Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-04T21:32:29.989Z Has data issue: false hasContentIssue false

Part IV - Basic Research

Published online by Cambridge University Press:  21 December 2018

Allison B. Kaufman
Affiliation:
University of Connecticut
Meredith J. Bashaw
Affiliation:
Franklin and Marshall College, Pennsylvania
Terry L. Maple
Affiliation:
Jacksonville Zoo and Gardens
Get access
Type
Chapter
Information
Scientific Foundations of Zoos and Aquariums
Their Role in Conservation and Research
, pp. 475 - 645
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bercovitch, F. B., Tobey, J. R., Hamlin Andrus, C., & Doyle, L. (2006). Mating patterns and reproductive success in captive koalas, Phascolarctos cinereus. Journal of Zoology, 270, 512516.Google Scholar
Ellis, W., Melzer, A., & Bercovitch, F. (2009). Spatiotemporal dynamics of habitat use by koalas: The checkerboard model. Behavioral Ecology and Sociobiology, 63(8), 11811188.Google Scholar
Ellis, W., Bercovitch, F., FitzGibbon, S., Roe, P., Wimmer, J., Melzer, A., & Wilson, R. (2011). Koala bellows and their association with the spatial dynamics of free-ranging koalas. Behavioral Ecology, 22(2), 372377.Google Scholar
Ellis, W., FitzGibbon, S., Pye, G., Whipple, B., Barth, B., Johnston, S., … Bercovitch, F. (2015). The role of bioacoustic signals in koala sexual selection: Insights from seasonal patterns of associations revealed with GPS-proximity units. PLoS One, 10(7), e0130657.Google Scholar
Ellis, W. A., Hale, P. T., & Carrick, F. (2002). Breeding dynamics of koalas in open woodlands. Wildlife Research, 29, 1925.Google Scholar
Ellis, W. A. H., Melzer, A., Carrick, F. N., & Hasegawa, M. (2002). Tree use, diet and home range of the koala (Phascolarctos cinereus) at Blair Athol, central Queensland. Wildlife Research, 29, 303311.Google Scholar
Ellis, W., Bercovitch, F., FitzGibbon, S., Melzer, A., de Villiers, D., & Dique, D. (2010). Koala birth seasonality and sex ratios across multiple sites in Queensland, Australia. Journal of Mammology, 91(1), 177182.Google Scholar
Higgins, A. L., Bercovitch, F. B., Tobey, J. R., & Hamlin Andrus, C. (2011). Dietary specialization and eucalyptus species preferences in Queensland koalas (Phascolarctos cinereus). Zoo Biology, 30, 5258.Google Scholar
Kjeldsen, S. R., Zenger, K. R., Leigh, K., Ellis, W., Tobey, J., Phalen, D., … Raadsma, H. W. (2016). Genome-wide SNP loci reveal novel insights into koala (Phascolarctos cinereus) population variability across its range. Conservation Genetics, 17, 337353.Google Scholar
Martin, R. & Handasyde, K. A. (1999). The Koala: Natural History, Conservation and Management. Sydney: University of New South Wales Press.Google Scholar
Matthews, A., Ruykys, L., Ellis, B., FitzGibbon, S., Lunney, D., Crowther, M. S., … Wiggins, N. (2013). The success of GPS collar deployments on mammals in Australia. Australian Mammalogy, 35, 6583.Google Scholar
Mitchell, P. (1990). Social behaviour and communication of koalas. In Lee, A. K., Handasyde, K. A., & Sanson, G. D. (Eds.), Biology of the Koala (pp. 151170). Chipping Norton: Surrey Beatty.Google Scholar
Smith, M. (1980). Behaviour of the koala, Phascolarctos cinereus (Goldfuss), in captivity. III. Vocalizations. Australian Wildlife Research, 7, 1334.Google Scholar
Takahashi, M., Tobey, J. R., & Andrus, C. H. (2008). Behavior of female koalas (Phascolarctos cinereus adustus) in a new exhibit at San Diego Zoo. Animal Keepers’ Forum, 35(12), 509514.Google Scholar
