree, and 1 degreedata sets of continental watersheds and river networks for use in regional and global hydrologicand climate system modeling studies. Water Resources Research, 35, 583–587.Google Scholar
Gran, K. B., and Montgomery, D. R. 2005. Spatial and temporal patterns in fluvial recovery followingvolcanic eruptions: Channel response to basin-wide sediment loading at Mount Pinatubo, Philippines. Geological Society America Bulletin, 117, 195–211.Google Scholar
Granger, D. E., Kirchner, J. W., and Finkel, R. 1996. Spatially averaged long-term erosion ratesmeasured from in situ-produced cosmogenic nuclides in alluvial sediments. Journal of Geology, 104, 249–257.Google Scholar
Granjeon, D., and Joseph, P. 1999. Concepts and applications of a 3-D multiple lithology, diffusivemodel in stratigraphic modeling. Pages 197–210 of : Harbaugh, J. W., Watney, W. L., Rankey, E. C., Slingerland, R., Goldstein, R. H., and Franseen, E. K. (eds),. Numerical Advancesin Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Simulations. Tulsa, Oklahoma: Special Publication Society for Sedimentary Geology, 62.
Grant, W. D., and Madsen, O. S. 1979. Combined wave and current interaction with a rough bottom. Journal of Geophysical Research, 84, 1797–1808.Google Scholar
Grantham, J. H., and Velbel, M. A. 1988. The influence of climate and topography on rock-fragmentabundance in modern fluvial sands of the southern Blue Ridge Mountains, North Carolina. Journal Sedimentary Petrology, 58, 219–227.Google Scholar
Green, A. N. 2009. Sediment dynamics on the narrow, canyon-incised and current-swept shelf of thenorthern KwaZulu-Natal continental shelf, South Africa. Geo-Marine Letters, 29, 201–219.Google Scholar
Griffin, J. D., Hemer, M. A., and Jones, B. G. 2008. Mobility of sediment grain size distributions ona wave dominated continental shelf, southeastern Australia. Marine Geology, 252, 13–23.Google Scholar
Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., Le Carlier de Veslud, C., and Braun, J. 2012. Quantification and causes of the terrigeneous sediment budget at the scale of a continentalmargin: a new method applied to the Namibia-South Africa margin. Basin Research, 24, 3–30.Google Scholar
Gupta, S. 1997. Himalayan drainage patterns and the origin of fluvial megafans in the Gangesforeland basins. Geology, 25, 11–14.Google Scholar
Gupta, S., Underhill, J. R., Sharp, I. R., and Gawthorpe, R. L. 1999. Role of fault interactions incontrolling synrift sediment dispersal patterns, Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Research, 11, 167–189.Google Scholar
Gurnell, A., Hannah, D., and Lawler, D. 1996. Suspended sediment yield from glacier basins. IAHSPubl., 236, 97–104.Google Scholar
Gurnis, M. 2001. Sculpting the Earth from inside out. Scientific American, 284, 40–47.Google Scholar
Hack, J. T. 1973. Stream prof ile analysis and stream gradient index. U. S. Geological Survey Journal. of Research, 1, 421–429.Google Scholar
Hajek, E. A., and Wolinsky, M. A. 2012. Simplified process modeling of river avulsion and alluvial architecture: connecting models and field data. Sedimentary Geology, 257–260, 1–30.Google Scholar
Hallet, B., Hunter, L., and Bogen, J. 1996. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global and Planetary Change, 12, 213–235.Google Scholar
Hampson, G. J., Duller, R. A., Petter, A. L., Robinson, R. A. J., and Allen, P. A. 2014. Mass-balance constraints on stratigraphic interpretation of linked alluvial-coastal-shelfal deposits: UpperCretaceous Castlegate Sandstone, Blackhawk Formation, Star Point Sandstone and MancosShale, Utah and Colorado, USA. Journal of Sedimentary Research, 84, 935–960.Google Scholar
Hancock, G. S., Anderson, R. S., Whipple, K. X., and Wohl, E. E. 1998. Beyond power: bedrockriver incision process and form. Pages 35–60 of :. Rivers over Rock, Fluvial Processes in BedrockChannels. Geophysical Monograph 107.Google Scholar
Hanks, T. C., Bucknam, R. C., LaJoie, K. R., and Wallace, R. E. 1984. Modification of wave-cut andfaulting controlled landforms. Journal Geophysical Research, 89, 5771–5790.Google Scholar
Haq, B. U. 1991. Sequence stratigraphy, sea-level change, and significance for the deep sea. Pages 3–39 of : Macdonald, D. I. M. (ed),. Sedimentation, Tectonics and Eustasy: Sea-Level Changesat Active Margins. International Association Sedimentologists Special Publication 12.Google Scholar
Haq, B. U., and Al-Qahtani, A. M. 2005. Phanerozoic cycles of sea-level change on the Arabianplatform. GeoArabia, 10, 127–160.Google Scholar
Haq, B. U., and Schutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science, 322, 64–68.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic(250 Myr ago to present). Science, 235, 1156–1167.Google Scholar
Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., De Graciansky, P. C., and Vail, P. R. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. Pages 3–14 of : De Graciansky, P. C., Hardenbol, J., Jacquin, T., and Vail, P. R. (eds),. Mesozoicand Cenozoic Sequence Stratigraphy of European Basins. SEPM (Society for SedimentaryGeology) Special Publication 60.Google Scholar
Hardie, L. A., Bosellini, A., and Goldhammer, R. K. 1986. Repeated subaerial exposure of subtidalcarbonate platforms, Triassic, northern Italy: evidence for high frequency sea level oscillationson a 104 year scale. Paleoceanography, 1, 447–457.Google Scholar
Harel, M. A., Mudd, S. M., and Attal, M. 2016. Global analysis of the stream power law parametersbased on worldwide 10Be denudation rates. Geomorphology, 268, 184–196.Google Scholar
Harris, C. K., and Wiberg, P. L. 2001. A two-dimensional, time-dependent model of suspendedsediment transport and bed reworking for continental shelves. Computers & Geosciences, 27, 675–690.Google Scholar
Harris, C. K., Traykovski, P., and Geyer, W. R. 2005. Flood dispersal and deposition by near-bedgravitational sediment flows and oceanographic transport: A numerical modeling study of theEel River shelf, northern California. Journal of Geophysical Research, 110, 25. 1–25. 16.Google Scholar
Harrison, C. G. A. 1988. Eustasy and epeirogeny of continents on time scales between about 1 and 100 My. Paleoceanography, 3, 671–684.Google Scholar
Harrison, C. G. A. 2002. Power spectrum of sea level change over 15 decades of frequency. Geochemistry Geophysics Geosystems, 3, 10. 1029/2002GC000300.Google Scholar
Harrison, C. G. A., Brass, G. W., Saltzman, E., Sloan II, J., Southam, J., and Whitman, J. 1981. Sealevel variations, global sedimentation rates and the hypsographic curve. Earth and PlanetaryScience Letters, 54, 1–16.Google Scholar
Hartmann, W. K. 1969. Terrestrial, lunar, and interplanetary rock fragmentation. Icarus, 10, 201–213.Google Scholar
Hartshorne, K., Hovius, N., Dade, B. W., Slingerland, R. L. 2002. Climate-driven bedrock incision in an active mountain belt. Science, 297, 2036–2038.Google Scholar
Harvey, A. M. 2005. Differential effects of base-level, tectonic setting and climate change on Quaternary alluvial fans in the northern Great Basin, Nevada, USA. Pages 117–131 of : Harvey, A. M., Mather, A. E., and Stokes, M. (eds),. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. Geological Society London Special Publication.
Hastings, H. M., and Sugihara, G. 1993. Fractals: A User's Guide for the Natural Sciences. Oxford, U. K.: Oxford Science Publications.
Hay, W. W. 1998. Detrital sediment fluxes from continents to oceans. Chemical Geology, 145, 287–323.Google Scholar
Hays, J. D., Imbrie, J., and Shackleton, N. J. 1976. Variations in the Earth's orbit: pacemaker of theice ages. Science, 194, 1121–1132.Google Scholar
Hedges, J. I., Clark, W. A., Quay, P. D., Richey, J. E., Devol, A. H., and Santos, U. de M. 1986. Compositions and fluxes of particulate organic material in the Amazon River. Limnology andOceanography, 31, 717–738.Google Scholar
Heezen, B. C., and Ewing, M. 1952. Turbidity currents and submarine slumps, and the 1929 GrandBanks earthquake. American Journal of Science, 250, 849–873.Google Scholar
Heffern, E. L., Reiners, P. W., Naeser, C. W., and Coates, D. A. 2008. Geochronology of clinkerand implications for evolution of the Powder River Basin landscape, Wyoming and Montana. Geological Society America Reviews in Engineering Geology, 18, 155–175.Google Scholar
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C. 1997. The soil production functionand landscape equilibrium. Nature, 388, 358–361.Google Scholar
Heins, W. A., and Kairo, S. 2007. Predicting sand character with integrated genetic analysis. Pages 345–380 of : Arribas, J., Critelli, S., and Johnsson, M. J. (eds),. Sedimentary Provenance andPetrogenesis: Perspectives from Petrography and Geochemistry. Geological Society of AmericaSpecial Paper 420.Google Scholar
Helland-Hansen, W., and Gjelberg, H. 2012. Towards a hierarchical classification of clinof orms. American Association Petroleum Geologists, Annual Convention and Exhibition, Search andDiscovery Article, 90142.Google Scholar
Helland-Hansen, W., and Hampson, G. J. 2009. Trajectory analysis: concepts and applications. BasinResearch, 21, 454–483.Google Scholar
Helland-Hansen, W., Sømme, T. O., Martinsen, O. J., Lunt, I., and Thurmond, J. 2016. DecipheringEarth's natural hourglasses: Perspectives on source-to-sink analysis. Journal SedimentaryResearch, 86, 1008–1033.Google Scholar
Heller, P. L., and Paola, C. 1992. The large-scale dynamics of grain size variation in alluvial basins, 2. Applications to syntectonic conglomerate. Basin Research, 4, 91–102.Google Scholar
Henriksen, S., Hampson, G. J., Helland-Hansen, W., Johannessen, E. P., and Steel, R. J. 2011. Shelf-edge and shoreline trajectories: a dynamic approach to stratigraphic analysis. Basin Research, 23, 445–453.Google Scholar
Hergarten, S. 2002. Self-Organized Criticality in Earth Systems. Berlin: Springer-Verlag.
Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D., and Ehlers, T. A. 2013. Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504, 423–426.Google Scholar
Hetzel, R., and Hanpel, A. 2005. Slip rate variations on normal faults during glacial-interglacial changes in surface loads. Nature, 435, 81–84.Google Scholar
Hilgen, F. 2007. Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary. Earth and Planetary Science Letters, 107, 349–368.Google Scholar
Hilgen, F. J., Kuiper, K. F., and Lourens, L. J. 2010. Evaluation of the astronomical time scale for the Paleocene and earliest Eocene. Earth and Planetary Science Letters, 300, 139–151.Google Scholar
Hilton, R. G., Galy, A., Hovius, N., Chen, M. C., Horng, M. J., and Chen, H. 2008. Tropical cycle- driven erosion of the terrestrial biosphere from mountains. Nature Geoscience, 1, 759–762.Google Scholar
Hinderer, M. 2012. From gullies to mountain belts: A review of sediment budgets at various scales. Sedimentary Geology, 280, 21–59.Google Scholar
Hinderer, M., and Einsele, G. 2001. The world's large basins as denudation-accumulation systems and implications for their lifetimes. Journal of Paleolimnology, 26, 355–372.Google Scholar
Hinnov, L. A., and Goldhammer, R. K. 1991. Spectral analysis of the Middle Triassic Latemar limestone. Journal Sedimentary Petrology, 61, 1173–1193.Google Scholar
Hinnov, L. A., and Ogg, J. G. 2007. Cyclostratigraphy and the astronomical time scale. Stratigraphy, 4, 239–251.Google Scholar
Hirst, J. P. P., and Nichols, G. J. 1986. Thrust tectonic controls on Miocene alluvial distribution patterns, southern Pyrenees. Pages 247–258 of : Allen, P. A., and Homewood, P. (eds). Foreland Basins, Special Publication International Association Sedimentologists, 8. Oxford, UK: Blackwell Scientific Publications.
Hof fman, P. F., and Grotzinger, J. P. 1993. Orographic precipitation, erosional unloading, and tectonicstyle. Geology, 21, 195–198.Google Scholar
Hof fmann, T., Erkens, G., Cohen, K. M., Houben, P., Seidel, J., and Dikau, R. 2007. Holocenefloodplain sediment storage and hillslope erosion within the Rhine catchment. The Holocene, 17, 105–118.Google Scholar
Hogan, K. A., Dowdeswell, J. A., and Cof aigh, C. O. 2012. Glacimarine sedimentary processesand depositional environments in an embayment fed by West Greenland ice streams. MarineGeology, 311, 1–16.Google Scholar
Holbrook, J., and Wanas, H. 2014. A fulcrum approach to assessing source-to-sink mass balanceusing channel paleohydrological parameters derivable from common fluvial datasets with anexample from the Cretaceous of Egypt. Journal Sedimentary Research, 84, 349–372.Google Scholar
Holeman, J. N. 1980. Erosion rates in the U. S. estimated by the Soil Conservation Service's inventory. EOS, Transactions of the American Geophysical Union, 61, 954.Google Scholar
Homewood, P., and Allen, P. A. 1981. Wave-, tide- and current-controlled sandbodies of MioceneMolasse, western Switzerland. Bulletin American Association Petroleum Geologists, 65, 2534–2545.Google Scholar
Homewood, P., Allen, P. A., and Williams, G. D. 1986. Dynamics of the Molasse Basin of westernSwitzerland. Pages 199–217 of : Allen, P. A., and Homewood, P. (eds),. Foreland Basins, SpecialPublication International Association Sedimentologists, 8. Oxford, UK: Blackwell ScientificPublications.
Hooke, R. L. 1968. Steady-state relationships on arid-region alluvial fans in closed basins. AmericanJournal of Science, 266, 609–629.Google Scholar
Hooke, R. L., and Rohrer, W. L. 1977. Relative erodibility of source-area rock types, as determinedfrom second order variations in alluvial fan size. Bulletin Geological Society America, 88, 1177–1182.Google Scholar
Hooke, R. Le, B. 2000. Toward a uniform theory of clastic sediment yield in fluvial systems. BulletinGeological Society America, 112, 1778–1786.Google Scholar
Horton, B. K., and DeCelles, P. G. 1997. The modern foreland basin system adjacent to the centralAndes. Geology, 25, 895–898.Google Scholar
Horton, R. E. 1945. Erosional development of streams and their drainage basins: hydrophysicalapproach to quantitative morphology. Geological Society America Bulletin, 56, 275–370.Google Scholar
Hoth, S., Kukowski, N., and Oncken, O. 2008. Distant effects in bivergent orogenic belts – Howretro-wedge erosion triggers resource formation in pro-foreland basins. Earth and PlanetaryScience Letters, 273, 28–37.Google Scholar
Hovius, N. 1996. Regular spacing of drainage outlets from linear mountain belts. Basin Research, 8, 29–44.Google Scholar
Hovius, N. 1998. Controls on sediment supply by large rivers. Pages 3–16 of : Shanley, K. W., and McCabe, P. J. (eds),. Relative Role of Eustasy, Climate and Tectonics in Continental Rocks. Society Economic Paleontologists Mineralogists Special Publication, 59.Google Scholar
Hovius, N., Stark, C. P., and Allen, P. A. 2007. Sediment flux from a mountain belt derived fromlandslide mapping. Geology, 25, 231–234.Google Scholar
Howard, A. D. 1987. Modelling fluvial systems: rock-, gravel- and sand-bed channels. Pages 69–94 of : Richards, K. (ed),. River Channels. New York: Basil Blackwell.
