Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-04T21:28:56.816Z Has data issue: false hasContentIssue false

Part III - Saving Species

Published online by Cambridge University Press:  21 December 2018

Allison B. Kaufman
Affiliation:
University of Connecticut
Meredith J. Bashaw
Affiliation:
Franklin and Marshall College, Pennsylvania
Terry L. Maple
Affiliation:
Jacksonville Zoo and Gardens
Get access
Type
Chapter
Information
Scientific Foundations of Zoos and Aquariums
Their Role in Conservation and Research
, pp. 325 - 474
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Cochran, W. W. (1980). Wildlife telemetry. In Schemnitz, S. D. (Ed.), Wildlife Management Techniques Manual (pp. 507520). Washington, DC: The Wildlife Society.Google Scholar
Department of Environment and Conservation (2012). Carnaby’s Cockatoo (Calyptorhynchus latirostris) Recovery Plan. Perth: Department of Environment and Conservation.Google Scholar
Groom, C. J., Warren, K. S., Le Souëf, A. T., & Dawson, R. (2014). Attachment and performance of Argos satellite tracking devices fitted to black cockatoos (Calyptorhynchus spp.). Wildlife Research, 41, 571583.Google Scholar
Le Souef, A., Holyoake, C., Vitali, S., & Warren, K. (2015). Presentation and prognostic indicators for free-living black cockatoos (Calyptorhynchus spp.) admitted to an Australian zoo veterinary hospital over 10 years. Journal of Wildlife Diseases, 51(2), 380388.Google Scholar
Peck, A., Barrett, G., & Williams, M. (2016). The 2016 Great Cocky Count: A Community-Based Survey for Carnaby’s Black-Cockatoo (Calytorhynchus latirostris) and Forest Red-Tailed Black-Cockatoo (Calyptorhynchus banksii naso). Floreat: Birdlife Australia.Google Scholar
Saunders, D. A. (1983). Vocal repertoire and individual recognition in the short-billed white-tailed black cockatoo, Calyptorhynchus funereus latirostris Carnaby. Australian Wildlife Research, 10, 527536.Google Scholar

References

Akçakaya, H. R. (1990). Bald ibis Geronticus eremita population in Turkey: An evaluation of the captive breeding project for reintroduction. Biological Conservation, 51(3), 225237.Google Scholar
Aourir, M., Bousadik, H., El Bekkay, M., Oubrou, W., Znari, M., & Qninba, A. (2017). New breeding sites of the critically endangered northern bald ibis Geronticus eremita on the Moroccan Atlantic coast. International Journal of Avian & Wildlife Biology, 2(3), 14.Google Scholar
Bairlein, F., Fritz, J., Scope, A., Schwendenwein, I., Stanclova, G., Van Dijk, G., … Dittami, J. (2015). Energy expenditure and metabolic changes of free-flying migrating northern bald ibis. PLoS ONE, 10(9), e0134433.Google Scholar
Birkhead, T., Wimpenny, J., & Montgomerie, B. (2014). Ten Thousand Birds: Ornithology since Darwin. Princeton, NJ: Princeton University Press.Google Scholar
Boehm, C. & Pegoraro, K. (2011). Der Waldrapp: Geronticus eremita – Ein Glatzkopf in Turbulenzen. Magdeburg: VerlagsKG Wolf.Google Scholar
Bolhuis, J. J. (1991). Mechanisms of avian imprinting: A review. Biological Reviews, 66, 303345.Google Scholar
Bowden, C. G. R., Aghnaj, A., Smith, K. W., & Ribi, M. (2003). The status and recent breeding performance of the critically endangered northern bald ibis Geronticus eremita population on the Atlantic coast of Morocco. IBIS, 145(3), 419431.Google Scholar
Bowden, C. G. R., Smith, K. W., Bekkay, M. El, Oubrou, W., Aghnaj, A., & Jimenez-Armesto, M. (2008). Contribution of research to conservation action for the northern bald ibis Geronticus eremita in Morocco. Bird Conservation International, 18, 7490.Google Scholar
Chernetsov, N., Berthold, P., & Querner, U. (2004). Migratory orientation of first-year white storks (Ciconia ciconia): Inherited information and social interactions. Journal of Experimental Biology, 207(6), 937943.Google Scholar
Flack, A., Fiedler, W., Blas, J., Pokrovsky, I., Kaatz, M., Mitropolsky, M., … Wikelski, M. (2016). Costs of migratory decisions: A comparison across eight white stork populations. Science Advances, 2(1), e1500931.CrossRefGoogle ScholarPubMed
Fritz, J., Bisenberger, A., & Kotrschal, K. (2000). Stimulus enhancement in greylag geese: Socially mediated learning of an operant task. Animal Behaviour, 59(6), 11191125.Google Scholar
Fritz, J., Feurle, A., & Kotrschal, K. (2016). Physiological regulation of bird migration: A study with northern bald ibises undergoing human-led autumnal migration. Journal of Ornithology, 147(5), 168.Google Scholar
Fritz, J., Hoffmann, W., & Unsöld, M. (2016). Back into European ecosystems: The LIFE+ northern bald ibis reintroduction project in Central Europe. In Böhm, C. & Bowden, C. (Eds.), Report of 4th IAGNBI Meeting Seekirchen (pp. 4756). Innsbruck: Alpenzoo.Google Scholar