Takahashi, M., Tobey, J. R., Pisacane, C. B., & Andrus, C. H. (2009). Evaluating the utility of an accelerometer and urinary hormone analysis as indicators of estrus in a zoo-housed koala (Phascolarctos cinereus). Zoo Biology, 28, 5968.CrossRefGoogle Scholar
Thompson, V. D. & Fadem, B. H. (1989). Scent marking in the koala (Phascolarctos cinerus): Related behavior and sex differences. Der Zoologische Garten, 59, 157165.Google Scholar
Tobey, J. & Hamlin Andrus, C. (2006). Playing matchmaker for koalas. Zoonooz, 79(5), 89.Google Scholar
Tobey, J. R., Hamlin Andrus, C., Doyle, L., Thompson, V. D., & Bercovitch, F. B. (2006). Maternal effort and joey growth in koalas, Phascolarctos cinereus. Journal of Zoology, 268, 423431.Google Scholar
Tobey, J. R., Nute, T., & Bercovitch, F. B. (2009). Age and seasonal changes in the semiochemicals of the sternal gland secretions of male koalas (Phascolarctos cinereus). Australian Journal of Zoology, 57(2), 111118.CrossRefGoogle Scholar

References

Anderson, U. S., Stoinski, T. S., Bloomsmith, M. A., Marr, M. J., Smith, A. D., & Maple, T. L. (2005). Relative numerousness judgment and summation in young and old western lowland gorillas. Journal of Comparative Psychology, 119, 285295.Google Scholar
Anderson, U. S., Stoinski, T. S., Bloomsmith, M. A., & Maple, T. L. (2007). Relative numerousness judgment and summation in young, middle-aged, and older adult orangutans (Pongo pygmaeus ablii and Pongo pygmaeus pygmaeus). Journal of Comparative Psychology, 121, 111.Google Scholar
Bacon, E. S. (1980). Curiosity in the American black bear. Bears: Their Biology and Management, 4, 153157.Google Scholar
Bacon, E. S. & Burghardt, G. M. (1976). Learning and color discrimination in the American black bear. Bears: Their Biology and Management, 1, 2736.Google Scholar
Bacon, E. S. & Burghardt, G. M. (1983). Food preference testing of captive black bears. Bears: Their Biology and Management, 5, 102105.Google Scholar
Baker, J. M., Shivik, J., & Jordan, K. E. (2011). Tracking of food quantity by coyotes (Canis latrans). Behavioral Processes, 88, 7275.Google Scholar
Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M., & Holekamp, K. E. (2016). Brain size predicts problem-solving ability in mammalian carnivores. Proceedings of the National Academy of Sciences, 113(9), 25322537.Google Scholar
Benson-Amram, S., Heinen, V. K., Dryer, S. L., & Holekamp, K. E. (2011). Numerical assessment and individual call discrimination by wild spotted hyaenas, Crocuta crocuta. Animal Behavior, 82, 743752.Google Scholar
Beran, M. J. (2001). Summation and numerousness judgments of sequentially presented sets of items by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 115, 181191.Google Scholar
Beran, M. J., Parrish, A. E., Perdue, B. M., & Washburn, D. A. (2014). Comparative cognition: past, present, and future. International Journal of Comparative Psychology, 27(1), 3.Google Scholar
Bicca-Marques, J. L. C. S. (2005). The win-stay rule in foraging decisions by free-ranging titi monkeys (Callicebus cupreus cupreus) and tamarins (Saguinus imperator imperator and Saguinus fuscicollis weddelli). Journal of Comparative Psychology, 119(3), 343351.Google Scholar
Bowler, M. T., Buchanan-Smith, H. M., & Whiten, A. (2012). Assessing public engagement with science in a university primate research centre in a national zoo. PLoS One, 7(4), e34505.Google Scholar