Howard, A. D. 1997. Badland morphology and evolution: Interpretation using a simulation model. Earth Surface Processes and Landforms, 22, 211–227.Google Scholar
Howard, A. D., and Kerby, G. 1983. Channel changes in badlands. Geological Society AmericaBulletin, 94, 739–752.Google Scholar
Hsui, A. T., Rust, K. A., and Klein, G. D. 1993. A fractal analysis of Quaternary, Cenozoic-Mesozoic, and Late Pennsylvanian sea level changes. Journal Geophysical Research, 98, 21, 963–21, 967.Google Scholar
Hughes Clark, J. E., Shor, A. N., Piper, D. J. W., and Mayer, L. A. 1990. Large-scale current-inducederosion and deposition in the path of the 1929 Grand Banks turbidity current. Sedimentology, 37, 613–629.Google Scholar
Humphrey, N. F., and Heller, P. L. 1995. Natural oscillations in coupled geomorphic systems – analternative origin for cyclic sedimentation. Geology, 23, 499–502.Google Scholar
Hurford, A. J., and Green, P. F. 1983. The zeta age calibration of fission track dating. ChemicalGeology (Isotope Geoscience Section), 1, 285–317.Google Scholar
Hyslip, J. P., and Vallejo, L. E. 1997. Fractal analysis of the roughness and size distribution of granularmaterials. Engineering Geology, 48, 231–244.Google Scholar
Ibbeken, H. 1983. Jointed source rock and fluvial gravels controlled by Rosin's law: A grain-sizestudy in Calabria, south Italy. Journal of Sedimentary Petrology, 53, 1213–1231.Google Scholar
Ibbeken, H., and Schleyer, R. 1991. Source and Sediment: A Case Study of Provenance and MassBalance at an Active Plate Margin (Calabria, Southern Italy). Berlin: Springer-Verlag.
Ibbeken, H., and Schleyer, R. 2003. Relative strengths of provenance signals discriminating foursource areas in Calabria, Italy. Pages 101–116 of :. Quantitative Provenance Studies in Italy, vol. 61. Memoire Descrittive della Carta Geologica dell'Italia.Google Scholar
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J. 1984. The orbital theory of Pleistocene climate: supportfrom a revised chronology of the marine 18O record. In: Berger, A. L., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B. (eds),. Milankovitch and Climate: Understanding the Response toAstronomical Forcing. Norwell, Massachusetts: D. Reidel.
Ingersoll, R. V. 1988. Tectonics of sedimentary basins. Geological Society of America Bulletin, 100, 1704–1719.Google Scholar
Ingersoll, R. V., and Busby, C. J. 1995. Tectonics of sedimentary basins. Pages 1–52 of :. Tectonics of Sedimentary Basins. Oxford: Blackwell Science.
Ittekot, V. 1988. Global trends in the nature of organic matter in river suspensions. Nature, 322, 436–438.Google Scholar
Ittekot, V., and Laane, R. W. P. M. 1991. Fate of riverine particulate organic matter. Chap. 10 of : Degens, E. T., Kempe, S., and Richey, J. E. (eds),. Biogeochemistry of Major World Rivers, SCOPE 42. Scientific Committee on Problems of the Environment (SCOPE).
Ivy-Ochs, S., and Kober, F. 2008. Surface exposure dating with cosmogenic nuclides. QuaternaryScience Journal, 57, 179–209.Google Scholar
Jaeger, J. M., and Koppes, M. 2015. The role of the cryosphere in source-to-sink systems. EarthScience Reviews, 153, 43–76.Google Scholar
Jago, C. F., and Barusseau, J. P. 1981. Sediment entrainment on a wave-graded shelf, Roussillon, France. Marine Geology, 42, 279–299.Google Scholar
Jansson, P., Jacobson, D., and Hooke, R. L. 1993. Fan and playa areas in southern California andadjacent parts of Nevada. Earth Surface Processes and Landforms, 18, 109–119.Google Scholar
Jarman, D., Agliardi, F., and Crosta, G. B. 2011. Megafans and outsize fans from catastrophicslope failures in Alpine glacial troughs: the Malser Haide and the Val Venosta cluster, Italy. Pages 253–277 of : Jaboyedof f, M. (ed),. Slope Tectonics. Geological Society London SpecialPublication 351.Google Scholar
Jefferson, I. F., Jefferson, B. Q., Assallay, A. M., Rogers, C. D. F., and Smalley, I. J. 1997. Crushingof quartz sand to produce silt particles. Naturwissenschaften, 84, 1–3.Google Scholar
Jerolmack, D. J., and Brzinski, T. A. III. 2010. Equivalence of abrupt grain-size transitions in alluvialrivers and eolian sand seas. Journal of Geology, 38, 719–722.Google Scholar
Jerolmack, D. J., and Paola, C. 2010. Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37, L19401.Google Scholar
Jervey, M. T. 1988. Quantitative geological modeling of siliciclastic rock sequences and their seismicexpression. Pages 47–69 of : Wilgus, C. K., Hastings, B. S., Kendall, C. G. St., C., Posamentier, H. W., Ross, C. A., and van Wagoner, J. C. (eds),. Sea-level Changes: An Integrated Approach, vol. 42. Society of Economic Paleontologists and Mineralogists Special Publication.Google Scholar
Johnsson, M. J. 1993. The system controlling the composition of clastic sediments. Pages 1–19 of : Johnsson, M. J., and Basu, A. (eds),. Processes Controlling the Composition of ClasticSediments. Geological Society of America Special Paper 284.
Johnsson, M. J., and Meade, R. H. 1990. Chemical weathering of fluvial sediments during alluvialstorage: The Macuapanim Island point bar, Solimoes River, Brazil. Journal of SedimentaryPetrology, 60, 827–842.Google Scholar
Jolley, E. T., Turner, P., Williams, G. D., Hartley, A. J., and Flint, S. 1990. Sedimentological responseof an alluvial system to Neogene thrust tectonics. Journal Geological Society London, 147, 769–784.Google Scholar
Keil, R. G., Mayer, L. M., Quay, P. D., Richey, J. E., and Hedges, J. I. 1997. Loss of organic matterfrom riverine particles in deltas. Geochimica et Cosmochimica Acta, 61, 1507–1511.Google Scholar
Kelsey, H. M., Lamberson, R., and Madej, M. A. 1987. Stochastic model for the long-term transportof stored sediment in a river channel. Water Resources Research, 23, 1738–1750.Google Scholar
Kenyon, P. M., and Turcotte, D. L. 1985. Morphology of a delta prograding by bulk sedimenttransport. Bulletin Geological Society America, 96, 1457–1465.Google Scholar
Kertznus, V., and Kneller, B. 2009. Clinof orm quantification for assessing the effects of externalforcing on continental margin development. Basin Research, 21, 738–758.Google Scholar
Kesel, R. H., Dunne, K. C., McDonald, K. R., and Spicer, B. E. 1974. Lateral overbank deposition onthe Mississippi River in Louisiana caused by the 1973 flooding. Geology, 1, 461–464.Google Scholar
Kettner, A. J., Restrepo, J. D., and Syvitski, J. P. M. 2010. A spatial simulation experiment to replicatefluvial sediment fluxes within the Magdalena River Basin, Colombia. Journal of Geology, 118, 363–379.Google Scholar
Kim, W., Paola, C., Swenson, J. B., and Voller, V. R. 2006. Shoreline response to autogenic processesof sediment storage and release in the fluvial system. Journal of Geophysical Research, 111, F04013.Google Scholar
Kim, W., Connell, S. D., Steel, E., Smith, G. A., and Paola, C. 2011. Mass-balance control on theinteraction of axial and transverse channel systems. Geology, 39, 611–614.Google Scholar
Kirby, E., and Whipple, K. X. 2001. Quantifying differential rock uplift rates via stream prof ileanalysis. Geology, 29, 415–418.Google Scholar
Kirby, M. E., Lund, S. P., Anderson, M. A., and Bird, B. W. 2007. Insolation forcing of Holoceneclimate change in Southern California: a sediment study of Lake Elsinore. Journal of Paleolim-nology, 38, 395–417.Google Scholar
Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J. L., and Megahan, W. F. 2001. Episodic mountain erosion inferred from sediment yields over 10-year and 10, 000-year timescales. Geology, 29, 591–594.Google Scholar
Kirkby, M. J., and Cox, N. J. 1995. A climatic index for soil erosion potential (CSEP) includingseasonal and vegetation factors. Catena, 25, 333–352.Google Scholar
Kittleman, L. R. 1964. Application of Rosin's distribution in size-frequency analysis of clastic rock. Journal Sedimentary Petrology, 34, 483–502.Google Scholar
Klein, J., Giegengack, R., Middleton, R., Sharma, P., Underwood, J., and Weeks, R. A. 1986. Revealing histories of exposure using in situ-produced 26Al and 10Be in Libyan desert glass. Radiocarbon, 28, 547–555.Google Scholar
Knighton, A. D. 1999. The gravel-sand transition in a disturbed catchment. Geomorphology, 27, 325–341.Google Scholar
Koide, M., Soutar, A., and Goldberg, E. D. 1972. Marine geochronology with 210Pb. Earth andPlanetary Science Letters, 14, 442–446.Google Scholar
Koide, M., Bruland, K. W., and Goldberg, E. D. 1973. 228Th/232Th and 210Pb geochronologies inmarine and lake sediments. Geochimica et Cosmochimica Acta, 37, 1171–1187.Google Scholar
Komar, P. D. 1973. Computer models of delta growth due to sediment input from rivers and longshoretransport. Bulletin Geological Society of America, 84, 2217–2226.Google Scholar
Komar, P. D., and Miller, M. C. 1973. The threshold of sediment movement under oscillatory waves. Journal Sedimentary Petrology, 43, 1101–1110.Google Scholar
Konstantinovskaya, E., and Malavieille, J. 2005. Erosion and exhumation in accretionary orogens:experimental and geological approaches. Geochemistry, Geophysics, Geosystems, 6, Q02006.Google Scholar
Kooi, H., and Beaumont, C. 1996. Large-scale geomorphology: classical concepts reconciled andintegrated with contemporary ideas via a surface processes model. Journal GeophysicalResearch, 101, 3361–3386.Google Scholar
Koons, P. O. 1989. The topographic evolution of collisional mountain belts: a numerical look at theSouthern Alps, New Zealand. American Journal of Science, 289, 1041–1069.Google Scholar
Koons, P. O. 1995. Modelling the topographic evolution of collisional belts. Annual Review of Earthand Planetary Sciences, 23, 375–408.Google Scholar
Koppes, M., and Montgomery, D. 2009. The relative efficacy of fluvial and glacial erosion overmodern to orogenic time scales. Nature Geoscience, 2, 644–647.Google Scholar
Koppes, M., Hallet, B., Rignot, A., Mouginot, J., Wellner, J. S., and Boldt, K. 2015. Observedlatitudinal variations in erosion as a function of glacier dynamics. Nature, 526, 100–103.Google Scholar
Krishnaswami, S., Singh, S. K., and Dalai, T. K. 1999. Silicate weathering in the Himalaya: role incontributing to major ions and radiogenic Sr to the Bay of Bengal. Pages 23–51 of : Somayajulu, B. L. K. (ed),. Ocean Science, Trends and Future Directions. New Delhi: Indian NationalScience Academy and Akademia International.
Krishnaswami, S., Trivedi, J. R., Sarin, M. M., Ramesh, R., and Sharma, K. K. 1992. Strontiumisotopes and rubidium in the Ganges-Brahmaputra river system: Weathering in the Himalaya, fluxes to the Bay of Bengal and contributions to the evolution of oceanic 87Sr/86Sr. Earth andPlanetary Science Letters, 109, 243–253.Google Scholar
Krishnaswamy, S., Lal, D., Martin, J. M., and Meybeck, M. 1971. Geochronology of lake sediments. Earth and Planetary Science Letters, 11, 407–414.Google Scholar
Krumbein, W. C. 1938. Size-frequency distributions of sediments and the normal phi curve. JournalSedimentary Petrology, 8, 84–90.Google Scholar
Krumbein, W. C., and Tisdel, F. W. 1940. Size distributions of source rocks of sediments. AmericanJournal of Science, 238, 296–305.Google Scholar
Kuehl, S. A., DeMaster, D. J., and Nittrouer, C. A. 1986. Nature of sediment accumulation on theAmazon continental shelf. Continental Shelf Research, 6, 209–225.Google Scholar
Kuehl, S. A., Levy, B. M., Moore, W. S., and Allison, M. A. 1997. Subaqueous delta of the Ganges-Brahmaputra river system. Marine Geology, 144, 81–96.Google Scholar
Kuehl, S. A., Allison, M. A., Goodbred, S. L., and Kudrass, H. 2005. The Ganges-Brahmaputra Delta. Pages 413–434 of :. River Deltas – Concepts, Models and Examples. Tulsa, Oklahoma: Societyof Economic Paleontologists and Mineralogists, Special Publication 83.
Kuhlemann, J., Frisch, W., Szekely, B., Dunkl, I., and Kazmer, M. 2002. Post-collisional sedimentbudget history of the Alps; tectonic versus climatic control. International Journal of EarthSciences, 9, 818–837.Google Scholar
Lague, D., Hovius, N., and Davy, P. 2005. Discharge, discharge variability, and the bedrock channelprof ile. Journal Geophysical Research, 110, F04006.Google Scholar
Lal, D. 1991. Cosmic ray labelling of erosion surfaces: in situ nuclide production rates and erosionmodels. Earth and Planetary Science Letters, 104, 424–439.Google Scholar
Lambeck, K., and Chappell, J. 2001. Sea level change through the last glacial cycle. Science, 292, 679–686.Google Scholar
Lancaster, S. T., and Bras, R. L. 2002. A simple model of river meandering and its comparison withnatural channels. Hydrological Processes, 16, 1–26.Google Scholar
Langbein, W. B., and Schumm, S. A. 1958. Yield of sediment in relation to mean annual precipitation. American Geophysical Union Transactions, 38, 1076–1084.Google Scholar
Laske, G., and Masters, G. 1997. http://igppweb. ucsd. edu/gabi/sediment. html. Lavé, and Avouac, J. P. 2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research, 106, 25, 561–25, 591.Google Scholar
Lecce, S. A. 1991. Influence of lithological erodibility on alluvial fan area, western White Mountains, California and Nevada. Earth Surface Processes and Landforms, 16, 11–18.Google Scholar
LeClair, S. F., and Bridge, J. S. 2001. Quantitative interpretation of sedimentary structures formed by river dunes. Journal Sedimentary Research, 71, 713–716.Google Scholar
Leeder, M. R. 1999. Sedimentology and Sedimentary Basins: From Turbulence to Tectonics. Oxford, UK: Blackwell Publishing Ltd.