Fritz, J., Kramer, R., Hoffmann, W., Trobe, D., & Unsöld, M. (2017). Back into the wild: Establishing a migratory northern bald ibis Geronticus eremita population in Europe. International Zoo Yearbook, 51(1), 107123.Google Scholar
Fritz, J. & Riedler, B. (2010). Neue Hoffnung für das Überleben einer hoch bedrohtesten Zugvogelart im Mittleren Osten: Freisetzung von Jungvögeln bei den letzten migrierenden Waldrappen in Syrien. Vogelwarte, 48, 417418.Google Scholar
Fritz, J. & Unsöld, M. (2015). Internationaler Artenschutz im Kontext der IUCN Reintroduction Guidelines: Argumente zur Wiederansiedlung des Waldrapps Geronticus Eremita in Europa. Vogelwarte, 53(2), 157168.Google Scholar
Gessner, C. (1557). Historiae Animalium Liber III, Qui Est de Avium Natura; Erste Deutsche Übersetzung. Zurich: Christoffel Froschouer.Google Scholar
Hancock, J. A., Kushlan, J. A., & Kahl, M. P. (1992). Storks, Ibises and Spoonbills of the World. London & San Diego, CA: Academic Press.Google Scholar
Hartup, B. K., Olsen, G. H., & Czekala, N. M. (2005). Fecal corticoid monitoring in whooping cranes (Grus americana) undergoing reintroduction. Zoo Biology, 24(1), 1528.Google Scholar
IUCN/SSC (2013). Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. Ecologial Applications. Retrieved from https://portals.iucn.org/library/efiles/documents/2013-009.pdf.Google Scholar
Janak, J. (2011). Spotting the akh. The presence of the northern bald ibis in Ancient Egypt and its early decline. Journal of the American Research Centre in Egypt, 46, 1732.Google Scholar
Kotrschal, K. (2001). The Grünau project is in its 5th year: How to establish a Waldrapp Geronticus eremita colony from scratch. In Böhm, C. & Bowden, C. (Eds.), Proceedings of the International Advisory Group for the Northern Bald Ibis (IAGNBI): Newsletter 2001. Innsbruck: Alpenzoo.Google Scholar
Kotrschal, K. (2004). The Grünau Project: Establishing a semi-wild colony of Waldrapp Ibis. WAZA Magazine, 5, 1215.Google Scholar
Kumerloeve, H. (1978). Waldrapp, Gerontocus eremita (LINNAEUS 1758) und Glattnackenrapp, Geronticus calvus (BODDAERT 1783): Zur Geschichte ihrer Erforschung und zur gegenwärtigen Bestandssituation. Annalen des Naturhistorischen Museums in Wien, 81, 319349.Google Scholar
Lindsell, J. A., Serra, G., Peške, L., Abdullah, M. S., Al Qaim, G., Kanani, A., & Wondafrash, M. (2009). Satellite tracking reveals the migration route and wintering area of the Middle East population of critically endangered northern bald ibis Geronticus eremita. Oryx, 43(3), 329335.Google Scholar
López, J. M. & Quevedo, M. A. (2016). Northern bald ibis reintroduction program in Andalusia. In Böhm, C. & Bowden, C. (Eds.), Proceedings of 4th International Advisory Group for the Northern Bald Ibis (IAGNBI) Meeting Seekirchen, Austria (pp. 5767). Innsbruck: Alpenzoo.Google Scholar
Lorenz, K. Z. (1937). The companion in the bird’s world. The Auk, 54(3), 245273.Google Scholar
Mendelssohn, H. (2007). Experimental releases of Waldrapp ibis Geronticus eremita: An unsuccessful trial. International Zoo Yearbook, 33(1), 7985.Google Scholar
Muñoz, A.-R. & Ramírez, J. (2017). Reintroduced northern bald ibises from Spain reach Morocco. Oryx, 51(2), 204205.Google Scholar
OperationMigration (2016). End of ultralight-guided migration. Retrieved from http://operationmigration.org/InTheField/2016/01/23/end-of-ultralight-guided-migration.Google Scholar
Oubrou, W. (2017). Northern Bald Ibis breeding expansion: Two new sites found in Morocco. MaghrebOrnitho (December). Retrieved from www.magornitho.org/2017/12/northern-bald-ibis-breeding-expansion.Google Scholar
Pegoraro, K. & Thaler, E. (1994). Introduction of Waldrapp ibis on the basis of family bonding: A successful pilot study. International Zoo Yearbook, 33, 7479.Google Scholar
Portugal, S. J., Hubel, T. Y., Fritz, J., Heese, S., Trobe, D., Voelkl, B., … Usherwood, J. R. (2014). Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature, 505(7483), 399402.CrossRefGoogle ScholarPubMed
Schenker, A. (1977). Das ehemalige Verbreitungsgebiet des Waldrapps Geronticus eremita in Europa. Der Ornithologische Beobachter, 74, 1330.Google Scholar
Schenker, A. (2017). Replik zum Beitrag von Armin Landmann betreffend den Waldrapp Geronticus eremita. Vogelwarte, 55(2), 129138.Google Scholar
Seminario, Y. (2017). Migration of the reintroduced bald ibises from Spain to Morocco. MaghrebOrnitho, November. Retrieved from www.magornitho.org/2016/11/migration-reintroduced-bald-ibis.Google Scholar