Boysen, S. T., Bernston, G. G., & Mukobi, K. L. (2001). Size matters: Impact of item size and quantity on array choice by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 115, 106110.CrossRefGoogle ScholarPubMed
Call, J. (2000) Estimating and operating on discrete quantities in orangutans (Pongo pygmaeus). Journal of Comparative Psychology, 114, 136147.Google Scholar
Carter, M., Webber, S., & Sherwen, S. (2015). Naturalism and ACI: Augmenting zoo enclosures with digital technology. In Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology (p. 61). New York: Assocation for Computing Machinery.Google Scholar
Clay, A. W., Perdue, B. M., Gaalema, D. E., Dolins, F. L., & Bloomsmith, M. A. (2011). The use of technology to enhance zoological parks. Zoo Biology, 30(5), 487497.Google Scholar
Drayton, L. A., Brosnan, S. F., Carrigan, J., & Stoinski, T. S. (2013). Endowment effects in gorillas (Gorilla gorilla). Journal of Comparative Psychology, 127(4), 365.Google Scholar
Dumont, B. & Petit, M. (1998). Spatial memory of sheep at pasture. Applied Animal Behaviour Science, 60(1), 4353.Google Scholar
Dungl, E., Schratter, D., & Huber, L. (2008). Discrimination of face-like patterns in the giant panda (Ailuropoda melanoleuca). Journal of Comparative Psychology, 122(4), 335.Google Scholar
Evans, T. A., Beran, M. J., Harris, E. H., & Rice, D. (2009). Quantity judgments of sequentially presented food items by capuchin monkeys (Cebus apella). Animal Cognition, 12, 97105.Google Scholar
Falk, J. H., Reinhard, E. M., Vernon, C. L., Bronnenkant, K., Deans, N. L., & Heimlich, J. E., (2007). Why Zoos and Aquariums Matter: Assessing the Impact of a Visit. Silver Spring, MD: Association of Zoos and Aquariums.Google Scholar
Gaulin, S. J. C. & Fitzgerald, R. W. (1986). Sex differences in spatial ability: An evolutionary hypothesis and test. American Naturalist, 127, 7488.Google Scholar
Gaulin, S. J. C. & Fitzgerald, R. W. (1989). Sexual selection for spatial-learning ability. Animal Behavior, 37, 322331.Google Scholar
Gazes, R. P., Diamond, R. F., Hope, J. M., Caillaud, D., Stoinski, T. S., & Hampton, R. R. (2017). Spatial representation of magnitude in gorillas and orangutans. Cognition, 168, 212219.Google Scholar
Goldstein, E. (2011). Cognitive Psychology: Connecting Mind, Research, and Everyday Experience (3rd edn.). Stamford, CT: Wadsworth Cengage Learning.Google Scholar
Gómez-Laplaza, L. M. & Gerlai, R. (2011). Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber’s law. Animal Cognition, 14, 19.Google Scholar
Gray, J. A. & Buffery, A. W. (1971). Sex differences in emotional and cognitive behaviour in mammals including man: adaptive and neural bases. Acta Psychologica, 35, 89111.Google Scholar
Heinzen, T. E., Lilienfeld, S. O., & Nolan, S. A. (2015). Clever Hans: What a horse can teach us about self deception. Skeptic (Altadena, CA), 20(1), 1018.Google Scholar
Heras, M. & Ruiz-Mallén, I. (2017). Responsible research and innovation indicators for science education assessment: How to measure the impact? International Journal of Science Education, 39(18), 24822507.Google Scholar
Hopper, L. M. (2017). Cognitive research in zoos. Current Opinion in Behavioral Sciences, 16, 100110.Google Scholar
Johnson-Ulrich, Z., Vonk, J., Humbyrd, M., Crowley, M., Wojtkowski, E., Yates, F., & Allard, S. (2016). Picture object recognition in an American black bear (Ursus americanus). Animal Cognition, 19, 12371242.Google Scholar