Leeder, M. R. 2011. Tectonic geomorphology: sediment systems deciphering global to local tectonics. Sedimentology, 58, 2–56.Google Scholar
Leeder, M. R., and Mack, G. H. 2001. Lateral erosion (‘toe-cutting’) of alluvial fans by axial rivers: implications for basin analysis and architecture. Journal of the Geological Society, 158, 885–893.Google Scholar
Leeder, M. R., Harris, T., and Kirkby, M. J. 1998. Sediment supply and climate change: implicationsfor basin stratigraphy. Basin Research, 10, 7–18.Google Scholar
Lehrmann, D. J., and Goldhammer, R. K. 1999. Secular variation in parasequence and facies stackingpatterns of platform carbonates: a guide to application of stacking-patterns analysis in strataof diverse ages and settings. Pages 187–225 of : Harris, P. M., Saller, A. H., and Simo, J. A.(eds),. Advances in Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrops andModels. Society for Sedimentary Geology Special Publication 63.Google Scholar
Leithold, E. L., Blair, N. E., and Wegmann, K. W. 2015. Source-to-sink sedimentary systems andglobal carbon burial: A river runs through it. Earth Science Reviews, 153, 30–42.Google Scholar
Leopold, L. B., and Wolman, M. G. 1960. River meanders. Geological Society of America Bulletin, 71, 769–794.Google Scholar
Lerman, A. 1988. Weathering rates and major transport processes: An introduction. Pages 1–10 of. Physical and Chemical Weathering in Geochemical Cycles.
Li, G., West, A. J., Densmore, A. L., Jin, Z., Parker, R. N., and Hilton, R. G. 2014. Seismicmountain building: Landslides associated with the 2008 Wenchuan earthquake in the context of a generalized model for earthquake volume balance. Geochemistry, Geophysics, Geosystems, 15, doi:10. 1002/2013GC005067.Google Scholar
Lin, W., and Bhattacharya, J. P. 2017. Estimation of source-to-sink mass balance by a fulcrumapproach using channel paleohydrologic parameters of the Cretaceous Dunvegan Formation, Canada. Journal Sedimentary Research 87, 97–116.Google Scholar
Lithgow-Bertelloni, C., and Gurnis, M. 1997. Cenozoic subsidence and uplift of continents fromtime-varying dynamic topography. Geology, 25, 735–738.Google Scholar
Lobo, F. J., and Ridente, D. 2014. Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins: An overview. Marine Geology, 352, 215–247.Google Scholar
Lopez-Blanco, M., Marzo, M., Burbank, D. W., Vergés, J., Roca, E., Anadon, P., and Pina, J. 2010. Tectonic and climatic controls on the development of foreland fan deltas: Montserrat and SantLlorenc del Munt systems (middle Eocene, Ebro Basin, NE Spain). Sedimentary Geology, 138, 17–39.Google Scholar
Ludwig, W., Probst, J. L., and Kempe, S. 1996. Predicting the oceanic input of organic carbon bycontinental erosion. Global Biogeochemical Cycles, 10, 23–41.Google Scholar
Lutjeharms, J. R. E. 2006. The ocean environment of f south-eastern Africa: a review. South AfricanJournal of Science, Coelacanth Research, 102, 419–426.Google Scholar
Ma, Y. 2009. Continental Shelf Sediment Transport and Depositional Processes on an Energetic, Active Margin: the Waiapu River Shelf, New Zealand. PhD thesis, College of William and Maryin Virginia.
Mackin, J. H. 1948. Concept of the graded river. Bulletin Geological Society America, 59, 463–512.Google Scholar
Maizels, J. 1986. Modeling of palaeohydrologic change during deglaciation. Géographie Physique et Quaternaire, 40, 263–277.Google Scholar
Malamud, B. D., and Turcotte, D. L. 2006. The applicability of power-law frequency statistics to floods. Journal of Hydrology, 322, 168–180.Google Scholar
Maldonado, A. 1972. El Delta del Ebro. Estudio sedimentologico y estratigrafico. Bol. Estratigrafia,. Univ. Barcelona, 1, 1–486.Google Scholar
Maldonado, A., Swift, D. J. P., Young, R. A., Han, G., Nittrouer, C. A., DeMaster, D. J., Rey, J., Palomo, C., Acosta, J., Ballester, A., and Castellvi, J. 1983. Sedimentation on the ValenciaContinental Shelf: preliminary results. Continental Shelf Research, 2, 195–211.Google Scholar
Malinverno, A. 1997. On the power-law size distribution of turbidite beds. Basin Research, 9, 263–274.Google Scholar
Malmon, D. V., Dunne, T., and Reneau, S. L. 2003. Stochastic theory of particle trajectories throughalluvial valley floors. Journal of Geology, 111, 525–542.Google Scholar
Malmon, D. V., Reneau, S. L., Dunne, T., Katzman, D., and Drakis, P. G. 2005. Influence of sedimentstorage on downstream delivery of contaminated sediment. Water Resources Research, 41, W05008.Google Scholar
Mancktelow, N. S., and Grasemann, B. 1997. Time-dependent effects of heat advection andtopography on cooling histories during erosion. Tectonophysics, 270, 167–195.Google Scholar
Mandelbrot, B. B. 1983. The Fractal Geometry of Nature. New York: Henry Holt and Co.
Mange, M. A., and Maurer, H. F. W. 1992. Heavy Minerals in Colour. London: Chapman and Hall.
Mange, M. A., and Wright, D. T. 2007. Heavy Minerals in Use. Amsterdam: Elsevier Science, Developments in Sedimentology 58.
Marr, J. G., Swenson, J. B., Paola, C., and Voller, V. R. 2000. A two-diffusion model of fluvial stratigraphy in closed depositional basins. Basin Research, 12, 381–398.Google Scholar
Martin, J., Paola, C., Abreu, V., Neal, J., and Sheets, B. 2009. Sequence stratigraphy of experimental strata under known conditions of differential subsidence and variable base-level. BulletinAmerican Association Petroleum Geologists, 93, 503–533.Google Scholar
Martin, J.-M., and Meybeck, M. 1979. Elemental mass-balance of material carried by major worldrivers. Marine Chemistry, 7, 173–206.Google Scholar
Marzo, M., Nijman, W., and Puigdefàbregas, C. 1988. Architecture of the Castissent fluvial sheetsandstones, Eocene, south Pyrenees, Spain. Sedimentology, 35, 719–738.Google Scholar
Mayer, L. M. 1994. Surface area control of organic carbon accumulation in continental shelfsediments. Geochimica et Cosmochimica Acta, 58, 1271–1284.Google Scholar
McCave, I. N., and Tucholke, B. E. 1986. Deep current-controlled sedimentation in the western NorthAtlantic. Pages 451–468 of : Vogt, P. R., and Tucholke, B. E. (eds),. The Geology of NorthAmerica, The Western North Atlantic Region, Decade of North American Geology. Boulder, Colorado: Geological Society of America.
McEwen, M. C., Fessenden, F. W., and Rogers, J. J. W. 1959. Texture and composition of someweathered granites and slightly transported arkosic sands. Journal of Sedimentary Petrology, 29, 477–492.Google Scholar
McLeod, A. E., Dawers, N. H., and Underhill, J. R. 2000. The propagation and linkage of normalfaults; insights from the Strathspey-Brent-Statfjord fault array, northern North Sea. BasinResearch, 12, 263–284.Google Scholar
McMillan, M. E., Angevine, C. L., and Heller, P. L. 2002. Postdepositional tilt of the Miocene-Pliocene Ogallala Group on the western Great Plains: Evidence of late Cenozoic uplift of theRocky Mountains. Geology, 30, 63–66.Google Scholar
Meade, R. H. 1972. Fate of river sediments on Atlantic coast of U. S. EOS, Transactions, AmericanGeophysical Union, 53, 369.Google Scholar
Meade, R. H. 1982. Sources, sinks and storage of river sediment in the Atlantic drainage of the UnitedStates. Journal of Geology, 90, 235–252.Google Scholar
Meade, R. H., Dunne, T., Richey, J. E., Santos, U. de M., and Salati, E. 1985. Storage andremobilization of suspended sediment in the lower Amazon River of Brazil. Science, 228, 488–490.Google Scholar
Mertes, L. A. K., and Warrick, J. A. 2001. Measuring flood output from 110 coastal watersheds inCalifornia with field measurements and Sea-WiFS. Geology, 29, 659–662.Google Scholar
Métivier, F., and Gaudemer, Y. 1999. Stability of output fluxes of large rivers in South and EastAsia during the last 2 million years: implications for floodplain processes. Basin Research, 11, 293–304.Google Scholar
Métivier, F., Gaudemer, Y., Tapponier, P., and Klein, M. 1999. Mass accumulation rates in Asia duringthe Cenozoic. Geophysical Journal International, 137, 280–318.Google Scholar
Métivier, F., Meunier, P., Crave, A., Chaduteau, C., Ye, B., and Liu, G. 2004. Transport dynamics andmorphology of a high mountain stream during the peak flow season: the Urumqi River (ChineseTian Shan). River Flow, 1, 761–777.Google Scholar
Meunier, P., Métivier, F., Lajeunesse, E., Meriaux, A. S., and Faure, J. 2006. Flow pattern andsediment transport in a braided river: the ‘torrent de St. Pierre’ (French Alps). Journal of Hydrology, 330, 496–505.Google Scholar
Meybeck, M. 1976. Total mineral dissolved transport by world major rivers. Hydrological ScienceBulletin, 21, 65–284.Google Scholar
Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journalof Science, 282, 401–450.Google Scholar
Meybeck, M. 1986. Composition chimique naturelle des eaux courantes françaises. Sci. Géol. Bulletin, 39, 3–77.Google Scholar
Meybeck, M. 1987. Global chemical weathering of surficial rocks estimated from river dissolvedloads. American Journal of Science, 287, 401–428.Google Scholar
Meybeck, M., and Ragu, A. 1996. River Discharge to the Oceans: An Assessment of SuspendedSolids, Major Ions and Nutrients. Nairobi, Kenya: Division of the Environment, Information, Assessment/Water Branch, United Nations Environment Programme.
Meybeck, M., and Ragu, A. 1997. Presenting the GEMS-GLORI, a compendium of world riverdischarge to the ocean. Pages 3–14 of :. Freshwater Contamination, Proceedings of the RabatSymposium S4, April-May 1997. International Association of Hydrological Science IAHS, 243.Google Scholar
Miall, A. D. 1991. Hierarchies of architectural units in terrigenous clastic rocks, and their relationshipto sedimentation rate. Pages 6–12 of : Miall, A. D., and Tyler, N. (eds),. The Three-DimensionalFacies Architecture of Terrigenous Clastic Sediments and Its Implications for HydrocarbonDiscovery and Recovery. Tulsa, Oklahoma: Society of Economic Paleontologists and Mineral-ogists, Concepts in Sedimentology and Paleontology, 3.
Miall, A. D. 1994. Sequence stratigraphy and chronostratigraphy: problems of definition andprecision in correlation, and their implications for global eustasy. Geoscience Canada, 21, 1–26.Google Scholar
Miall, A. D. 2010. The Geology of Stratigraphic Sequences, Second Edition. Berlin, Heidelberg:Springer–Verlag.
Miall, A. D. 2014. Updating uniformitarianism: stratigraphy as just a set of ‘frozen accidents’. Pages 11–36 of : Smith, D. G., Bailey, R. J., Burgess, P. M., and Fraser, A. J. (eds),. Strata and Time:Probing the Gaps in Our Understanding. Geological Society London Special Publication 404.Google Scholar
Miall, A. D. 2016. Stratigraphy: A Modern Synthesis. Switzerland: Springer International PublishingAG.
Michael, N. A., Whittaker, A. C., and Allen, P. A. 2013. The functioning of sediment routing systemsusing a mass balance approach: Example from the Eocene of the southern Pyrenees. Journal of Geology, 121, 581–606.Google Scholar
Michael, N. A., Whittaker, A. C., Carter, A., and Allen, P. A. 2014a. Volumetric budget and grain-size fractionation of a geological sediment routing system: Eocene Escanilla Formation, South-Central Pyrenees. Bulletin Geological Society of America, 126, 585–599.Google Scholar
Michael, N. A., Carter, A., Whittaker, A. C., and Allen, P. A. 2014b. Erosion rates in the sourceregion of an ancient sediment routing system: comparison of depositional volumes withthermochronometric estimates. Journal Geological Society London, 171, 401–412.Google Scholar
Middlekoop, H., and Asselman, N. E. M. 1998. Spatial variability of floodplain sedimentation at theevent scale in the Rhine-Meuse delta, the Netherlands. Earth Surface Processes and Landforms, 23, 561–573.Google Scholar
Middleton, G. V. 1976. Hydraulic interpretation of sand size distributions. Journal of Geology, 84, 405–426.Google Scholar
Miller, W. R. 2002. Influence of Rock Composition on the Geochemistry of Stream and Spring Watersfrom Mountainous Watershed in the Gunnison, Uncomphagre, and Grand Mesa NationalForests, Colorado. Denver, Colorado: U. S. Geological Survey Prof essional Paper 1667.
Milliman, J. D. 1995. Sediment discharge to the ocean of small mountainous rivers: the New Guineaexample. Geo-Marine Letters, 15, 127–133.Google Scholar
Milliman, J. D., and Farnsworth, E. L. 2011. River Discharge to the Coastal Ocean: A GlobalSynthesis. Cambridge, UK: Cambridge University Press.