Serra, G. (2015). The northern bald ibis is extinct in the Middle East – But we can’t blame it on IS. Ecologist (May). Retrieved from https://theecologist.org/2015/may/29/northern-bald-ibis-extinct-middle-east-we-cant-blame-it.Google Scholar
Serra, G. (2017). The last flight of the ancient guide of Hajj. Self-published. Apia, Samoa. Retrieved from www.thelastflight.org.Google Scholar
Serra, G., Abdallah, M. S., Assaed, A., Abdallah, A., Al Qaim, G., Fayad, T., & Willliamson, D. (2004). Discovery of a relict breeding colony of northern bald ibis Geronticus eremita in Syria. Oryx, 38(2), 17.Google Scholar
Serra, G., Bruschini, C., Peske, L., Kubsa, A., Wondafrash, M., & Lindsell, J. A. (2013). An assessment of ecological conditions and threats at the Ethiopian wintering site of the last known eastern colony of critically endangered northern bald ibis Geronticus eremita. Bird Conservation International, 23(4), 399413.Google Scholar
Serra, G., Lindsell, J. A., Peske, L., Fritz, J., Bowden, C. G. R., Bruschini, C., … Wondafrash, M. (2015). Accounting for the low survival of the critically endangered northern bald ibis Geronticus eremita on a major migratory flyway. Oryx, 49(2), 312320.Google Scholar
Serra, G., Peske, L., Abdallah, M. S., Al Qaim, G., & Kanani, A. (2009). Breeding ecology and behaviour of the last wild oriental northern bald ibises (Geronticus eremita) in Syria. Journal of Ornithology, 150(4), 769782.Google Scholar
Shephard, J. M., Rycken, S., Almalik, O., Struyf, K., & Erp van der Kooij, L. (2015). Migration strategies revealed by satellite tracking among descendants of a population of European white stork (Ciconia ciconia) reintroduced to Belgium. Journal of Ornithology, 156(4), 943953.Google Scholar
Sikli, L., Oubrou, O., & El Bekkay, M. (2016). Morocco wild population update. In In Böhm, C. & Bowden, C. (Eds.), Proceedings of 4th International Advisory Group for the Northern Bald Ibis (IAGNBI) Meeting Seekirchen, Austria (pp. 2930). Innsbruck: AlpenzooGoogle Scholar
Sperger, C., Heller, A., Voelkl, B., & Fritz, J. (2017). Flight strategies of migrating northern bald ibises – Analysis of GPS data during human-led migration flights. AGIT ‒ Journal Für Angewandte Geoinformatik, 3, 6272.Google Scholar
Tintner, A. & Kotrschal, K. (2002). Early social influence on nestling development in Waldrapp ibis (Geronticus eremita). Zoo Biology, 21(5), 467480.Google Scholar
Unsöld, M. & Fritz, J. (2011). Der Waldrapp-ein Vogel zwischen Ausrottung und Wiederkehr. Wildbiologie, 2, 116.Google Scholar
Unsöld, M. & Fritz, J. (2016). Artenschutzprojekt Waldrappteam: Potenzial und Risiken von Prägung als Methode für den Artenschutz. Vogelwarte, 54, 365366.Google Scholar
Visser, M. E., Perdeck, A. C., van Balen, J. H., & Both, C. (2009). Climate change leads to decreasing bird migration distances. Global Change Biology, 15(8), 18591865.Google Scholar
Voelkl, B. & Fritz, J. (2017). Relation between travel strategy and social organization of migrating birds with special consideration of formation flight in the northern bald ibis. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1727), 20160235.Google Scholar
Voelkl, B., Portugal, S. J., Unsöld, M., Usherwood, J. R., Wilson, A. M., & Fritz, J. (2015). Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis. Proceedings of the National Academy of Sciences, 112(7), 21152120.Google Scholar
Walpole, M. & Leader-Williams, N. (2002). Tourism and flagship species in conservation. Biodiversity and Conservation, 11, 543547.Google Scholar
Wirtz, S., Boehm, C., Fritz, J., Hankeln, T., & Hochkirch, A. (2016). Isolation of microsatellite loci by next-generation sequencing of the critically endangered northern bald ibis, Geronticus eremita. Journal of Heredity Advance, 107(4), 363366.Google Scholar
Wirtz, S., Boehm, C., Fritz, J., Kotrschal, K., Veith, M., & Hochkirch, A. (2018). Optimizing the genetic management of reintroduction projects: Genetic population structure of the captive northern bald ibis population. Conservation Genetics, 19(4), 853864.Google Scholar
Yeniyurt, C. (2016). Conservation of the northern baid Ibis, Birecik, Turkey 2013–2016. In Böhm, C. & Bowden, C. (Eds.), Proceedings of 4th International Advisory Group for the Northern Bald Ibis (IAGNBI) Meeting Seekirchen, Austria (pp. 3439), Innsbruck: Alpenzoo.Google Scholar
Yeniyurt, C., Oppel, S., Isfendiyaroglu, S., Özkinaci, G., Erkol, I. L., & Bowden, C. G. R. (2016). Influence of feeding ecology on breeding success of a semi-wild population of the critically endangered northern bald ibis Geronticus eremita in southern Turkey. Bird Conservation International, 27(4), 537549.Google Scholar

References