Jones, C. M., Braithwaite, V. A., & Healy, S. A. (2003). The evolution of sex differences in spatial ability. Behavioral Neuroscience, 117, 403411.Google Scholar
Kelling, A. S., Snyder, R. J., Marr, M. J., Bloomsmith, M. A., Gardner, W., & Maple, T. L. (2006). Color vision in the giant panda (Ailuropoda melanoleuca). Learning & Behavior, 34(2), 154161.Google Scholar
Lipp, H., Pleskacheva, M. G., Gossweiler, H., Ricceri, L., Smirnova, A. A., Garin, N. N., … Dell’Omo, G. (2001). A large outdoor radial maze for comparative studies in birds and mammals. Neuroscience and Biobehavioral Reviews, 25, 8399.Google Scholar
MacDonald, S. E. (1994). Gorilla’s (Gorilla gorilla gorilla) spatial memory in a foraging task. Journal of Comparative Psychology, 108, 107113.Google Scholar
MacDonald, S. E. & Agnes, M. M. (1999). Orangutan (Pongo pygmaeus abelii) spatial memory and behavior in a foraging task. Journal of Comparative Psychology, 113(2), 213217.Google Scholar
MacDonald, S. E., Pang, J. C., & Gibeault, S. (1994). Marmoset (Callithrix jacchus jacchus) spatial memory in a foraging task: Win-stay versus win-shift strategies. Journal of Comparative Psychology, 108(4), 328334.Google Scholar
MacDonald, S. E. & Ritvo, S. (2016). Comparative cognition outside the laboratory. Comparative Cognition & Behavior Reviews, 11, 4961.Google Scholar
MacDonald, S. E. & Wilkie, D. M. (1990). Yellow-nosed monkeys’ (Cercopithecus ascanius whitesidei) spatial memory in a simulated foraging environment. Journal of Comparative Psychology, 104(4), 382387.Google Scholar
Maple, T. (2016). Professor in the Zoo: Designing the Future for Wildlife in Human Care. Fernandina Beach, FL: Red Leaf Press.Google Scholar
Maple, T. L. & Perdue, B. M. (2013). Zoo Animal Welfare. Berlin: Springer.Google Scholar
Miller, L. J. & Hill, H. M. (2014). Future directions in comparative psychology: An introduction to the special issue. International Journal of Comparative Psychology, 27(1), 12.Google Scholar
Olthof, A. & Roberts, W. A. (2000). Summation of symbols by pigeons (Columba livia): The important number and mass of reward items. Journal of Comparative Psychology, 114, 158166.Google Scholar
Perdue, B. M. (2016). The effect of computerized testing on sun bear behavior and enrichment preferences. Behavioral Sciences, 6(4), 19.Google Scholar
Perdue, B. M., Beran, M. J., & Washburn, D. A. (2017). A computerized testing system for primates: Cognition, welfare and the Rumbaughx. Behavioural Processes, in press.Google Scholar
Perdue, B. M., Clay, A. W., Gaalema, D. E., Maple, T. L., & Stoinski, T. S. (2012). Technology at the zoo: The influence of a touchscreen computer on orangutans and zoo visitors. Zoo Biology, 31(1), 2739.Google Scholar
Perdue, B. M., Snyder, R. J., Pratte, J., Marr, M. J., & Maple, T. L. (2009). Spatial memory recall in the giant panda (Ailuropoda melanoleuca). Journal of Comparative Psychology, 123(3), 275279.Google Scholar
Perdue, B. M., Snyder, R. J., Zhang, Z., Marr, M. J., & Maple, T. L. (2011). Sex differences in spatial ability: A test of the range size hypothesis in the order Carnivora. Biology Letters, 7(3), 380.Google Scholar
Perdue, B. M., Stoinski, T. S., & Maple, T. L. (2012). Using technology to educate zoo visitors about conservation. Visitor Studies, 15(1), 1627.Google Scholar
Perdue, B. M., Talbot, C. F., Stone, A. M., & Beran, M. J. (2012). Putting the elephant back in the herd: Elephant relative quantity judgments match those of other species. Animal Cognition, 15(5), 955961.Google Scholar