Milliman, J. D., and Meade, R. H. 1983. Worldwide delivery of river sediment to the oceans. Journalof Geology, 91, 1–21.Google Scholar
Milliman, J. D., and Syvitski, J. P. M. 1992. Geomorphic/tectonic control of sediment discharge tothe ocean: the importance of small mountainous rivers. Journal of Geology, 100, 525–544.Google Scholar
Milliman, J. D., Summerhayes, C. P., and Barretto, H. T. 1975. Quaternary sedimentation on theAmazon continental margin: a model. Geological Society of America Bulletin, 86, 610–614.Google Scholar
Milliman, J. D., Huang-Ting, S., Zuo-Sheng, Y., and Meade, R. H. 1985. Transport and depositionof river sediment in the Changjiang estuary and adjacent continental shelf. Continental ShelfResearch, 4, 37–45.Google Scholar
Mitchell, S. G., and Reiners, P. W. 2003. Influence of wildfires on apatite and zircon (U-Th)/He ages. Geology, 31, 1025–1028.Google Scholar
Molnar, P., and England, P. 1990. Late Cenozoic uplift of mountain ranges and global climate change:chicken or egg?. Nature, 346, 29–34.Google Scholar
Molnar, P., Anderson, R. S., Kier, G., and Rose, J. 2006. Relationships among probability distri-butions of stream discharges in floods, climate, bedload transport, and river incision. JournalGeophysical Research, 111, F02001.Google Scholar
Montgomery, D. R. 1984. Valley incision and uplift of mountain peaks. Journal GeophysicalResearch, 99, 13, 913–13, 921.Google Scholar
Montgomery, D. R., and Brandon, M. T. 2002. Topographic controls on erosion rates in tectonicallyactive mountain ranges. Earth and Planetary Science Letters, 201, 481–489.Google Scholar
Montgomery, D. R., and Dietrich, W. E. 1988. Where do channels begin?. Nature, 336, 232–234. Montgomery, D. R., and Dietrich W. E. 1992. Channel initiation and the problem of landscape scale. Science, 255, 826–830.Google Scholar
Moore, W. S. 1996. Large groundwater inputs to coastal waters revealed by 226-Ra enrichment. Nature, 380, 612–614.Google Scholar
Mulder, T., and Syvitski, J. P. M. 1996. Climatic and morphologic relationships of rivers: implications of sea level fluctuations on river loads. Journal of Geology, 104, 509–523.Google Scholar
Mulder, T., Savoye, B., Piper, D. J. W., and Syvitski, J. P. M. 1998. The Var submarine sedimentarysystem: Understanding Holocene sediment delivery processes and their importance to thegeological record. Pages 145–166 of : Stoker, M. S., Evans, D., and Cramp, A. (eds),. GeologicalProcesses on Continental Margins: Sedimentation, Mass-Wasting and Stability. GeologicalSociety of London Special Publication 129.Google Scholar
Mulder, T., Savoye, B., Piper, D. J. W., and Syvitski, J. P. M. 1998. The Var submarine sedimentarysystem: Understanding Holocene sediment delivery processes and their importance to thegeological record. Pages 145–166 of : Stoker, M. S., Evans, D., and Cramp, A. (eds),. GeologicalProcesses on Continental Margins: Sedimentation, Mass-Wasting and Stability. GeologicalSociety of London Special Publication 129.Google Scholar
Müller, G. 1966. The new Rhine delta in Lake Constance. Pages 107–124 of : Shirley, M. L. (ed). Deltas in Their Geologic Framework. Houston, Texas Houston Geological Society.
Muller, R. A., and MacDonald, G. J. 1997. Glacial cycles and astronomical forcing. Science, 277, 215–218.Google Scholar
Mundil, R., Brack, P., Meier, M., Rieber, H., and Oberli, F. 1996. High resolution U-Pb dating of Middle Triassic volcaniclastics: time-scale calibration and verification of tuning parameters forcarbonate sedimentation. Earth and Planetary Science Letters, 141, 137–151.Google Scholar
Murray, A. B., and Paola, C. 1994. A cellular model of braided rivers. Nature, 371, 54–57.Google Scholar
Muto, T., and Steel, R. J. 2000. The accommodation concept in sequence stratigraphy: some dimensional problems and possible redefinition. Sedimentary Geology, 130, 1–10.Google Scholar
Muto, T., and Steel, R. J. 1997. Principles of regression and transgression: the nature of the interplay between accommodation and sediment supply. Journal Sedimentary Research, 67, 994–1000.Google Scholar
Muto, T., and Swenson, J. B. 2006. Autogenic attainment of large-scale alluvial grade with steady sea level fall: an analog tank/flume experiment. Geology, 34, 161–164.Google Scholar
Muto, T., Steel, R. J., and Swenson, J. B. 2007. Autostratigraphy: A framework norm for genetic stratigraphy. Journal Sedimentary Research, 77, 2–12.Google Scholar
Naeser, C. W. 1967. The use of apatite and sphene for fission track age determination. Bulletin Geological Society of America Bulletin, 78, 15–23.Google Scholar
Najman, Y. 2005. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth Science Reviews, 74, 1–72.Google Scholar
Neal, J., and Abreu, V. 2009. Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37, 779–782.Google Scholar
Nesbit, W. H., Fedo, C. M., and Young, G. M. 1997. Quartz and feldspar stability, steady and non steady-state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology, 105, 173–191.Google Scholar
Newell, N. D. 1962. Paleontological gaps and geochronology. Journal of Paleontology, 36, 592–610.Google Scholar
Nicholson, U., Poynter, S., Clift, P. D., and Macdonald, D. I. M. 2014. Tying catchment to basin in a giant sediment routing system: a source-to-sink study of the Neogene-Recent AmurRiver and its delta in the North Sakhalin Basin. In Scott, R. A., Smyth, H. R., Morton, A. C., and Richardson, N. (eds). Sediment Provenance Studies in Hydrocarbon Exploration andProduction. Geological Society London Special Publication 386, 163–193.Google Scholar
Nittrouer, C. A., Kuehl, S. A., DeMaster, D. J., and Kowsmann, R. O. 1986. The deltaic nature of Amazon shelf sedimentation. Bulletin Geological Society America, 97, 444–458.Google Scholar
Nittrouer, C. A., Kuehl, S. A., Figueiredo, A. G., Allison, M. A., Sommerfield, C. K., Rine, J. M., Faria, E. C., and Silveira, O. M. 1996. The geological record preserved by Amazon shelfsedimentation. Continental Shelf Research, 16, 817–841.Google Scholar
Nittrouer, C. A., Austin, J. A., Field, M. E., Kravitz, J. H., Syvitski, J. P. M., and Wiberg, P. L. 2007. Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy. International Association of Sedimentologists, Blackwell Publishing.
Noller, J. S., Sowers, J. M., and Lettis, W. R. 2000. Quaternary Geochronology: Methods andApplications. Washington, DC: American Geophysical Union.
Normark, W. R., Piper, D. J. W., and Sliter, R. 2006. Sea-level and tectonic control on middle to latePleistocene turbidite systems in Santa Monica Basin, of fshore California. Sedimentology, 53, 867–897.Google Scholar
Nyberg, B., and Howell, J. A. 2015. Is the present the key to the past? A global characterization of modern sedimentary basins. Geology, 43, 643–646.Google Scholar
Nygård, A., Sejrup, H. P., Haflidason, H., Lekens, W. A. H., Clark, C. D., and Bigg, G. R. 2007. Extreme sediment and ice discharge from marine-based ice streams: New evidence from the North Sea. Geology, 35, 395–398.Google Scholar
Oberlander, T. M. 1985. Origin of drainage transverse to structures in orogens. Pages 155–182 of. Tectonic Geomorphology. The Binghampton Symposia in Geomorphology, International Series, 15. London: Allen and Unwin.
O'Grady, D. B., Syvitski, J. P. M., Pratson, L. F., and Sarg, J. F. 2000. Categorizing the morphologicalvariability of siliciclastic passive continental margins. Geology, 28, 207–210.Google Scholar
Olsen, P. E. 1984. Periodicity of lake-level cycles in the Late Triassic Lockatong Formation of theNewark Basin (Newark Supergroup, New Jersey and Pennsylvania). Pages 129–146 of : Berger, A. L., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B. (eds),. Milankovitch and Climate:Understanding the Response to Astronomical Forcing. Dordrecht/Boston/Lancaster: Reidel.
Ori, G. G., and Friend, P. F. 1984. Sedimentary basins, formed and carried piggyback on active thrustsheets. Geology, 12, 475–478.Google Scholar
Ori, G. G., Roveri, M., and Valloni, F. 1986. Plio-Pleistocene sedimentation in the Apenninic Adriaticforedeep (central Adriatic Sea, Italy). Pages 183–198 of :. Foreland Basins. Oxford, UK: SpecialPublication International Association Sedimentologists, 8.
Orive, E., Elliott, M., and de Jong, V. N. (editors). 2002. Nutrients and Eutrophication in Estuariesand Coastal Waters. Developments in Hydrobiology 164. Springer, Science and Business Media B. V.Google Scholar
Ottesen, D., and Dowdeswell, J. A. 2009. An inter-ice-stream glacial margin: submarine landformsand a geomorphic model based on marine geophysical data from Svalbard. Bulletin GeologicalSociety America, 121, 1647–1665.Google Scholar
Paike, H., Norris, R. D., Herrie, J. O., Wilson, P., Coxall, H. K., Lear, C. H., Shackleton, N., Tripati, A., and Wade, B. 2006. The heartbeat of the Oligocene climate system. Science, 314, 1894–1898.Google Scholar
Palanques, A., Guillén, J., Puig, P., and Durrieu de Madron, X. 2008. Storm-driven shelf-to-canyonsuspended sediment transport at the southwestern Gulf of Lions. Continental Shelf Research, 28, 1947–1956.Google Scholar
Palomares, M., and Arribas, J. 1993. Modern stream sands from compound crystalline sources: com-position and sand generation index. Pages 313–322 of :. Processes Controlling the Compositionof Clastic Sediments. Geological Society America Special Paper 284.Google Scholar
Paola, C. 2000. Quantitative models of sedimentary basin filling. Sedimentology, 47, Supplement 1, 121–178.Google Scholar
Paola, C., and Martin, J. M. 2012. Mass-balance effects in depositional systems. Journal of Sedimentary Research, 82, 435–450.Google Scholar
Paola, C., and Mohrig, D. 1996. Palaeohydraulics revisited: Paleoslope estimation in coarse-grainedbraided rivers. Basin Research, 8, 243–254.Google Scholar
Paola, C., and Seal, R. 1995. Grain-size patchiness as a cause of selective deposition and downstreamfining. Water Resources Research, 31, 1395–1407.Google Scholar
Paola, C., and Voller, V. R. 2005. A generalized Exner equation for sediment mass balance. JournalGeophysical Research-Earth Surface, 110, F04014.Google Scholar
Paola, C., Heller, P. L., and Angevine, C. L. 1992. The large-scale dynamics of grain-size variationin alluvial basins, 1: Theory. Basin Research, 4, 73–90.Google Scholar
Paola, C., Foufoula, E., Dietrich, W. E., Hondzo, M., Mohrig, D., Parker, G., Rodriguez-Iturbe, I., Voller, V., and Wilcock, P. 2006. Toward a unified science of the Earth's surface: Opportunitiesfor synthesis among hydrology, geomorphology, geochemistry and ecology. Water ResourcesResearch, 42, W03S10.Google Scholar
Paola, C., Straub, K., Mohrig, D., and Reinhardt, L. 2009. The ‘unreasonable effectiveness’ of stratigraphic and geomorphic experiments. Earth Science Reviews, 97, 1–43.Google Scholar
Parker, G. 1978a. Self-formed straight rivers with equilibrium banks and mobile bed. Part 1. Thesand-silt river. Journal of Fluid Mechanics, 89, 109–125.Google Scholar
Parker, G. 1978b. Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. Thegravel river. Journal of Fluid Mechanics, 89, 127–146.Google Scholar
Parker, G., and Cui, Y. T. 1998. The arrested gravel front: stable gravel-sand transitions in rivers –Part 1: simplified analytical solution. Journal of Hydraulic research, 36, 75–100.Google Scholar
Parker, G., Paola, C., Whipple, K. X., and Mohrig, D. C. 1998. Alluvial fans formed by channellizedfluvial and sheet flow, 1: Theory. Journal of Hydraulic Engineering, 124, 985–995.Google Scholar
Parsons, A. J., Michael, N., Whittaker, A. C., Duller, R. A., and Allen, P. A. 2012. Grain size trendsreveal the late orogenic tectonic and erosional history of the south-central Pyrenees, Spain. Journal of the Geological Society London, 109, 111–114.Google Scholar
Passega, R., Rizzini, A., and Borghetti, G. 1967. Transport of sediment by waves, Adriatic coastalshelf, Italy. Bulletin American Association Petroleum Geologists, 51, 1304–1319.Google Scholar
Patruno, S., Hampson, G. J., and Jackson, C. A.-L. 2015. Quantitative characterisation of deltaic andsubaqueous clinof orms. Earth Science Reviews, 142, 79–119.Google Scholar
Patterson, M. O., McKay, T., Naish, T., Escutia, C., Jimenez-Espejo, F. J., Raymo, M. E., Meyers, S. R. Tauxe, L., and Brinkhuis, H. Integrated Ocean Drilling Expedition 318 Scientists. 2014. Orbital forcing of the East Atlantic ice sheet during the Pliocene and early Pleistocene. Nature Geoscience, 7, 841–847.Google Scholar
Paull, C. K., Mitts, P., Ussler, W., Keaten, R., and Greene, H. G. 2005. Trail of sand in upper MontereyCanyon, of fshore California. Bulletin Geological Society of America, 117, 1134–1145.Google Scholar
Pazzaglia, F. J., and Brandon, M. T. 1996. Macrogeomorphic evolution of the post-TriassicAppalachian mountains determined by deconvolution of the of fshore basin sedimentary record. Basin Research, 8, 255–278.Google Scholar
Pearce, A. J., and Watson, A. J. 1986. Effects of earthquake-induced landslides on sediment budgetand transport over a 50-yr period. Geology, 14, 52–55.Google Scholar
Pelletier, J. 2008. Quantitative Modeling of Earth Surface Processes. Cambridge, UK: CambridgeUniversity Press.
Pelletier, J. D. 2004. The influence of piedmont deposition on the time scale of mountain beltdenudation. Geophysical Research Letters, 31, L15502.Google Scholar
Pépin, E., Carrétier, S., and Herail, G. 2010. Erosion dynamics in a coupled catchment-fan systemwith constant external forcing. Geomorphology, 122, 78–90.Google Scholar
Petter, A. L., Steel, R. J., Mohrig, D., Kim, W., and Carvajal, C. 2013. Estimation of the paleof luxof terrestrial-derived solids across ancient basin margins using the stratigraphic record. BulletinGeological Society America, 125, 578–593.Google Scholar
Pettijohn, F. J., Potter, P. E., and Siever, R. 1987. Sand and Sandstone, 2nd edition. New York:Springer-Verlag.