Bukowinski, A. T., Bercovitch, F. B., Alberts, A. C., Wallace, M. P., Mace, M. E., & Ancona, S. (2007). A quantitative assessment of the Caliornia condor mentoring program. In Mee, A. & Hall, L. S. (Eds.), California Condors in the 21st Century (pp. 197211). Cambridge, MA: Nuttall Ornithological Club.Google Scholar
Burnett, L. J., Sorenson, K. J., Brandt, J., Sandhaus, E. A., Ciani, D., Clark, M., … Risebrough, R. W. (2013). Eggshell thinning and depressed hatching success of California condors reintroduced to central California. The Condor, 115(3), 477491.Google Scholar
Cade, T. J. (2007). Exposure of California condors to lead from spent ammunition. Journal of Wildlife Management, 71(7), 21252133.Google Scholar
CDFW (2018). Nonlead Ammunition in California. Retrieved from www.wildlife.ca.gov/Hunting/Nonlead-Ammunition.Google Scholar
Church, M. E., Gwiazda, R., Risebrough, R. W., Sorenson, K., Chamberlain, C. P., Farry, S., … Smith, D. R. (2006). Ammunition is the principal source of lead accumulated by California condors re-introduced to the wild. Environmental Science & Technology, 40(19), 61436150.Google Scholar
Clark, M., Wallace, M., & David, C. (2007). Rearing California condors for release using a modified puppet-rearing technique. In Mee, A. & Hall, L. S. (Eds.), California Condors in the 21st Century (Vol. 2, pp. 213226). Cambridge, MA: Nuttall Ornithological Club and The American Ornithologists’ Union.Google Scholar
Finkelstein, M. E., Brandt, J., Sandhaus, E., Grantham, J., Mee, A., Schuppert, P. J., & Smith, D. R. (2015). Lead exposure risk from trash ingestion by the endangered California condor (Gymnogyps californianus). Journal of Wildlife Diseases, 51(4), 901906.Google Scholar
Finkelstein, M. E., Doak, D. F., George, D., Burnett, J., Brandt, J., Church, M., … Smith, D. R. (2012). Lead poisoning and the deceptive recovery of the critically endangered California condor. Proceedings of the National Academy of Sciences, 109(28), 1144911454.Google Scholar
Finkelstein, M. E., George, D., Scherbinski, S., Gwiazda, R., Johnson, M., Burnett, J., … Smith, D. R. (2010). Feather lead concentrations and 207Pb/206Pb ratios reveal lead exposure history of California condors (Gymnogyps californianus). Environmental Science & Technology, 44(7), 26392647.CrossRefGoogle Scholar
Finkelstein, M. E., Kuspa, Z. E., Welch, A., Eng, C., Clark, M., Burnett, J., & Smith, D. R. (2014). Linking cases of illegal shootings of the endangered California condor using stable lead isotope analysis. Environmental Research, 134, 270279.Google Scholar
Hunt, W. G., Parish, C. N., Farry, S. C., Lord, T. G., & Sieg, R. (2007). Movements of introduced California condors in Arizona in relation to lead exposure. In Mee, A. & Hall, L. S. (Eds.), California Condors in the 21st Century (pp. 7996). Cambridge, MA: Nuttall Ornithological Club and The American Ornithologists’ Union.Google Scholar
Kelly, T. R., Grantham, J., George, D., Welch, A., Brandt, J., Burnett, L. J., … Johnson, C. K. (2014). Spatiotemporal patterns and risk factors for lead exposure in endangered California condors during 15 years of reintroduction. Conservation Biology, 28(6), 17211730.Google Scholar
Koford, C. B. (1953). The California Condor. National Audubon Society Research Report Number 4. New York: National Audubon Society.Google Scholar
Lindsey, G. (1992). Nest guarding from observation blinds: Strategy for improving Puerto Rican parrot nest success (Vigilancia de nidos desde escondites: Estrategia para mejorar el éxito de anidamiento de Amazona vittata). Journal of Field Ornithology, 63(4), 466472.Google Scholar
Mace, M. (2017). California Condor North American Studbook, Gymnogyps californianus. Escondido, CA: San Diego Zoo Global.Google Scholar
Mee, A., Hamber, J. A., & Sinclair, J. (2007). Low nest success in a reintroduced population of California condors. In Mee, A. & Hall, L. S. (Eds.), California Condors in the 21st Century (Vol. 2, pp. 163184). Cambridge, MA: Nuttall Ornithological Club and The American Ornithologists’ Union.Google Scholar
Mee, A., Rideout, B. A., Hamber, J. A., Todd, J. N., Austin, G., Clark, M., & Wallace, M. P. (2007). Junk ingestion and nestling mortality in a reintroduced population of California condors Gymnogyps californianus. Bird Conservation International, 17(2), 119130.Google Scholar
Meretsky, V. J. & Snyder, N. F. R. (1992). Range use and movements of the California condor. The Condor, 94, 313335.Google Scholar
Miller, L. (1942). Succession in the Cathartine dynasty. Condor, 44, 212213.Google Scholar
Ralls, K. & Ballou, J. (2004). Genetic status and management of California condors. The Condor, 106(2), 215228.Google Scholar