Perusse, R. & Rumbaugh, D. M. (1990). Summation in chimpanzees (Pan troglodytes): Effects of amounts, number of wells, and finer ratios. International Journal of Primatology, 11, 425437.Google Scholar
Pisa, P. E. & Agrillo, C. (2009). Quantity discrimination in felines: A preliminary investigation of the domestic cat (Felis silvestris catus). Journal of Ethology, 27, 289293.Google Scholar
Ross, S. R. (2009). Sequential list-learning by an adolescent lowland gorilla (Gorilla gorilla gorilla) using an infrared touchframe apparatus. Interaction Studies, 10(2), 115129.Google Scholar
Ross, S. R. & Gillespie, K. L. (2009). Influences on visitor behaviour at a modern immersive zoo exhibit. Zoo Biology, 28, 462472.Google Scholar
Schaller, G. B., Jinchu, H., Wenshi, P., & Jing, Z. (1985). The Giant Pandas of Wolong. Chicago, IL: University of Chicago PressGoogle Scholar
Sherry, D. F. & Hampson, E. (1997). Evolution and the hormonal control of sexually-dimorphic spatial abilities in humans. Trends in Cognitive Science, 1, 5056.Google Scholar
Stoinski, T. S. & Whiten, A. (2003). Social learning by orangutans (Pongo abelii and Pongo pygmaeus) in a simulated food-processing task. Journal of Comparative Psychology, 117(3), 272.Google Scholar
Swaisgood, R. R., Lindburg, D. G., & Zhou, X. (1999). Giant pandas discriminate individual differences in conspecific scent. Animal Behavior, 57(5), 10451053.Google Scholar
Tanaka, M. (2016). Comparative cognition in zoo animals. Japanese Journal of Animal Psychology, 66(1), 5357.Google Scholar
Tarou, L. R., Snyder, R. J., & Maple, T. L. (2004). Spatial memory in the giant panda. In Lindburg, D. & Baragona, K. (Eds.), Giant Pandas: Biology and Conservation (pp. 101105). Berkeley, CA: University of California Press.Google Scholar
Terrell, D. F. & Thomas, R. K. (1990). Number-related discrimination and summation by squirrel monkeys (Saimiri sciureus sciureus and S. boliviensus boliviensus) on the basis of the number of sides of polygons. Journal of Comparative Psychology, 104, 238247.Google Scholar
Thomas, R. & Chase, L. (1980). Relative numerousness judgments by squirrel monkeys. Bulletin of the Psychonomic Society, 16, 7982Google Scholar
Uller, C., Jaeger, R., Guidry, G., & Martin, C. (2003). Salamanders (Plethodon cinereus) go for more: Rudiments of number in an amphibian. Animal Cognition, 6, 105112.Google Scholar
Vonk, J. (2016). Advances in animal cognition. Behavioral Sciences, 6(4), 27.Google Scholar
Vonk, J. & Beran, M. J. (2012). Bears “count” too: Quantity estimation and comparison in black bears, Ursus americanus. Animal Behaviour, 84(1), 231238.Google Scholar
Vonk, J., Jett, S. E., & Mosteller, K. W. (2012). Concept formation in American black bears, Ursus americanus. Animal Behaviour, 84(4), 953964.Google Scholar
Vonk, J. & Johnson-Ulrich, Z. (2014). Social and nonsocial category discriminations in a chimpanzee (Pan troglodytes) and American black bears (Ursus americanus). Learning & Behavior, 42(3), 231.CrossRefGoogle Scholar
Waller, B. M., Peirce, K., Mitchell, H., & Micheletta, J. (2012). Evidence of public engagement with science: Visitor learning at a zoo-housed primate research centre. PLoS One 7(9), e44680.Google Scholar
Watters, J. V. (2014). Searching for behavioral indicators of welfare in zoos: Uncovering anticipatory behavior. Zoo Biology, 33(4), 251256.Google Scholar
Webber, S., Carter, M., Smith, W., & Vetere, F. (2017). Interactive technology and human–animal encounters at the zoo. International Journal of Human–Computer Studies, 98, 150168.Google Scholar