Peucker-Ehrenbrink, B. 2009. Land2Sea database of river discharge, basin sizes, annual water dis-charges, and suspended sediment fluxes. Geochemistry, Geophysics, Geosystems, 10, Q06014.Google Scholar
Pillans, B., Chappell, J., and Naish, T. R. 1998. A review of the Milankovitch climatic beat: templatefor Plio-Pleistocene sea-level changes and sequence stratigraphy. Sedimentary Geology, 122, 5–21.Google Scholar
Pinet, P., and Souriau, M. 1988. Continental erosion and large-scale relief. Tectonics, 7, 563–82.Google Scholar
Pirmez, C., Pratson, L. F., and Steckler, M. S. 1998. Clinof orm development by advection-diffusion of suspended sediment: Modeling and comparison to natural systems. Journal GeophysicalResearch, 103, 24, 141–24, 157.Google Scholar
Pivnik, D. A. 1990. Thrust-generated fan-delta deposition: Little Muddy Creek conglomerate, SWWyoming. Journal of Sedimentary Petrology, 60, 489–503.Google Scholar
Pizzuto, J. E. 1987. Sediment diffusion during overbank flows. Sedimentology, 34, 301–317.Google Scholar
Plint, A. G., and Wadsworth, J. A. 2003. Sedimentology and paleogeomorphology of four large valley systems incising delta plains, western Canada Foreland Basin: implications for mid-Cretaceoussea-level changes. Sedimentology, 50, 1147–1186.Google Scholar
Plotnick, R. E. 1986. A fractal model for the distribution of stratigraphic hiatuses. Journal of Geology, 94, 885–890.Google Scholar
Porebski, S. J., and Steel, R. J. 2003. Shelf-margin deltas: their stratigraphic significance and relationto deepwater sands. Earth Science Reviews, 62, 283–326.Google Scholar
Portenga, E. W., and Bierman, P. R. 2011. Understanding Earth's eroding surface with 10Be. GSAToday, 21, 4–10.Google Scholar
Posamentier, H. W., and Vail, P. R. 1988. Eustatic controls on clastic deposition, II, sequence andsystems tract models. Pages 125–154 of : Wilgus, C. K., Hastings, B. S., Kendall, C. G. St., C., Posamentier, H. W., Ross, C. A. and von Wagoner, J. C., C. K., Wilgus (ed),. Sea LevelChanges: An Integrated Approach. Special Publication Society Economic Palaeontologists and Mineralogists 42.Google Scholar
Posamentier, H. W., Erskine, R. D., and Mitchum, R. M. Jr. 1991. Models for submarine fandeposition within a sequence stratigraphic framework. Pages 127–136 of : Weimer, P., and Link, M. H. (eds),. Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems New York: Springer-Verlag.
Potter, P. E., and Pettijohn, F. J. 1977. Paleocurrents and Basin Analysis, 2nd edition. BerlinHeidelberg: Springer-Verlag.
Prather, B. E. 2003. Controls on reservoir distribution, architecture and stratigraphic trapping in slopesettings. Marine and Petroleum Geology, 20, 529–545.Google Scholar
Preto, N., Hinnov, L. A., Hardie, L. A., and De Zanche, V. 2001. Middle Triassic orbital signaturerecorded in the shallow marine Latemar carbonate buildup (Dolomites, Italy). Geology, 29, 1123–1126.Google Scholar
Pritchard, D., Roberts, G. G., White, N. J., and Richardson, C. N. 2009. Uplift histories from riverprof iles. Geophysical Research Letters, 36, L24301.Google Scholar
Prizomwala, S. P., Bhatt, N., and Basavaiah, N. 2014. Understanding the sediment routing systemalong the Gulf of Katchchh coast, western India: Significance of small ephemeral rivers. JournalEarth System Science, 123, 121–133.Google Scholar
Puig, P., Ogston, A. S., Mullenbach, B. I., Nittrouer, C. A., Parsons, J. D., and Sternberg, R. W. 2004. Storm-induced sediment gravity flows at the head of the Eel submarine canyon, northern California margin. Journal Geophysical Research, 109, http://dx. doi. org/10. 1029/2003JC001918.Google Scholar
Puig, P., Palanques, A., and Martín, J. 2014. Contemporary sediment-transport processes in subma-rine canyons. Annual Review of Marine Science, 6, 53–77.Google Scholar
Pujalte, V., Baceta, J. I., and Schmitz, B. 2015. A massive input of coarse-grained siliciclastics in thePyrenean Basin during the PETM: the missing ingredient in a coeval change in hydrologicalregime. Climate of the Past, 11, 1653–1672.Google Scholar
Ramos, E., Busquets, P., and Vergés, J. 2002. Interplay between longitudinal fluvial and transversealluvial fan systems and growing thrusts in a piggyback basin (SE Pyrenees). Pages 105–131 of :. Geology of Growth Strata. Sedimentary Geology, 146.Google Scholar
Raymo, M. E., and Ruddiman, W. F. 1992. Tectonic forcing of Late Cenozoic climate. Nature, 359, 117–122.Google Scholar
Reading, H. G., and Richards, M. 1994. Turbidite systems in deep-water basin margins, classifiedby grain size and feeder system. Bulletin American Association Petroleum Geologists, 78, 792–822.Google Scholar
Rebesco, M., Hernádez-Molina, F. J., Van Rooij, D., and Wahlin, A. 2014. Contourites andassociated sediments controlled by deep-water circulation processes: State-of -the-art and futureconsiderations. Marine Geology, 352, 111–154.Google Scholar
Reid, S. K., and Dorobek, S. L. 1993. Sequence stratigraphy and evolution of a progradationalforeland carbonate ramp, Lower Mississippian Mission Canyon Formation and stratigraphicequivalents. Pages 327–352 of : Loucks, R. G., and Sarg, J. F. (eds). Carbonate Sequence Stratig-raphy, Recent Developments and Applications. American Association Petroleum GeologistsMemoir 57.Google Scholar
Reineck, H. E. 1960. Uber Zeitlücken in rezenten Flachsee-Sedimenten. Geologisches Rundschau, 48, 149–161.Google Scholar
Reiners, P. W. 2002. (U-Th)/He chronometry experiences a renaissance. EOS, Transactions, Ameri-can Geophysical Union, 83, 26–27.Google Scholar
Reiners, P. W., Ehlers, T. A., Mitchell, S. G., and Montgomery, D. R. 2003. Coupled spatial variationsin precipitation and long-term erosion rates across the Washington Cascades. Nature, 426, 645–647.Google Scholar
Reiners, P. W., Ehlers, T. A., and Zeitler, P. K. 2005. Past, present and future of thermochronology. Pages 1–18 of : Reiners, P. W., and Ehlers, T. A. (eds),. Low-Temperature Thermochronology:Techniques, Interpretations, and Applications, Reviews in Mineralogy and Geochemistry 58.Google Scholar
Repka, J. L., Anderson, R. S., and Finkel, R. C. 1997. Cosmogenic dating of fluvial terraces, FremontRiver, Utah. Earth and Planetary Science Letters, 152, 59–73.Google Scholar
Restrepo, J. D., and Kjerfve, B. 2000. Magdalena River: interannual variability and revised waterdischarge and sediment load estimates. Journal of Hydrology, 235, 137–149.Google Scholar
Restrepo, J. D., Kjerfve, B., Hermelin, M., and Restrepo, J. C. 2006a. Factors controlling sedimentyield in a major South American drainage basin: the Magdalena River, Colombia. Journal of Hydrology, 316, 213–232.Google Scholar
Restrepo, J. D., Zapata, P., Diaz, J. M., Garzon-Ferreira, J., and Garcia, C. B. 2006b. Fluvialfluxes into the Caribbean Sea and their impact on coastal ecosystems: The Magdalena River, Colombia. Global and Planetary Change, 50, 33–49.Google Scholar
Ricci Lucchi, F. 1986. The Oligocene to Recent foreland basins of the northern Apennines. Pages 105–140 of :. Foreland Basins, Special Publication International Association Sedimentologists, 8. Oxford, UK: Blackwell Scientific Publications.
Richey, J. E., Brook, J. T., Naiman, T. J., Wissmar, R. C., and Stallard, R. F. 1980. Organic carbon:oxidation and transport in the Amazon River. Science, 207, 1348–1351.Google Scholar
Richter, F. M., Rowley, D. B., and DePaolo, D. J. 1992. Sr isotope evolution of seawater: the role of tectonics. Earth and Planetary Science Letters, 109, 11–23.Google Scholar
Ricken, W. 1991. Time span assessment – an overview. Pages 773–794 of : Einsele, G., Ricken, W., and Seilacher, A. (eds),. Cycles and Events in Stratigraphy. Berlin: Springer-Verlag.
Ridente, D. 2016. Releasing the sequence stratigraphy paradigm: Overview and perspectives. In: Burgess, P. M., Allen, P. A., and Steel, R. J. (eds),. The Future of Sequence Stratigraphy. JournalGeological Society London Special Publication, 173.Google Scholar
Rittner, M., Vermeesch, P., Carter, A., Bird, A., Stevens, T., Garzanti, E., Andò, S., Vezzoli, G., Dutt, R., Xu, Z., and Lu, H. 2016. The provenance of Taklimakan desert sand. Earth and PlanetaryScience Letters, 437, 127–137.Google Scholar
Roberts, G. G., and White, N. J. 2010. Estimating uplift rate histories from river prof iles using Africanexamples. Journal Geophysical Research, 115, B02406.Google Scholar
Roberts, G. G., White, N. J., Martin-Brandis, G. L., Crosby, A. G. 2012. An uplift history of theColorado Plateau and its surroundings from inverse modelling of longitudinal river prof iles. Tectonics, 31, TC4022.Google Scholar
Robinson, R. A. J., and Slingerland, R. L. 1998. Origin of fluvial grain size trends in a foreland basin:The Pocono Formation on the central Appalachian Basin. Journal of Sedimentary Research, 68, 473–486.Google Scholar
Roering, J. J., Kirchner, J. W., and Dietrich, W. E. 1999. Evidence for nonlinear, diffusive sedimenttransport and implications for landscape morphology. Water Resources Research, 35, 853–870.Google Scholar
Rohais, S., Bonnet, S., and Eschard, R. 2012. Sedimentary record of tectonic and climatic erosionalperturbations in an experimental coupled catchment-fan system. Basin Research, 24, 198–212.Google Scholar
Romans, B. W., and Graham, S. A. 2013. A deep-time perspective of land-ocean linkages in thesedimentary record. Annual Review of Marine Science, 5, 69–94.Google Scholar
Romans, B. W., Normark, W. R., McGann, M. M., Covault, J. A., and Graham, S. A. 2009. Coarse-grained sediment delivery and distribution in the Holocene Santa Monica Basin, California:Implications for evaluating source-to-sink flux at millennial time scales. Bulletin GeologicalSociety America, 121, 1394–1408.Google Scholar
Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., and Walsh, J. P. 2015. Environmental signalpropagation in sedimentary systems across time scales. Earth Science Reviews, 153, 7–29.Google Scholar
Ronov, A. B., and Yaroshevskiy, A. A. 1972. Earth's crust geochemistry. Pages 243–254 of : Fairbridge, R. (ed),. Encyclopaedia of Geochemistry and Environmental Sciences, New York: Van Nostrand.
Ronov, A. B., and Yaroshevskiy, A. A. 1976. A new model for the chemical structure of the Earth'scrust. Geochemistry International, 13, 89–121.Google Scholar
Rosenbloom, N. A., and Anderson, R. A. 1994. Hillslope and channel evolution in a marine terracedlandscape, Santa Cruz, California. Journal Geophysical Research, 99, 14, 013–14, 029.Google Scholar
Rosendahl, B. R., Reynolds, D. J., Lorber, P. M., Burgess, C. F., McGill, J., Scott, D., Lambiase, J. J., and Derksen, S. J. 1986. Structural expressions of rifting: lessons from Lake Tanganyika, Africa. Pages 29–43 of : Frostick, L. E., Renaut, R. W., Reid, I., and Tiercelin, J. J. (eds),. Sedimentationin the African Rifts. Special Publication Geological Society of London, 25.Google Scholar
Rothman, D. H., and Grotzinger, J. P. 1995. Scaling properties of gravity-driven sediments. NonlinearProcesses in Geophysics, 2, 178–185.Google Scholar
Rothman, D. H., Grotzinger, J. P., and Flemings, P. 1994. Scaling in turbidite deposition. Journal Sedimentary Petrology, A24, 59–67.Google Scholar
Rouby, D., Bonnet, S., Guillocheau, F., Gallagher, K., Robin, C., Biancotto, F., Dauteuil, O., and Braun, J. 2009. Sediment supply to the Orange sedimentary system over the last 150 My:An evaluation from sedimentation/denudation balance. Marine and Petroleum Geology, 26, 782–794.Google Scholar
Rubin, D. M., and McCullough, D. S. 1980. Single and superimposed bedforms: a synthesis of SanFrancisco Bay and flume observations. Sedimentary Geology, 26, 207–231.Google Scholar
Ruddiman, W. F. 2006. What is the timing of orbital-scale monsoon changes?. Quaternary ScienceReviews, 25, 657–658.Google Scholar
Ruhl, K. W., and Hodges, K. V. 2005. The use of detrital mineral cooling ages to evaluate steady stateassumptions in active orogens: an example from the central Nepalese Himaya. Tectonics, 24, TC4015.Google Scholar
Sabatier, F., Maillet, G., Provensal, M., Fleury, T.-J., Suanez, S., and Vella, C. 2006. Sedimentbudget of the Rhone delta shoreface since the middle of the 19th century. Marine Geology, 234, 143–157.Google Scholar
Sadler, P. M. 1981. Sedimentation rates and the completeness of stratigraphic sections. Journal of Geology, 89, 569–584.Google Scholar
Sadler, P. M., and Jerolmack, D. J. 2015. Scaling laws for aggradation, denudation and progradationrates: the case for time-scale invariance at sediment sources and sinks. Pages 69–88 in: Smith, D. G., Bailey, R. J., Burgess, P. M., and Fraser, A. J. (eds),. Strata and Time: Probing the Gapsin Our Understanding. Special Publication Geological Society of London 404.Google Scholar
Sadler, P. M., and Strauss, D. J. 1990. Estimation of completeness of stratigraphical sections usingempirical data and theoretical models. Journal of the Geological Society London, 147, 471–485.Google Scholar
Sambrook Smith, G. H., and Ferguson, R. I. 1996. The gravel-sand transition: flume study of channelresponse to reduced slope. Geomorphology, 16, 147–159.Google Scholar
Sarmiento, J. L., and Sundquist, E. T. 1992. Revised budget for the oceanic uptake of anthropogeniccarbon dioxide. Nature, 356, 589–593.Google Scholar
Schaller, M., von Blanckenburg, F., Hovius, N., and Kubik, P. W. 2001. Large-scale erosion ratesfrom in situ-produced cosmogenic nuclides in European river sediments. Earth and PlanetaryScience Letters, 188, 3–4.Google Scholar
Schaller, M., von Blanckenburg, F., Hovius, N., Veldkamp, A., and van Meindert, W. 2004. Paleoerosion rates from cosmogenic Be-10 in a 1. 3 Ma terrace sequence: response of the RiverMeuse to changes in climate and rock uplift. Journal of Geology, 112, 127–144.Google Scholar
Schindel, D. E. 1980. Microstratigraphic sampling and the limits of paleontological resolution. Paleobiology, 6, 408–426.Google Scholar
Schlager, W. 2004. Fractal nature of stratigraphic sequences. Geology, 32, 185–188.Google Scholar
Schlager, W. 2010. Ordered hierarchy versus scale invariance in sequence stratigraphy. International. Journal of Earth Science (Geologisches Rundschau), 99, Supplement 1, S139–S151.Google Scholar
Schlische, R. W. 1991. Half-graben basin filling models: New constraints on continental extensional basin development. Basin Research, 3, 123–141.Google Scholar
Schlunegger, F., and Hinderer, M. 2003. Pleistocene-Holocene climate change, re-establishment of fluvial drainage network and increase in relief in the Swiss Alps. Terra Nova, 15, 88–95.Google Scholar
Schlunegger, F., and Norton, K. P. 2015. Climate vs. tectonics: the competing roles of Late Oligocene warming and Alpine orogenesis in constructing alluvial fan megasequences in the North AlpineForeland Basin. Basin Research, 27, 230–245.Google Scholar
Schlünz, B., Schneider, R. R., Müller, P. J., Showers, W. J., and Wefer, G. 1999. Terrestrial organiccarbon accumulation on the Amazon deep sea fan during the last glacial sea level low stand. Chemical Geology, 159, 263–281.Google Scholar
Schmitz, B., and Pujalte, V. 2007. Abrupt increase in seasonal extreme precipitation at the Paleocene-Eocene boundary. Geology, 35, 215–218.Google Scholar
Schröder, K. W., and Theune, C. 1984. Festof fabtrag und Stauraumsverlandung in Mitteleuropa. Wasserwirtschaft, 74, 374–379.Google Scholar
Schroeder, M. 1991. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York:Freeman and Co.