Rideout, B. A., Stalis, I., Papendick, R., Pessier, A., Puschner, B., Finkelstein, M. E., … Grantham, J. (2012). Patterns of mortality in free-ranging California condors (Gymnogyps californianus). Journal of Wildlife Diseases, 48(1), 95112.Google Scholar
Rivers, J. W., Johnson, J. M., Haig, S. M., Schwarz, C. J., Burnett, L. J., Brandt, J., … Grantham, J. (2014). An analysis of monthly home range size in the critically endangered California condor Gymnogyps californianus. Bird Conservation International, 24(4), 492504.Google Scholar
Sandhaus, E. A. (2013). Nesting Behavior in a Reintroduced Population of California Condors (doctoral dissertation). Georgia Institute of Technology. Retrieved from http://hdl.handle.net/1853/47547.Google Scholar
Sheppard, J., Walenski, M., Wallace, M., Velazco, J. V., Porras, C., & Swaisgood, R. (2013). Hierarchical dominance structure in reintroduced California condors: Correlates, consequences, and dynamics. Behavioral Ecology and Sociobiology, 67(8), 12271238.Google Scholar
Snyder, N. & Snyder, H. (2000). The California Condor: A Saga of Natural History and Conservation. San Diego, CA: Academic Press.Google Scholar
Snyder, N. F. R. & Hamber, J. A. (1985). Replacement-clutching and annual nesting of California condors. The Condor, 87(3), 374378.Google Scholar
Snyder, N. F. R. & Snyder, H. A. (1989). Biology and conservation of the California condor. In Power, D. M. (Ed.), Current Ornithology (pp. 175267). Boston, MA: Springer US.Google Scholar
Snyder, N. F. R. & Snyder, H. A. (2005). Introduction to the California Condor. Berkeley, CA: University of California Press.Google Scholar
Timbrook, J. & Johnson, J. R. (1999). People of the Sky: Birds in Chumash Culture. Paper presented at the 22nd Ethnobiology Conference, Oaxaca, Mexico. Retrieved from www.sbnature.org/crc/334.html.Google Scholar
Woods, C. P., Heinrich, W. R., Farry, S. C., Parish, C. N., Osborn, S. A. H., & Cade, T. J. (2007). Survival and reproduction of California condors released in Arizona. In Mee, A. & Hall, L. S. (Eds.), California Condors in the 21st Century (Vol. 2, p. 5778). Cambridge, MA: Nuttall Ornithological Club and The American Ornithologists’ Union.Google Scholar

References

Allen, M. E., Oftedal, O. T., & Baer, D. J. (1996). The feeding and nutrition of carnivores. In Kleiman, D. G., Allen, M. E., Thompson, K. V., & Lumpkin, S. (Eds.), Wild Mammals in Captivity: Principles and Techniques (pp. 139147). Chicago, IL: University of Chicago Press.Google Scholar
Anderson, E., Forrest, S. C., Clark, T. W., & Richardson, L. (1986). Paleobiology, biogeography, and systematics of the black-footed ferret, Mustela nigripes. Great Basin Naturalist Memoirs, 8, 1162.Google Scholar
Angeloni, F., Wagemaker, N., Vergeer, P., & Ouborg, J. (2012). Genomic toolboxes for conservation biologists. Evolutionary Applications, 5(2), 130143.Google Scholar
Atherton, R. W., Straley, M., Curry, P., Slaughter, R., Burgess, W., & Kitchin, R. M. (1989). Electroejaculation and cryopreservation of domestic ferret sperm. In Seal, E. T. T. U. S., Anderson, S. H., & Bodan, M. A. (Eds.), Conservation Biology and the Black-Footed Ferret (pp. 177189). New Haven, CT: Yale University Press.Google Scholar
Audubon, J. J. & Bachman, J. (1851). The Viviparous Quadrupeds of North America. New York: V.G. Audubon Press.Google Scholar
Ballou, J. D., Earnhardt, J., & Thompson, S. (2001). MATERX: Population Management Software. Washington, DC: National Zoological Park.Google Scholar
Barone, M. A., Roelke, M. E., Howard, J., Brown, J. L., Anderson, A. E., & Wildt, D. E. (1994). Reproductive characteristics of male Florida panthers: Comparative studies from Florida, Texas, Colorado, Latin America, and North American zoos. Journal of Mammalogy, 75(1), 150162.Google Scholar
Biggins, D. E., Godbey, J., Gage, K. L., Carter, L. G., & Montenieri, J. A. (2010). Vector control improves survival of three species of prairie dogs (Cynomys) in areas considered enzootic for plague. Vector-Borne and Zoonotic Diseases, 10(1), 1726.Google Scholar
Biggins, D. E., Godbey, J. L., Hanebury, L. R., Luce, B., Marinari, P. E., Matchett, M. R., & Vargas, A. (1998). The effect of rearing methods on survival of reintroduced black-footed ferrets. Journal of Wildlife Management, 62(2), 643653.Google Scholar
Bond, J. C. & Lindburg, D. G. (1990). Carcass feeding of captive cheetahs (Acinonyx jubatus): The effects of a naturalistic feeding program on oral health and psychological well-being. Applied Animal Behaviour Science, 26, 373382.Google Scholar
Brown, J. L. (1997). Fecal steroid profiles in black-footed ferrets exposed to natural photoperiod. Journal of Wildlife Management, 61(4), 14281436.Google Scholar