Whitehouse, J., Waller, B. M., Chanvin, M., Wallace, E. K., Schel, A. M., Peirce, K., … & Slocombe, K. (2014). Evaluation of public engagement activities to promote science in a zoo environment. PLoS One, 9(11), e113395.Google Scholar
Zamisch, V. & Vonk, J. (2012). Spatial memory in captive American black bears (Ursus americanus). Journal of Comparative Psychology, 126(4), 372387.Google Scholar

References

Ames, M. H. (1991). Saving some cetaceans may require breeding in captivity: Work on bottlenose dolphins may be applied to the baiji. BioScience, 41, 746749.Google Scholar
Bauer, G. B., & Johnson, C. M. (1994). Trained motor imitation by bottlenose dolphins (Tursiops truncatus). Perceptual and Motor Skills, 79, 13071315.Google Scholar
Bossart, G. D. (2006). Marine mammals as sentinel species for oceans and human health. Oceanography, 19(2), 134137.Google Scholar
Bossart, G. D. (2011). Marine mammals as sentinel species for oceans and human health. Veterinary Pathology, 48(3), 676690.Google Scholar
Bossart, G. D., Ghim, S. J., Rehtanz, M., & Goldstein, J. (2005). Orogenital neoplasia in Atlantic bottlenose dolphins (Tursiops truncatus). Aquatic Mammals, 31(4), 473.Google Scholar
Bruck, J. N. (2013). Decades-long social memory in bottlenose dolphins. Proceedings of the Royal Society B: Biological Sciences, 280(1768), 20131726.Google Scholar
Caldwell, M. C., & Caldwell, D. K. (1965). Individualized whistle contours in bottle-nosed dolphins (Tursiops truncatus). Nature, 207, 434435.Google Scholar
Caldwell, M. C., & Caldwell, D. K. (1972). Vocal mimicry in the whistle mode by an Atlantic bottlenosed dolphin. Cetology, 9, 18.Google Scholar
Champagne, C. D., Kellar, N. M., Crocker, D. E., Wasser, S. K., Booth, R. K., Trego, M. L., & Houser, D. S. (2017). Blubber cortisol qualitatively reflects circulating cortisol concentrations in bottlenose dolphins. Marine Mammal Science, 33(1), 134153.Google Scholar
Cockcroft, V. G., & Ross, G. J. B. (1990). Observations on the early development of a captive bottlenosed dolphin calf. In Leatherwood, S. & Reeves, R. R. (Eds.), The Bottlenose Dolphin (pp. 461478). New York: Academic Press.Google Scholar
Dudzinski, K. M., Gregg, J. D., Ribic, C. A., & Kuczaj, S. A. (2009). A comparison of pectoral fin contact between two different wild dolphin populations. Behavioural Processes, 80(2), 182190.Google Scholar
Dunn, L. J., Buck, J. D., & Robeck, T. R. (2001). Bacterial diseases of cetaceans and pinnipeds. In Dierauf, L. A. & Gulland, F. M. D. (Eds.), Handbook of Marine Mammal Medicine: Health, Disease, and Rehabilitation (pp. 309355). Boca Raton, FL: CRC Press.Google Scholar
Flavell, J. (1976). Metacognition aspects of problem solving. In Resnick, L. (Ed.), The Nature of Intelligence (pp. 231235). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Gaydos, J. K., Balcomb, K. C., Osborne, R. W., & Dierauf, L. (2004). Evaluating potential infectious disease threats for southern resident killer whales, Orcinus orca: A model for endangered species. Biological Conservation, 117(3), 253262.Google Scholar
Gallup, G. G. (1995). Mirrors, minds, and cetaceans. Consciousness and Cognition, 4, 226228.Google Scholar
Geraci, F. J., Palmer, N. C., & St. Aubin, D. J. (1987). Tumors in cetaceans: Analysis and new findings. Canadian Journal of Fish and Aquatic Science, 44, 12891300.Google Scholar