Schubel, J. R., and Carter, H. H. 1976. Suspended sediment budget for Chesapeake Bay. Pages 48–62 of : Wiley, M. (ed),. Estuarine Processes, vol. 2, Circulation, Sediments and Transfer of Materialin the Estuary. New York: Academic Press.
Schumer, R., and Jerolmack, D. J. 2009. Real and apparent changes in sediment deposition ratesthrough time. Journal of Geophysical Research, 114, F00A06.Google Scholar
Schumer, R., Jerolmack, D. J., and McElroy, B. 2011. The stratigraphic filter and bias in measurementof geological rates. Journal of Geophysical Research, 38, L11405.Google Scholar
Schumm, S. A. 1968. Speculations regarding paleohydrological controls on terrestrial sedimentation. Bulletin Geological Society America, 79, 1573–1588.Google Scholar
Schumm, S. A. 1977. The Fluvial System. New York: Wiley.
Schwarzacher, W. 1987. Astronomically controlled cycles in the Lower Tertiary of Gubbio (Italy). Earth and Planetary Science Letters, 84, 22–26.Google Scholar
Schwarzacher, W. 2000. Repetitions and cycles in stratigraphy. Earth Science Reviews, 50, 51–75.Google Scholar
Seal, R., Paola, C., Parker, G., Southard, J., and Wilcock, P. 1997. Experiments on downstream fining of gravel: I. Narrow-channel runs. Journal Hydraulic Engineering, 123, 874–884.Google Scholar
Seidl, M. A., Dietrich, W. R., and Kirchner, J. W. 1994. Longitudinal prof ile development into bedrock: An analysis of Hawaiian channels. Journal of Geology, 102, 457–474.Google Scholar
Shanley, K. W., and McCabe, P. 1994. Perspectives on the sequence stratigraphy of continental strata. Bulletin American Association Petroleum Geologists, 78, 544–568.Google Scholar
Sharland, P. R., Archer, R., Casey, D. M., Hall, S. H., Heward, A. P., Horbury, A. D., and Simmons, M. D. 2001. Arabian Plate Sequence Stratigraphy. Bahrain: GeoArabia Special Publication 2.
Sharland, P. R., Casey, D. M., Davies, R. B., Simmons, M. D., and Sutcliffe, O. E. 2004. Arabian plate sequence stratigraphy. GeoArabia, 9, 199–214.Google Scholar
Sharp, I. R., Gawthorpe, R. L., Armstrong, B., and Underhill, J. R. 2000. Propagation history and passive rotation of mesoscale normal faults: implications for syn-rift stratigraphic development. Basin Research, 12, 285–306.Google Scholar
Sheets, B. A., Hickson, T. A., and Paola, C. 2002. Assembling the stratigraphic record: Depositionalpatterns and time-scales in an experimental alluvial basin. Basin Research, 14, 287–301.Google Scholar
Shepard, F. P., and Dill, R. F. 1966. Submarine Canyons and other Sea Valleys. Rand McNally, USA.
Shepard, F. P., Marshall, N. F., and McLoughlin, P. A. 1974. ‘Internal waves’ advancing along submarine canyons. Science, 183, 195–198.Google Scholar
Showers, W. J., and Angle, D. G. 1986. Stable isotopic characterisation of organic carbon accumula- tion on the Amazon continental shelf. Continental Shelf Research, 6, 227–244.Google Scholar
Showers, W. J., and Bevis, M. 1988. Amazon cone isotope stratigraphy: evidence for the source of the tropical freshwater spike. Palaeogeography, Palaeoclimatology, Palaeoecology, 64, 189–199.Google Scholar
Sibley, D. F., and Wilband, J. T. 1977. Chemical balance of the Earth's crust. Geochimica et. Cosmochimica Acta, 41, 545–554.Google Scholar
Simoes, M., Braun, J., and Bonnet, S. 2010. Continental-scale erosion and transport laws: A new approach to quantitatively investigate macroscale landscapes and associated sediment fluxesover the geological past. Geochemistry, Geophysics, Geosystems, 11, Q09001.Google Scholar
Simon, Q., Hillaire-Marcel, C., St-Onge, G., and Andrews, J. T. 2014. North-eastern Laurentide, western Greenland and southern Innuitian ice stream dynamics during the last glacial cycle. Journal Quaternary Science, 29, 14–26.Google Scholar
Simpson, G. 2004a. Role of river incision in enhancing deformation. Geology, 32, 341–344.Google Scholar
Simpson, G. 2004b. Dynamic interactions between erosion, deposition, and three-dimensionaldeformation in compressional fold belt settings. Journal Geophysical Research, 109, F03007.Google Scholar
Simpson, G., and Castelltort, S. 2012. Model shows that rivers transmit high-frequency climate cyclesto the sedimentary record. Geology, 40, 1131–1134.Google Scholar
Simpson, G. D. H. 2006a. A dynamic model to investigate coupling between erosion, deposition, andthree-dimensional (thin plate) deformation. Journal Geophysical Research, 109, F02006.Google Scholar
Simpson, G. D. H. 2006b. How and to what extent does the emergence of orogens above sea levelinfluence their tectonic development?. Terra Nova, 18, 447–451.Google Scholar
Simpson, G. D. H. 2006c. Modelling interactions between fold-thrust belt deformation, forelandflexure and surface mass transport. Basin Research, 18, 1–19.Google Scholar
Simpson, G. D. H. 2010. Influence of the mechanical behaviour of brittle-ductile fold-thrust belts onthe development of foreland basins. Basin Research, 22, 139–156.Google Scholar
Simpson, G. D. H., and Schlunegger, F. 2003. Topographic evolution and morphology of surfacesevolving in response to coupled fluvial and hillslope sediment transport. Journal of GeophysicalResearch-Solid Earth, 108, doi:10. 1029/2002JB002162.Google Scholar
Sinclair, H. D. 1997. Tectono-stratigraphic model for underfilled peripheral foreland basins: AnAlpine perspective. Bulletin Geological Society America, 109, 324–346.Google Scholar
Sinclair, H. D. 2012. Thrust wedge/foreland basin systems. Pages 522–537 of : Busby, C., and Azor, A. (eds),. Tectonics of Sedimentary Basins: Recent Advances. Wiley-Blackwell.
Sinclair, H. D., and Allen, P. A. 1992. Vertical versus horizontal motions in the Alpine orogenicwedge: stratigraphic response in the foreland basin. Basin Research, 4, 215–232.Google Scholar
Sinclair, H. D., and Cowie, P. A. 2003. Basin floor topography and the scaling of turbidites. Journalof Geology, 111, 277–299.Google Scholar
Sinclair, H. D., and Tomasso, M. 2002. Depositional evolution of confined turbidite basins. JournalSedimentary Research, 72, 451–456.Google Scholar
Sinclair, H. D., Coakley, B., Allen, P. A., and Watts, A. B. 1991. Simulation of foreland basinstratigraphy using a diffusion model of mountain belt uplift and erosion: An example fromthe central Alps, Switzerland. Tectonics, 10, 599–620.Google Scholar
Sinclair, H. D., Gibson, M., Naylor, M., and Morris, R. G. 2005. Asymmetric growth of the Pyreneesrevealed through measurement and modelling of orogenic fluxes. American Journal of Science, 305, 369–406.Google Scholar
Sklar, L., and Dietrich, W. R. 1998. River longitudinal prof iles and bedrock incision models: Streampower and the influence of sediment supply. Pages 237–260 of : Tinkler, K. J., and Wohl, E. E.(eds),. Rivers over Rock: Fluvial Processes in Bedrock Channels. American Geophysical UnionGeophysical Monograph 107.Google Scholar
Slaymaker, O. 2003. The sediment budget as conceptual framework and management tool. Hydrobi-ologia, 494, 71–82.Google Scholar
Small, E. E., Anderson, R. S., Finkel, R. S., and Repka, J. 1997. Erosion rates of summit flats usingcosmogenic radionuclides. Earth and Planetary Science Letters, 150, 423–425.Google Scholar
Smalley, I. J., Kumar, R., O'Hara Dhand, K., Jefferson, I. F., and Evans, R. D. 2005. The formationof silt material for terrestrial sediments: particularly loess and dust. Sedimentary Geology, 179, 321–328.Google Scholar
Smith, G., and Ferguson, R. 1995. The gravel sand transition along river channels. JournalSedimentary Research, 65, 423–430.Google Scholar
Smith, T. R., and Bretherton, F. P. 1972. Stability and the conservation of mass in drainage basinevolution. Water Resources Research, 8, 1506–1529.Google Scholar
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merrits, D. J. 2000. Landscape to tectonic forcing:digital elevation model analysis of stream prof iles in the Mendocino triple junction region, northern California. Geological Society America Bulletin, 112, 1250–1263.Google Scholar
Sømme, T., Jackson, C., Lunt, I., and Martinsen, O. J. 2010. Source-to-sink in rift basins - Predictingreservoir distribution in ancient subsurface systems. Search and Discovery Article, AmericanAsssociation Petroleum Geologists, 10258.
Sømme, T. O., Helland-Hansen, W., Martinsen, O. J., and Thurmond, J. B. 2009. Relationshipsbetween morphological and sedimentological parameters in source-to-sink systems: a basisfor predicting semi-quantitative characteristics in subsurface systems. Basin Research, 21, 361–388.Google Scholar
Sømme, T. O., Piper, D. J. W., Deptuck, M. E., and Helland Hansen, W. 2011. Linking onshore-of fshore sediment dispersal in the Golo source-to-sink system (Corsica, France) during the LateQuaternary. Journal of Sedimentary Research, 81, 118–137.Google Scholar
Sommerfield, C. K., and Nittrouer, C. A. 1999. Modern accumulation rates and a sediment budget forthe Eel shelf: A flood-dominated depositional environment. Marine Geology, 154, 227–241.Google Scholar
Sommerfield, C. K., Nittrouer, C. A., and Alexander, C. R. 1999. 7Be as a tracer of floodsedimentation on the northern California continental margin. Continental Shelf Research, 19, 335–361.Google Scholar
Specht, T. D., and Rosendahl, B. R. 1989. Architecture of the Lake Malawi Rift, East Africa. JournalAfrican Earth Sciences, 8, 355–382.Google Scholar
Stallard, R. F., and Edmond, J. M. 1981. Geochemistry of the Amazon 1: Precipitation chemistry andthe marine contribution to the dissolved load at the time of peak discharge. Journal GeophysicalResearch, Oceans, 86, 9844–9858.Google Scholar
Stallard, R. F., and Edmond, J. M. 1983. Geochemistry of the Amazon 2: The influence of geologyand weathering environment on the dissolved load. Journal of Geophysical Research, Oceans, 88, 9671–9688.Google Scholar
Stallard, R. F., and Edmond, J. M. 1987. Geochemistry of the Amazon 3: Weathering chemistry andlimits to dissolved inputs. Journal Geophysical Research, Oceans, 92, 8293–8302.Google Scholar
Steel, R. J., Carvajal, C., Petter, A., and Uroza, C. 2009. Shelf and shelf-margin growth in scenariosof rising and falling sea level. Pages 47–71 of : Hampson, G. J., Steel, R. J., Burgess, P. M., and Dalrymple, R. W. (eds),. Recent Advances in Models of Siliciclastic Shallow-MarineStratigraphy. Society for Sedimentary Geology Special Publication 90.Google Scholar
Stefan, J. 1891. Uber die Theore der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Ann. Physik Chem., 42, 269–286.Google Scholar
Steidtmann, J. R., and Schmitt, J. G. 1988. Provenance and dispersal of tectogenic sediments inthin-skinned, thrusted terrains. Pages 353–366 of : Kleinspehn, K. L., and Paola, C. (eds),. New Perspectives in Basin Analysis. New York: Springer-Verlag.
Stock, J. D., and Montgomery, D. R. 1999. Geologic constraints on bedrock river incision using thestream power rule. Journal Geophysical Research, 104, 4983–4993.Google Scholar
Stock, J. M., Ehlers, T. A., and Farley, K. A. 2006. Where does sediment come from? Quantifyingcatchment erosion with detrital apatite (U-Th)/He thermochronometry. Geology, 34, 725–728.Google Scholar
Stöckli, D. F., Farley, K. A., and Dumitru, T. A. 2000. Calibration of the apatite (U-Th)/Hethermochronometer on an exhumed fault block, White Mountains, California. Geology, 28, 983–986.Google Scholar
Stracke, A., Bizimis, M., and Salters, V. J. M. 2003. Recycling oceanic crust: Quantitative constraints. Geochemistry, Geophysics, Geosystems, 4, 8003.Google Scholar
Strahler, A. N. 1952. Hypsometric (area-altitude) analysis of erosional topology. Geological SocietyAmerica Bulletin, 63, 1117–1142.Google Scholar
Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. Transactions AmericanGeophysical Union, 38, 913–920.Google Scholar
Strakhov, N. M. 1967. Principles of Lithogenesis, Vol. 1. Edinburgh: Oliver and Boyd.
Straub, K. M., Paola, C., Mohrig, D., Wolinsky, M. A., and George, T. 2009. Compensational stacking of channelized sedimentary deposits. Journal Sedimentary Research, 79, 673–688.Google Scholar
Strong, N., Sheets, B. A., Hickson, T. A., and Paola, C. 2005. A mass balance framework for quantifying downstream changes in fluvial architecture. Pages 243–253 of : Blum, M. D., Marriott, S. B., and Leclair, S. F. (eds),. Fluvial Sedimentology VII, vol. 35. InternationalAssociation Sedimentologists Special Publication.Google Scholar
Stumm, W., and Morgan, J. J. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Naturalwaters, 3rd edition. New York: Wiley-Interscience.