Carr, A. (1986). Introduction. Great Basin Naturalist Memoirs, 9, 17.Google Scholar
Carroll, R. S., Erskine, M. S., Doherty, P. C., Lundell, L. A., & Baum, M. J. (1985). Coital stimuli controlling luteinizing hormone secretion and ovulation in the female ferret. Biology of Reproduction, 32, 925933.Google Scholar
Carvalho, C. F., Howard, J. G., Collins, L., Wemmer, C., Bush, M., & Wildt, D. E. (1991). Captive breeding of black-footed ferrets (Mustela nigripes) and comparative reproductive efficiency in 1-year-old versus 2-year-old animals. Journal of Zoo and Wildlife Medicine, 22(1), 96106.Google Scholar
Cully, J., Biggins, D., & Seery, D. (2006). Conservation of prairie dogs in areas with plague. In Hoogland, J. (Ed.), Conservation of the Black-Tailed Prairie Dog (pp. 157168). Washington, DC: Island Press.Google Scholar
Fox, J. G. (1998). Biology and Diseases of the Ferret. Baltimore, MD: Williams and Wilkins Co.Google Scholar
Gage, K. L. & Kosoy, M. Y. (2005). Natural history of plague: Perspectives from more than a century of research. Annual Review of Entomology, 50, 505528.Google Scholar
Hillman, C. N. & Carpenter, J. W. (1983). Breeding biology and behavior of captive black-footed ferrets. International Zoo Yearbook, 23, 186191.Google Scholar
Howard, J., Lynch, C., Santymire, R., Marinari, P., & Wildt, D. (2016). Recovery of gene diversity using long-term cryopreserved spermatozoa and artificial insemination in the endangered black-footed ferret. Animal Conservation, 19(2), 102111.Google Scholar
Howard, J., Marinari, P. E., & Wildt, D. E. (2003). Black-footed ferret: Model for assisted reproductive technologies contributing to in situ conservation. In Holt, W. V., Pickard, A., Rodger, J. C., & Wildt, D. E. (Eds.), Reproductive Sciences and Integrated Conservation (pp. 249266). Cambridge, MA: Cambridge University Press.Google Scholar
Howard, J., Santymire, R. M., Marinari, P. E., Kreeger, J. S., Williamson, L., & Wildt, D. E. (2004). Use of reproductive technology for black-footed ferret recovery. Paper presented at the Symposium on the Status of the Black-footed Ferret and Its Habitat. Fort Collins, CO.Google Scholar
Howard, J. G., Bush, M., Morton, C., Morton, F., & Wildt, D. E. (1991). Comparative semen cryopreservation in ferrets (Mustela putorius furo) and pregnancies after laparoscopic intrauterine insemination with frozen–thawed spermatozoa. Journal of Reproduction and Fertility, 92, 109118.Google Scholar
Howard, J. G., Hurlbut, S. L., Morton, C., Morton, F., Bush, M., & Wildt, D. E. (1989). Pregnancies in the domestic ferret after laparoscopic artificial insemination with frozen–thawed spermatozoa. Journal of Andrology, (Suppl.), 135.Google Scholar
Howard, J. G., Kwiatkowski, D. R., Williams, E. S., Atherton, R. W., Kitchin, R. M., Thorne, E. T. et al. (1996). Pregnancies in black-footed ferrets and Siberian polecats after laparoscopic artificial insemination with fresh and frozen-thawed semen. Paper presented at the American Society of Andrology.Google Scholar
Howard, J. G. & Wildt, D. E. (2009). Approaches and efficacy of artificial insemination in felids and mustelids. Theriogenology, 71, 130148.Google Scholar
ISIS (2004). SPARKS (Single population analysis and records keeping system) V 1.5. Minneapolis, MN: International Species Information System.Google Scholar
Jachowski, D. S. & Lockhart, J. M. (2009). Reintroducing the black-footed ferret Mustela nigripes to the Great Plains of North America. Small Carnivore Conservation, 41, 5864.Google Scholar
Johnson, W. E., Onorato, D. P., Roelke, M. E., Land, E. D., Cunningham, M., Belden, R. C. et al. (2010). Genetic restoration of the Florida panther. Science, 329(5999), 16411645.Google Scholar
Li, Z., Sun, X., Chen, J., Leno, G., & Engelhardt, J. F. (2006). Factors affecting the efficacy of embryo transfer in the domestic ferret (Mustela putorius furo). Theriogenology, 66, 183190.Google Scholar
Lindburg, D. G. (1988). Improving the feeding of captive felines through application of field data. Zoo Biology, 7, 211218.Google Scholar
Liu, Z., He, C., Zhou, Y., & Wu, J. (2014). How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landscape Ecology, 29(5), 763.Google Scholar
Lockhart, J., Thorne, T., & Gober, D. (2004). A historical perspective on recovery of the black-footed ferret and the biological and political challenges affecting its future. In Roelle, J., Miller, B., Godbey, J., & Biggins, D. (Eds.), Symposium on the Status of the Black-Footed Ferret and Its Habitat: Scientific Investigations Report (pp. 619). Washington, DC: US Department of the Interior.Google Scholar