Harley, H. E. (2013). Consciousness in dolphins? A review of recent evidence. Journal of Comparative Physiology A, 199(6), 565582.Google Scholar
Herman, L. M., & Gordon, J. A. (1974). Auditory delayed matching in the bottlenosed dolphin. Journal of the Experimental Analysis of Behavior, 21, 1926.Google Scholar
Herman, L. M., Richards, D. G., & Wolz, J. P. (1984). Comprehension of sentences by bottlenose dolphins. Cognition, 16, 129219.Google Scholar
Houser, D. S., Yeates, L. C., & Crocker, D. E. (2011). Cold stress induces an adrenocortical response in bottlenose dolphins (Tursiops truncatus). Journal of Zoo and Wildlife Medicine, 42(4), 565571.Google Scholar
Johnson, C. M., Sullivan, J., Buck, C. L., Trexel, J., & Scarpuzzi, M. (2014). Visible and invisible displacement with dynamic visual occlusion in bottlenose dolphins (Tursiops spp). Animal Cognition, 18(1), 179193.Google Scholar
King, S., & Janik, V. M. (2013). Bottlenose dolphins can use learned vocal labels to address each other. Proceedings of the National Academy of Sciences, 110(32), 1321613221.Google Scholar
King, D. P., Aldridge, B. M., Kennedy-Stoskopf, S., & Stott, J. L. (2001). Immunology. In Dierauf, L. A. & Gulland, F. M. D. (Eds.), CRC Handbook of Marine Mammal Medicine, 2nd edn. (pp 237252). Boca Raton, FL: CRC Press.Google Scholar
King, S., Harley, H. E., & Janik, V. M. (2014). The role of signature whistle matching in bottlenose dolphins (Tursiops truncatus). Animal Behaviour, 96, 7986.Google Scholar
Klinowska, M., & Brown, S. (1986). A Review of Dolphinaria. London: Department of the Environment.Google Scholar
Kuczaj, S. A., & Eskelinen, H. C. (2014). The “creative dolphin” revisited: What dolphins do when asked to vary their behavior. Animal Behavior and Cognition, 1(1), 6575.Google Scholar
Kuczaj, S. A. II, Eskelinen, H. C., Jones, B. L., & Borger-Turner, J. L. (2015). Gotta go, mom’s calling: Dolphin (Tursiops truncatus) mothers use individually distinctive acoustic signals to call their calves. Animal Behavior and Cognition, 2(1), 8895.Google Scholar
Kuczaj, S. A. II, Gory, J. D., & Xitco, M. J. (2009). How intelligent are dolphins? A partial answer based on their ability to plan their behavior when confronted with novel problems. Japanese Journal of Animal Psychology, 59, 99115.Google Scholar
Kuczaj, S. A. II, Makecha, R. N., Trone, M., Paulos, R. D., & Ramos, J. A. (2006). The role of peers in cultural transmission and cultural innovation: Evidence from dolphin calves. International Journal of Comparative Psychology, 19, 223240.Google Scholar
Kuczaj, S. A. II, Winship, K. A., & Eskelinen, H. C. (2015). Bottlenose dolphins (Tursiops truncatus) can cooperate when solving a novel task. Animal Cognition, 18, 543550.Google Scholar
Lyamin, O., Pryaslova, J., Lance, V., & Siegel, J. (2005). Continuous activity in cetaceans after birth. Nature, 435(30), 1177.Google Scholar
Mann, J., & Smuts, B. (1998). Natal attraction: Allomaternal care and mother-infant separations in wild bottlenose dolphins. Animal Behavior, 55, 10971113.Google Scholar
McCown, B., & Reiss, D. (1991). Maternal disciplinary behaivour towards captive-born infant bottlenose dolphin (Tursiops truncates): Harsh low frequency signals during mother–infant interations. Presented at Ninth Biennial Conference on the Biology of Marine Mammals. December 5–9, Chicago, IL.Google Scholar
Miller, R. M., & Ridgway, S. H. (1963). Clinical experiences with dolphins and whales. Small Animal Clinician, 3(4), 189193.Google Scholar