Stüwe, K., White, L., and Brown, R. 1994. The influence of eroding topography on steady stateisotherms; applications to fission track analysis. Earth and Planetary Science Letters, 124, 63–74.Google Scholar
Subramanian, V., and Ittekkot, V. 1991. Carbon transport by the Himalayan rivers. Chap. 7 of : Degens, E. T., Kempe, S., and Richey, J. E. (eds),. Biogeochemistry of Major World Rivers, SCOPE 42. Scientific Committee on Problems of the Environment (SCOPE).
Summerfield, M. A. 1991. Global Geomorphology. London: Longman.
Summerfield, M. A., and Hulton, N. J. 1994. Natural controls of fluvial denudation rates in major world drainage basins. Journal of Geophysical Research, 99, 13, 871–13, 883.Google Scholar
Sun, T., Meakin, P., and Jossang, T. 1996. A simulation model for meandering rivers. Water Resources. Research, 37, 2937–2954.Google Scholar
Sun, T., Meakin, P., and Jossang, T. 2001. A computer model for meandering rivers with multiple bed load sediment sizes. 2. Computer simulations. Water Resources Research, 37, 2243–2258.Google Scholar
Swenson, J. B., Voller, V. R., Paola, C., Parker, G., and Marr, J. G. 2000. Fluvio-deltaic sedimentation: A generalized Stefan problem. European Journal Applied Mathematics, 11, 433–452.Google Scholar
Swenson, J. B., Paola, C., Pratson, L., Voller, V. R., and Murray, A. B. 2005. Fluvial and marine controls on combined subaerial and subaqueous delta progradation: morphodynamic modelingof compound clinof orm development. Journal of Geophysical Research, 110, F02013.Google Scholar
Sylvester, Z. 2007. Turbidite bed thickness distributions: methods and pitfalls of analysis andmodelling. Sedimentology, 54, 847–870.Google Scholar
Syvitski, J. P. M. 1989. On the deposition of sediment within glacier-influenced fjords: oceanographiccontrols. Marine Geology, 85, 301–329.Google Scholar
Syvitski, J. P. M., and Alcott, J. M. 1993. GRAIN2: predictions of particle size seaward of rivermouths. Computers and Geosciences, 19, 399–446.Google Scholar
Syvitski, J. P. M., and Hutton, E. W. H. 2001. 2D SEDFLUX 1. 0C: an advanced process-responsenumerical model for the fill of sedimentary basins. Computers&. Geosciences, 27, 731–753.Google Scholar
Syvitski, J. P. M., and Kettner, A. J. 2008. Scaling sediment flux across landscapes. Pages 1–8 of :. Sediment Dynamics in Changing Environments. Proceedings of a Symposium held inChristchurch, New Zealand, December 2008, IAHS Publ. 325.
Syvitski, J. P. M., and Milliman, J. D. 2007. Geology, geography, and humans battle for dominanceover the delivery of fluvial sediment to the coastal ocean. Journal of Geology, 115, 1–19.Google Scholar
Syvitski, J. P. M., and Morehead, M. D. 1999. Estimating river-sediment discharge to the ocean:application to the Eel margin, northern California. Marine Geology, 154, 13–28.Google Scholar
Syvitski, J. P. M., and Saito, Y. 2007. Morphodynamics of deltas under the influence of humans. Global and Planetary Change, 57, 261–282.Google Scholar
Syvitski, J. P. M., Pratson, L., and Morehead, M. 1997. EARTHWORKS: a large spatial scalenumerical model to study the flux of sediment to ocean basins and reworking of deposits overvarious time scales. AGU 1997 Fall Meeting EOS supplement, 78, F258.Google Scholar
Syvitski, J. P. M., Peckham, S. D., Hilberman, R., and Mulder, T. 2003. Predicting the terrestrial fluxof sediment to the global ocean: a planetary perspective. Sedimentary Geology, 162, 5–24.Google Scholar
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J., and Green, P. 2005. Impact of humans on the fluxof terrestrial sediment to the global ocean. Science, 308, 376–380.Google Scholar
Syvitski, J. P. M., Weaver, P. E., Berne, S., Nitrouer, C. A., Trincardi, F., and Canals, M. (eds). 2004. Strata Formation on European Margins,. Oceanography, 17, 4.Google Scholar
Talling, P. J. 2001. On the frequency distribution of turbidite thickness. Sedimentology, 48, 1297–1331.Google Scholar
Talling, P. J., Lawton, T. F., Burbank, D. W., and Hobbs, R. S. 1995. Evolution of latest Cretaceous-Eocene nonmarine deposystems in the Axhandle piggyback basin of central Utah. BulletinGeological Society America, 107, 297–315.Google Scholar
Talling, P. J., Stewart, M. D., Stark, C. P., Gupta, S., and Vincent, S. J. 1997. Regular spacing of drainage outlets from linear fault blocks. Basin Research, 9, 275–302.Google Scholar
Talling, P. J., Wynn, R. B., Masson, D. G., et al. 2007. Onset of submarine debris flow deposition farfrom original giant landslide. Nature, 450, 541–544.Google Scholar
Talling, P. J., Clare, M., Urlaub, M., Pope, E., Hunt, J. E., and Watt, S. F. L. 2014. Largesubmarine landslides on continental slopes: Geohazards, methane release, and climate change. Oceanography, 27, 32–45.Google Scholar
Taylor, A. S., and Lasaga, A.C. 1999. The role of basalt weathering in the Sr isotope budget of the oceans. Chemical Geology, 161, 199–214.Google Scholar
Tesi, T., Goni, M., Langon, L., and Miserocchi, S. 2010. Reexposure and advection of 14C-depletedorganic carbon from old deposits at the upper continental slope. Global Biogeochemical Cycles, 24, GB4002.Google Scholar
Tinker, J., de Wit, M., and Brown, R. 2008. Linking source and sink: evaluating the balance betweenonshore erosion and of fshore sediment accumulation since Gondwana breakup, South Africa. Tectonophysics, 455, 94–103.Google Scholar
Tipper, E., Bickle, M., and Galy, A. West, J. A., Pomiés, C., and Chapman, H. J. 2006. The short termclimatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variationsin river chemistry. Geochimica Cosmochimica Acta, 70, 2737–2754.Google Scholar
Toro-Escobar, C. M., Parker, G., and Paola, C. 1996. Transfer function for the deposition of poorlysorted gravel in response to stream bed aggradation. Journal of Hydraulic Research, 34, 35–53.Google Scholar
Tripathy, G. R., and Singh, S. K. 2010. Chemical erosion rates of river basins of the Ganga systemin the Himalaya: reanalysis based on inversion of dissolved major ions, Sr, and 87Sr/86Sr. Geochemistry, Geophysics, Geosystems, 11, Q03013.Google Scholar
Tripathy, G. R., Singh, S. K., and Krishnasami, S. 2011. Sr and Nd isotopes as tracers of chemicaland physical erosion. Pages 521–552 of : Baskaran, M. (ed). Handbook of Environmental IsotopeGeochemistry, Advances in Isotope Geochemistry. Berlin-Heidelberg: Springer-Verlag.
Tucker, G. E., and Bras, R. L. 2000. A stochastic approach to modelling the role of rainfall variabilityin drainage basin evolution. Water Resources Research, 36, 1953–1964.Google Scholar
Tucker, G. E., and Slingerland, R. 1997. Drainage basin responses to climate change. Water ResourcesResearch, 33, 2031–2047.Google Scholar
Tucker, G. E., and Slingerland, R. L. 1996. Predicting sediment flux from fold and thrust belts. BasinResearch, 8, 329–349.Google Scholar
Turcotte, D. L. 1997. Fractals and Chaos in Geology and Geophysics, Second Edition. CambridgeUK: Cambridge University Press.
Turcotte, D. L., and Greene, L. 1993. A scale-invariant approach to flood-frequency analysis. Stochastic Hydrology and Hydraulics, 7, 33–40.Google Scholar
Turcotte, D. L., and Schubert, G. 2002. Geodynamics, Second Edition. Cambridge University Press.
Turowski, J. M., Rickenmann, D., and Dadson, S. J. 2010. The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. Sedimentology, 57, 1126–1146.Google Scholar
Tyler, S. W., and Wheatcraft, S. W. 1992. Fractal scaling of soil particle-size distributions: Analysisand limitations. Soil Science Society of America Journal, 56, 362–369.Google Scholar
Vail, P. R., Mitchum, R. M., and Thompson, S. 1977. Seismic stratigraphy and global changes of sea level, Part 4, Global cycles of relative changes of sea level. Pages 83–97 of : Payton, C. E.(ed),. Seismic Stratigraphy: Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoirs 26.Google Scholar
Vail, P. R., Audemard, F., Bowman, S. A., Eisner, P. N., and Perez-Cruz, H. 1991. The stratigraphicsignature of tectonics, eustasy, and sedimentation. Pages 617–659 of : Einsele, G., Ricken, W., and Seilacher, A. (eds),. Cycles and Events in Stratigraphy. Berlin: Springer.
Van den Berg van Saparoea, A. -P., and Postma, G. 2008. Control of climate change on the yieldof river systems. Pages 15–33 of :. Recent Advances in Models of Siliciclastic Shallow-MarineStratigraphy. Tulsa, Oklahoma: Society Economic Paleontologists and Mineralogists SpecialPublication 90.
Van der Zwan, C. J. 2002. The impact of Milankovitch-scale climate forcing on sediment supply. Sedimentary Geology, 147, 271–294.Google Scholar
Van der Zwan, C. J., and Brugman, W. A. 1999. Biosignals from the EA Field, Nigeria. Pages 291–301 of : Jones, R. W., and Simmons, M. D. (eds),. Biostratigraphy in Production andDevelopment Geology. Special Publication Geological Society London 152.Google Scholar
Van Houten, F. B. 1964. Cyclic lacustrine sedimentation, Upper Triassic Lockatong Formation, central New Jersey and adjacent Pennsylvania. Kansas State Geological Survey Bulletin, 169, 497–531.Google Scholar
Van Rijn, L. C. 1984. Sediment transport, II: Suspended load transport. Journal Hydraulic Engineer-ing, 110, 1431–1456.Google Scholar
Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., and Rahmanian, V. D. 1990. SiliciclasticSequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts for High-ResolutionCorrelation of Time and Facies. American Association Petroleum Geologists Methods inExploration 7.Google Scholar
Veizer, J. 1989. Strontium isotopes in sea water through time. Annual Reviews Earth and PlanetarySciences, 17, 141–168.Google Scholar
Ver, L. M. B., Mackenzie, F. T., and Lerman, A. 1999. Carbon cycle in the coastal zone: effects of global perturbations and change in the last three centuries. Chemical Geology, 159, 283–304.Google Scholar
Vergés, J. 2007. Drainage responses to oblique and lateral ramps: a review. Pages 29–47 of : Nichols, G., Williams, E., and Paola, C. (eds),. Sedimentary Processes, Environments and Basins: ATribute to Peter FriendSpecial Publication International Association Sedimentologists 38. Oxford: Blackwell Publishing.
Vermeesch, P. 2013. Multi-sample comparison of detrital age distributions. Chemical Geology, 341, 140–146.Google Scholar
Vernon, A. J., van der Beek, P. A., Sinclair, H. D., Persano, C., Foeken, J., and Stuart, F. 2009. Variable late Neogene exhumation of the Central Alps: Low-temperature thermochronologyfrom the Aar Massif, Switzerland, and the Lepontine Dome, Italy. Tectonics, 28, TC5004.Google Scholar
Vezzoli, G. 2004. Erosion in thhe Western Alps (Dora Baltea Basin): 2, Quantifying sediment yield. Sedimentary Geology, 171, 247–259.Google Scholar
Vezzoli, G., Garzanti, E., and Monguzzi, S. 2004. Erosion in the Western Alps (Dora Baltea Basin):1. Quantifying sediment provenance. Sedimentary Geology, 171, 227–246.Google Scholar
Vidondo, B., Prairie, Y. T., Blanco, J. M., and Duarte, C. M. 1997. Some aspects of the analysis of size spectra in aquatic ecology. Limnology and Oceanography, 42, 184–192.Google Scholar
Vincent, S. J. 2001. The Sis palaeovalley: a record of proximal fluvial sedimentation and drainagebasin development in response to Pyrenean mountain building. Sedimentology, 48, 1235–1276.Google Scholar
von Blanckenburg, F. 2005. The control mechanisms of erosion and weathering at basin scale fromcosmogenic nuclides in river sediment. Earth and Planetary Science Letters, 237, 462–479.Google Scholar
Vörösmarty, C. J., Fekete, B. M., Meybeck, M., and Lammers, R. B. 2000. Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages. GlobalBiogeochemical Cycles, 14, 599–621.Google Scholar
Walcott, R. C., and Summerfield, M. A. 2009. Universality and variability in basin outlet spacing:implications for the two-dimensional form of drainage basins. Basin Research, 21, 147–155.Google Scholar
Walford, H. L., White, N. J., and Sydow, J. C. 2005. Solid sediment load history of the Zambezi delta. Earth and Planetary Science Letters, 238, 49–63.Google Scholar
Wallace, R. E. 1978. Geometry and rates of changes of fault-generated range fronts, north-centralNevada. United States Geological Survey Journal of Research, 6, 637–650.Google Scholar
Walsh, J. P., and Nittrouer, C. A. 2003. Contrasting styles of of f-shelf sediment accumulation in NewGuinea. Marine Geology, 196, 105–125.Google Scholar
Walsh, J. P., and Nittrouer, C. A. 2007. Understanding fine-grained river-sediment dispersal oncontinental margins. Marine Geology, 263, 34–45.Google Scholar
Walsh, J. P., Wiberg, P., and Aalto, R. (eds). 2015. Source-to-sink systems: Sediment and solutetransfer on the earth surface, Earth Science Reviews, 153, 1–334.Google Scholar
Wang, H. J., Yang, S. Z., Satio, Y., Liu, J. P., and Sun, X. 2006. Interannual and seasonal variationof the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impactsfrom ENSO events and dams. Global and Planetary Change, 50, 212–225.Google Scholar
Wang, J., Zhangdong, J., Hilton, R. G., Zhang, F., Li, G., Densmore, A. L., Gröcke, D. R., Xu, X., and West, A. J. 2016. Earthquake-triggered increase in biospheric carbon export from a mountainbelt. Geology, G37533. 1.Google Scholar
Wang, Y., Straub, K. M., and Hajek, E. A. 2011. Scale-dependent compensational stacking: anestimate of autogenic time scales in channelized sedimentary deposits. Geology, 39, 811–814.Google Scholar
Warrick, J. A. 2014. Eel River margin source-to-sink sediment budgets: Revisited. Marine Geology, 351, 25–37.Google Scholar
Warrick, J. A., and Fong, D. A. 2004. Dispersal scaling from the world's rivers. Geophysical ResearchLetters, 31, L04301.Google Scholar
Warrick, J. A., and Milliman, J. D. 2003. Hyperpycnal sediment discharge from semi-arid southernCalifornia rivers: Implications for coastal sediment budgets. Geology, 31, 781–784.Google Scholar
Warrick, J. A., and Rubin, D. M. 2007. Suspended-sediment rating curve response to urbanizationand wildfire, Santa Ana River, California. Journal Geophysical Research, 112, 1–15.Google Scholar
Waters, J. V., Jones, S. J., and Armstrong, H. A. 2010. Climatic controls on late Pleistocene alluvialfans, Cyprus. Geomorphology, 115, 228–251.Google Scholar
Weaver, P. P. E., Rothwell, R. G., Ebbing, J., Gunn, D., and Hunter, P. M. 1992. Correlation, frequencyof emplacement and source directions of megaturbidites on the Madeira Abyssal Plain. MarineGeology, 109, 1–20.Google Scholar
Weedon, G. P. 1989. The detection and illustration of regular sedimentary cycles using Walsh powerspectra and filtering, with examples from the Lias of Switzerland. Journal Geological SocietyLondon, 146, 133–144.Google Scholar
Weedon, G. P., and Jenkyns, H. C. 1990. Regular and irregular climatic cycles and the BelemniteMarls (Pliensbachian, Lower Jurassic, Wessex Basin). Journal of the Geological Society, 147, 915–918.Google Scholar
Weiguo, L., Bhattacharya, J. P., and Yingmin, W. 2011. Delta symmetry: Concepts, characteristics, and depositional models. Petroleum Science, 8, 278–289.Google Scholar
Weissmann, G. S., Hartley, A. J., Nichols, G. J., Scuderi, L. A., Olson, M., Buehler, H., and Banteah, R. 2010. Fluvial form in modern continental sedimentary basins: Distributive fluvial systems. Geology, 38, 39–42.Google Scholar
Weissmann, G. S., Hartley, A. J., Scuderi, L. A., Nichols, G., Owen, A., Wright, S., Felicia, A. L., Holland, F., and Anaya, F. M. L. 2015. Fluvial geomorphic elements in modern sedimentarybasins and their potential preservation in the rock record: A review. Geomorphology, 250, 187–219.Google Scholar
Wells, T., Willgoose, G. R., and Hancock, G. R. 2008. Modeling weathering pathways and processesof the fragmentation of salt weathered quartz-chlorite schist. Journal of Geophysical Research, 113, F01014.Google Scholar
Weltje, G. J. 1994. Provenance and Dispersal of Sand-sized Sediment: Reconstruction of DispersalPatterns and Sources of Sand-sized Sediments by Means of Inverse Modelling Techniques. TheNetherlands: PhD thesis, Utrecht University, Geologie Ultraiectina 121.