Marinari, P. (2016). North American Regional Black-Footed Ferret Studbook. Front Royal, VA: Association of Zoos and Aquariums.Google Scholar
Marsh, R. E. (1984). Ground squirrels, prairie dogs, and marmots as pest on rangeland. Paper presented at the Conference for Organization and Practice of Vertebrate Pest Control, August 30–September 3, 1982, Fernherst, UK.Google Scholar
Matchett, M. R., Biggins, D. E., Carlson, V., Powell, B., & Rocke, T. (2010). Enzootic plague reduces black-footed ferret (Mustela nigripes) survival in Montana. Vector-Borne and Zoonotic Diseases, 10(1), 2735.Google Scholar
Merriam, C. H. (1902). The prairie dog of the Great Plains. US Department of Agriculture Yearbook, 1901, 257270.Google Scholar
Miller, B. J., Biggins, D., Wemmer, C., Powell, R., Calvo, L., Hanebury, L., & Wharton, T. (1990). Development of survival skills in captive-raised Siberian polecats (Mustela eversmanni) II: Predator avoidance. Journal of Ethology, 8(2), 95104.Google Scholar
Miller, B. J., Reading, R. P., & Forrest, S. (1996). Prairie Night: Black-Footed Ferrets and the Recovery of Endangered Species. Washington, DC: Smithsonian Institution.Google Scholar
Miller, B. J., Wemmer, C., Biggins, D., & Reading, R. P. (1990). A proposal to conserve black-footed ferrets and the prairie dog ecosystem. Environmental Management, 14(6), 763769.Google Scholar
O’Brien, S. J., Martenson, J. S., Eichelberger, M. A., Thorne, E. T., & Wright, F. (1989). Genetic variation and molecular systematics of the black-footed ferret. In Thorne, E. T., Seal, U.S., Anderson, S.H., & Bogan, M.A. (Eds.), Conservation Biology and the Black-Footed Ferret (pp. 2133). New Haven, CT: Yale University Press.Google Scholar
Oxford English Dictionary (2017). Definition of “ferret.” Retrieved from https://en.oxforddictionaries.com/definition/ferret.Google Scholar
Poessel, S. A., Biggins, D. E., Santymire, R. M., Livieri, T. M., Crooks, K. R., & Angeloni, L. (2011). Environmental enrichment affects adrenocortical stress responses in the endangered black-footed ferret. General and Comparative Endocrinology, 172(3), 526533.Google Scholar
Pollak, J. P., Lacy, R. C., & Ballou, J. D. (2000). Population Management 2000 (Version 1.175). Brookfield, IL: Chicago Zoological Society.Google Scholar
Reading, R. P., Vargas, A., Miller, B. J., Clark, T. W., Hanebury, L. R., & Biggins, D. (1996). Recent directions in black-footed ferret recovery. Endangered Species Update, 13(10 & 11), 16.Google Scholar
Rocke, T., Mencher, J., Smith, S., Friedlander, A., Andrews, G., & Baeten, L. A. (2004). Recombinant F1–V fusion protein protects black-footed ferrets (Mustela nigripes) against virulent Yersinia pestis infection. Journal of Zoo and Wildlife Medicine, 35, 142146.Google Scholar
Rocke, T. E., Tripp, D. W., Russell, R. E., Abbott, R. C., Richgels, K. L., Matchett, M. R. et al. (2017). Sylvatic plague vaccine partially protects prairie dogs (Cynomys spp.) in field trials. EcoHealth, 14, 438450.Google Scholar
Roelke, M. E. (1993). The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Current Biology, 3, 340350.Google Scholar
Santymire, R. (2016). Implementing the use of a biobank in the endangered black-footed ferret (Mustela nigripes). Reproduction, Fertility and Development, 28(8), 10971104.Google Scholar
Santymire, R., Livieri, T., Marinari, P., Bortner, R., & Wright, M. (2016). Effect of the Environment on the Health and Fecundity of the Endangered Black-Footed Ferret (Mustela nigripes). Madison, WI: Society for Conservation Biology.Google Scholar
Santymire, R. M., Howard, J. G., Wisely, S. M., Kreeger, J. S., Marinari, P. E., & Wildt, D. E. (2004). Seminal characteristics of wild black-footed ferrets (Mustela nigripes). Paper presented at the Defenders of Wildlife Carnivores – Expanding Partnerships in Carnivore Conservation, Santa Fe, New Mexico.Google Scholar
Santymire, R. M., Lavin, S. R., Branvold-Faber, H., Kreeger, J., & Marinari, P. (2015). Effect of dietary vitamin E and prey supplementation on semen quality in male black-footed ferrets (Mustela nigripes). Theriogenology, 84(2), 217225.Google Scholar
Santymire, R. M., Livieri, T. M., Branvold-Faber, H., & Marinari, P. E. (2014). The black-footed ferret: On the brink of recovery? In Holt, W. V., Brown, J. L., & Comizzoli, P. (Eds.), Reproductive Sciences in Animal Conservation (pp. 119134). New York: Springer.Google Scholar
Santymire, R. M., Marinari, P., & Lynch, C. (2016). Population Analysis and Breeding and Transfer Plan: Black-footed ferret (Mustela nigripes). Chicago, IL: Association of Zoos and Aquariums.Google Scholar
Santymire, R. M., Marinari, P. E., Kreeger, J. S., Wildt, D. E., & Howard, J. G. (2006). Sperm viability in the black-footed ferret (Mustela nigripes) is influenced by seminal and medium osmolality. Cryobiology, 53, 3750.Google Scholar
Santymire, R. M., Marinari, P. E., Kreeger, J. S., Wolf, K. N., Wildt, D. E., & Howard, J. G. (2005). Reproductive deficiency and asynchrony in yearling male black-footed ferrets. Paper presented at the Symposium on the Status of the Black-Footed Ferret and Its Habitat. Fort Collins, CO.Google Scholar
Santymire, R. M., Marinari, P. E., Kreeger, J. S., Wildt, D. E., & Howard, J. G. (2007). Slow cooling prevents cold-inducing damage to sperm motility and acrosomal integrity in the black-footed ferret (Mustela nigripes). Reproduction, Fertility and Development, 19, 652663.Google Scholar
Shepherdson, D. J., Carlstead, K., Mellen, J. D., & Seidensticker, J. (1993). The influence of food presentation on the behavior of small cats in confined environments. Zoo Biology, 12(2), 203216.Google Scholar
Soulé, M., Gilpin, M., Conway, W., & Foose, T. (1986). The millennium ark: How long a voyage, how many staterooms, how many passengers? Zoo Biology, 5(2), 101113.Google Scholar
Uresk, D. W. (1987). Relation of black-tailed prairie dogs and control programs to vegetation, livestock, and wildlife. In Capinera, J. L. (Ed.), Integrated Pest Management on Rangeland: A Shortgrass Prairie Perspective (pp. 312322). Boulder, CO: Westview Press.Google Scholar
United States Fish and Wildlife Service (1988). Black-Footed Ferret Recovery Plan. Denver, CO: US Fish and Wildlife Service.Google Scholar
Wildt, D. E. (1994). Endangered species spermatozoa: Diversity, research, and conservation. In Bartke, A. (Ed.), Function of Somatic Cells in the Testes (pp. 124). New York: Springer-Verlag.Google Scholar
Wildt, D. E., Bush, M., Morton, C., Morton, F., & Howard, J. G. (1989). Semen characteristics and testosterone profiles in ferrets kept in long-day photoperiod, and the influence of hCG timing and sperm dilution on pregnancy rate after laparoscopic insemination. Journal of Reproduction and Fertility, 86, 349358.Google Scholar
Williams, E., Anderson, S., Cavender, J., Lynn, C., List, K., Hearn, C., et al. (1996). Vaccination of black-footed ferret (Mustela nigripes) × Siberian polecat (M. eversmanni) hybrids and domestic ferrets (M. putorius furo) against canine distemper. Journal of Wildlife Diseases, 32(3), 417423.Google Scholar
Williams, E., Mills, K., Kwiatkowski, D., Thorne, E., & Boerger-Fields, A. (1994). Plague in a black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 30, 581585.Google Scholar
Williams, E. S., Thorne, E. T., Kwiatkowski, D. R., Anderson, S. L., & Lutz, K. (1991). Reproductive biology and management of captive black-footed ferrets (Mustela nigripes). Zoo Biology, 10, 383398.Google Scholar
Williams, E. S., Thorne, E. T., Kwiatkowski, D. R., Lutz, K., & Anderson, S. L. (1992). Comparative vaginal cytology of the estrus cycle of black-footed ferrets (Mustela nigripes), Siberian polecats (M. eversmanni), and domestic ferrets (M. putorius furo). Journal of Veterinary Diagnostic Investigation, 4, 3844.Google Scholar
Wisely, S. M., Ososky, J. J., & Buskirk, S. W. (2002). Morphological changes to black-footed ferrets (Mustela nigripes) results from captivity. Canadian Journal of Zoology, 80, 15621568.Google Scholar
Wisely, S. M., Ryder, O. A., Santymire, R. M., Engelhardt, J. F., & Novak, B. J. (2015). A road map for 21st century genetic restoration: Gene pool enrichment of the black-footed ferret. Journal of Heredity, 106(5), 581592.Google Scholar
Wisely, S. M., Santymire, R. M., Livieri, T. M., Marinari, P. E., Kreeger, J. S., Wildt, D. E. et al. (2005). Environment influences morphology and development for in situ and ex situ populations of the black-footed ferret (Mustela nigripes). Animal Conservation, 8, 321328.Google Scholar
Wolf, K. N., Wildt, D. E., Vargas, A., Marinari, P. E., Kreeger, J. S., Ottinger, M. A. et al. (2000). Age dependent changes in sperm production, semen quality and testicular volume in black-footed ferrets (Mustela nigripes). Biology of Reproduction, 63, 179187.Google Scholar
Wolf, K. N., Wildt, D. E., Vargas, A., Marinari, P. E., Ottinger, M. A., & Howard, J. G. (2000). Reproductive inefficiency in male black-footed ferrets (Mustela nigripes). Zoo Biology, 19, 517528.Google Scholar
Zhao, R.-B., Zhou, C.-Y., Lu, Z.-X., Hu, P., Liu, J.-Q., Tan, W.-W. et al. (2016). The complete mitochondrial genome of black-footed ferret, Mustela nigripes (Mustela, Mustelinae). Mitochondrial DNA Part A, 27(3), 15951596.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×