Weltje, G. J. 2012. Quantitative models of sediment generation and provenance: State of the art andfuture developments. Sedimentary Geology, 280, 4–20.Google Scholar
Weltje, G. J., and Brommer, M. B. 2011. Sediment budget modelling of multi-sourced basin-fills:application to recent deposits of the western Adriatic mud wedge (Italy). Basin Research, 23, 291–308.Google Scholar
Weltje, G. J., and de Boer, P. L. 1993. Astronomically induced paleoclimatic oscillations reflectedin Pliocene turbidite deposits on Corfu (Greece): Implications for the interpretation of higherorder cyclicity in ancient turbidite systems. Geology, 21, 307–310.Google Scholar
Weltje, G. J., and Prins, M. 2003. Muddled or mixed? Inferring palaeoclimate from size distributionsof deep-sea clastics. Sedimentary Geology, 162, 39–62.Google Scholar
Weltje, G. J., and von Eynatten, H. 2004. Quantitative provenance analysis of sediments: review andoutlook. Sedimentary Geology, 171, 1–11.Google Scholar
Weltje, G. J., Meijer, X. D., and de Boer, P. L. 1998. Stratigraphic inversion of siliciclastic basin fills:a note on the distinction between supply signals resulting from tectonic and climatic forcing. Basin Research, 10, 129–153.Google Scholar
Werner, B. T. 1999. Complexity in natural landform patterns. Science, Viewpoint, 284, 102–104.Google Scholar
Wetzel, A. 1993. The transfer of river load to deep-sea fans: A quantitative approach. Bulletin. American Association Petroleum Geologists, 77, 1679–1692.Google Scholar
Wetzel, R. G. 1975. Organic carbon cycle and detritus. Pages 583–621 of : Wetzel, R. G. (ed). Limnology. Philadelphia, USA: W. B. Saunders Co.
Wheatcrof t, R. A., and Borgeld, J. C. 2000. Oceanic flood deposits on the northern California coast:Large-scale distribution and small-scale physical properties. Continental Shelf Research, 20, 2163–2190.Google Scholar
Wheatcrof t, R. A., and Sommerfield, C. K. 2005. River sediment flux and shelf sediment accumula-tion rates on the Pacific Northwest margin. Continental Shelf Research, 25, 311–332.Google Scholar
Wheeler, H. E. 1958. Time-stratigraphy. American Association of Petroleum Geologists Bulletin, 42, 1047–1063.Google Scholar
Wheeler, H. E. 1959. Stratigraphic units in time and space. American Journal of Science, 257, 692–706.Google Scholar
Whipple, K. X. 2001. Fluvial landscape response time: how plausible is steady state denudation. American Journal of Science, 301, 313–325.Google Scholar
Whipple, K. X. 2009. The influence of climate on the tectonic evolution of mountain belts. NatureGeoscience, 2, 97–104.Google Scholar
Whipple, K. X., and Trayler, C. R. 1996. Tectonic control on fan size: the importance of spatiallyvariable subsidence rates. Basin Research, 8, 351–366.Google Scholar
Whipple, K. X., and Tucker, G. E. 1999. Dynamics of the stream power river incision model:Implications for height limits of mountain ranges, landscape response timescales, and researchneeds. Journal Geophysical Research, 104, 17, 661–17, 674.Google Scholar
Whitchurch, A. L., Carter, A., Sinclair, H. D., Duller, R. A., Whittaker, A. C., and Allen, P. A. 2011. Sediment routing system evolution within a diachronously uplifting orogen: insightsfrom detrital zircon thermochronological analyses from the south-central Pyrenees. American Journal of Science, 311, 442–482.Google Scholar
White, A. F., and Brantley, S. L. 1995. Chemical weathering rates of silicate minerals: an overview. Pages 1–22 of :. Chemical Weathering Rates of Silicate Minerals. Reviews of Mineralogy 31.Google Scholar
Whittaker, A. C. 2012. How do landscapes record tectonics and climate?. Lithosphere, 4, 160–164.Google Scholar
Whittaker, A. C., and Boulton, S. J. 2012. Tectonic and climatic controls on knickpoint retreat rates and landscape response times. Journal Geophysical Research, 117, 1–19.Google Scholar
Whittaker, A. C., and Walker, A. S. 2015. Geomorphic constraints on fault throw rates and linkage times: Examples from the northern Gulf of Evia, Greece. Journal Geophysical Research EarthSurface, 120, 137–158.Google Scholar
Whittaker, A. C., Attal, M., and Allen, P. A. 2010. Characterising the origin, nature and fateof sediment exported from catchments perturbed by active tectonics. Basin Research, 22, 809–828.Google Scholar
Whittaker, A. C., Attal, M., and Tucker, G. E. 2007. Contrasting transient and steady-state riverscrossing active normal faults: New field observations from the Central Apennines, Italy. BasinResearch, 19, 529–556.Google Scholar
Whittaker, A. C., Duller, R. A., Springett, J., Smithells, R., Whitchurch, A. L., and Allen, P. A. 2011. Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence andsediment supply. Geological Society of America Bulletin, 123, 1363–1382.Google Scholar
Wilgus, C. K., Hastings, B. S., Kendall, C. G. St., C., Posamentier, H. W., Ross, C. A., andVan Wagoner, J. C. (eds). 1988. Sea-level Changes: An Integrated Approach. Tulsa, Oklahoma: Society of Economic Paleontologists and Mineralogists Special Publication 42.
Wilkinson, B. H., and McElroy, B. J. 2007. The impact of humans on continental erosion andsedimentation. Geological Society of America Bulletin, 19, 140–156.Google Scholar
Wilkinson, B. H., Drummond, C. N., Rothman, E. D., and Diedrich, N. W. 1997. Stratal order inperitidal carbonate sequences. Journal Sedimentary Research, 67, 1068–1082.Google Scholar
Willenbring, J. K., Codilean, A. T., and McElroy, B. 2013. Earth is (mostly) flat: Apportionment of the flux of continental sediment over millennial time scales. Geology, 41, 343–346.Google Scholar
Willett, S. D. 1999. Orogeny and orography: the effects of erosion on the structure of mountain belts. Journal Geophysical Research, 104, 28957–28981.Google Scholar
Willett, S. D., and Brandon, M. T. 2002. On steady states in mountain belts. Geology, 30, 175–178.Google Scholar
Williams, D. F. 1988. Evidence for and against sea-level changes from the stable isotopic recordof the Cenozoic. Pages 31–36 of : Wilgus, C. K., Hastings, B. S., Ross, C. A., Posamentier, H., VanWagoner, J. C., and Kendall, C. G. St. C. (eds),. Sea-level Changes: An Integrated Approach. Society for Sedimentary Geology, Special Publication 42.Google Scholar
Wilson, L. 1973. Variations in mean annual sediment yield as a function of mean annual precipitation. American Journal Science, 273, 335–349.Google Scholar
Wittmann, H., and von Blanckenburg, F. 2009. Cosmogenic nuclide budgeting of floodplain sedimenttransfer. Geomorphology, 109, 246–256.Google Scholar
Wittmann, H., von Blanckenburg, F., Guyot, J. L., Maurice, L., and Kubik, P. W. 2009. From sourceto sink: Preserving the cosmogenic 10Be-derived denudation rate signal of the Bolivian Andesin sediment of the Beni and Mamore foreland basins. Earth and Planetary Science Letters, 288, 463–474.Google Scholar
Wobus, C. W., Tucker, G. E., and Anderson, R. S. 2010. Does climate change create distinctivepatterns of landscape incision?. Journal Geophysical Research, 115, F04008.Google Scholar
Wolf, R., Farley, K., and Silver, L. 1996. Assessment of (U-Th)/He thermochronometry: the low temperature history of the San Jacinto Mountains, California. Geology, 25, 65–68.Google Scholar
Wolf, R., Farley, K. A., and Kass, D. M. 1998. Modelling the temperature sensitivity of the apatiteU-Th/He thermochronometer. Chemical Geology, 148, 105–114.Google Scholar
Woodcock, N. H. 2004. Life span and fate of basins. Geology, 32, 685–688.Google Scholar
Wright, L. D. 1977. Sediment transport and deposition at river mouths: a synthesis. Bulletin. Geological Society of America, 88, 857–868.Google Scholar
Wright, L. D., and Coleman, J. M. 1972. River delta morphology: Wave climate and the role of the subaqueous prof ile. Science, 176, 282–284.Google Scholar
Wright, L. D., and Coleman, J. M. 1973. Variations in morphology of major river deltas as functions of ocean wave and river discharge regimes. Bulletin American Association of PetroleumGeologists, 57, 370–398.Google Scholar
Wu, Q., Borkovee, M., and Sticher, H. 1993. On particle size distributions in soils. Soil ScienceSociety of America, 57, 883–890.Google Scholar
Wynn, R. B., Weaver, P. P. E., Masson, D. G., and Stow, D. A. V. 2002. Turbidite depositionalarchitecture across three interconnected deep-water basins on the northwest African margin. Sedimentology, 49, 669–695.Google Scholar
Xiao, X. Y., Shen, J., Wang, S. M., Xiao, H. F., and Tong, G. B. 2010. The variation of the southwestmonsoon from the high resolution pollen record in Heqing Basin, Yunnan Province, China forthe last 2. 78 Ma. Paleogeography, Paleoclimatology, Paleoecology, 287, 45–57.Google Scholar
Xie, X., and Heller, P. L. 2009. Plate tectonics and basin subsidence history. Bulletin of GeologicalSociety America, 121, 55–64.Google Scholar
Xu, J. P., Noble, M. A., and Rosenfeld, L. K. 2004. In-situ measurements of velocity structure withinturbidity currents. Geophysical Research Letters, 31, L09311.Google Scholar
Xu, K. H., Milliman, J. D., Yang, Z., and Xu, H. 2007. Climatic and anthropogenic impacts on waterand sediment discharges from the Yangtze River (Changjiang), 1950–2005. Pages 609–626 of : Gupta, A. (ed),. Large Rivers: Geomorphology and Management. Chichester, UK: John Wiley.
Yoo, D. G., and Park, S. C. 2000. High-resolution seismic study as a tool for sequence stratigraphicevidence of high-frequency sea-level changes: latest Pleistocene-Holocene example from theKorea Strait. Journal Sedimentary Research, 70, 296–309.Google Scholar
Yu, J., Sui, F., Liu, H., and Wang, Y. 2008. Recognition of Milankovitch cycles in the stratigraphicrecord: application of the CWT and the FFT to well-log data. Journal China University Miningand Technology, 18, 594–598.Google Scholar
Zachos, J., Opdyke, B., Quinn, T., Jones, C. E., and Halliday, A. N. 1999. Early Cenozoic glaciation, Antarctic weathering, and seawater 87Sr/86Sr: is there a link. Chemical Geology, 161, 165–180.Google Scholar
Zeitler, P. K., Herczig, A. L., McDougall, I., and Honda, M. 1987. U-Th-He dating of apatite: apotential thermochronometer. Geochimica et Cosmochimica Acta, 51, 2865–2868.Google Scholar
Zhang, X., Drake, N., and Wainwright, J. 2002. Scaling land surface parameters for global-scale soilerosion estimation. Water Resources Research, 38, 1180.Google Scholar
Zhang, Y., Swift, D. J. P., Fan, S., Niederoda, A. W., and Reed, C. W. 1999. Two-dimensionalnumerical modeling of storm deposition on the northern California shelf. Marine Geology, 154, 155–167.Google Scholar
Zuffa, G. G. 1985. Provenance of Arenites. Dordrecht: D. Reidel Publishing Co.
Zuffa, G. G. 1987. Unravelling hinterland and of fshore paleogeography from deep-water arenites. Pages 39–61 of : Leggett, J. K., and Zuffa, G. G. (eds). Marine Clastic Sedimentology. London: Graham and Trotman.
Zuhlke, R., Bechstadt, T., and Mundil, R. 2003. Sub-Milankovitch and Milankovitch forcing on amodel Mesozoic carbonate platform - the Latemar (Middle Triassic, Italy). Terra Nova, 15, 69–80.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Philip A. Allen, Imperial College of Science, Technology and Medicine, London
  • Book: Sediment Routing Systems
  • Online publication: 03 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316135754.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Philip A. Allen, Imperial College of Science, Technology and Medicine, London
  • Book: Sediment Routing Systems
  • Online publication: 03 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316135754.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Philip A. Allen, Imperial College of Science, Technology and Medicine, London
  • Book: Sediment Routing Systems
  • Online publication: 03 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316135754.012
Available formats
×