Monreal-Palowsky, T., Carbajal, A., Tallo-Parra, O., Sabés-Alsina, M., Monclús, L., Almunia, J., Fernández-Bellon, H., & Lopez-Bejar, M. (2017). Daily salivary cortisol levels in response to stress factors in captive common bottlenose dolphins (Tursiops truncatus): A potential welfare indicator. Veterinary Record, 180, 593.Google Scholar
Mukhametov, L. M., Supin, A. Y., & Polyakova, I. G. (1977). Interhemispheric asymmetry of the electroencephalographic sleep pattern in dolphins. Brain Research, 134, 581584.Google Scholar
Noren, S. R. (2007). Infant carrying behavior in dolphins: Costly parental care in an aquatic enticonment. Functional Ecology, 22(2), 284288.Google Scholar
Norris, K. S., Prescott, J. H., Asa-Dorian, P., & Perkins, P. (1961). An experimental demonstration of echolocation behavior in the porpoise, Tursiops truncates (Montagu). Biological Bulletin, 120, 163176.Google Scholar
Ostman, J. (1991). Changes in aggressive and sexual behavior between two male bottlenose dolphins (Tursiops truncatus) in a captive colony. In Pryor, K. & Norris, K. S. (Eds.), Dolphin Societies: Discoveries and Puzzles (pp. 305317). Berkeley, CA: University of California Press.Google Scholar
Overstrom, N. A. (1983). Association between burst-pulse sounds and aggressive behavior in captive Atlantic bottlenosed dolphins (Tursiops truncatus). Zoo Biology, 2, 93103.Google Scholar
Pack, A. A., & Herman, L. M. (2004). Dolphins (Tursiops truncatus) comprehend the referent of both static and dynamic human gazing and pointing in an object choice task. Journal of Comparative Psychology, 118, 160171.Google Scholar
Pack, A. A., & Herman, L. M. (2006). Dolphin social cognition and joint attention: Our current understanding. Aquatic Mammals, 32, 443460.Google Scholar
Peddemors, V. M. (1987). Postnatal development and associated behaviour of captive bottlenosed dolphins (Tursiops spp.). MSc. thesis, University of Natal.Google Scholar
Peddemors, V. M., Forthergill, M., & Crockcroft, V. G. (1992). Feeding and growth in a captive-born bottlenose dolphin Turisops truncates. South African Journal of Zoology, 27, 7480.Google Scholar
Perelberg, A., Veit, F., van der Woude, S. E., Donio, S., & Shashar, N. (2010). Studying dolphin behavior in a semi-natural marine enclosure: Couldn't we do it all in the wild? International Journal of Comparative Psychology, 23, 625643.Google Scholar
Pryor, K. (1975). Lads before the Wind. New York: Harper & Row.Google Scholar
Pryor, K. W., Haag, R., & O’Reilly, J. (1969). The creative porpoise: Training for novel behavior. Journal of the Experimental Analysis of Behavior, 12, 653661.Google Scholar
Rehtanz, M., Ghim, S. J., McFee, W., Doescher, B., Lacave, G., Fair, P. A., … Jenson, A. B. (2010). Papillomavirus antibody prevalence in free-ranging and captive bottlenose dolphins (Tursiops truncatus). Journal of Wildlife Diseases, 46(1), 136145.Google Scholar
Reiss, D., & McCowan, B. (1993). Spontaneous vocal mimicry and production by bottlenose dolphins. Journal of Comparative Psychology, 107(3), 301312.Google Scholar
Ridgway, S. H., (1972) Mammals of the Sea: Biology and Medicine. Springfield, IL: Charles C. Thomas.Google Scholar
Ridgway, S. H., & Benirschke, K. (1977). Breeding Dolphins: Present Status, Suggestions for the Future. Washington, DC: US Marine Mammal Commission.Google Scholar
Ridgway, S. H., & Carder, D. A. (1997). Hearing deficits measured in some Tursiops truncatus, and discovery of a deaf/mute dolphin. Journal of Acoustic Society of America, 101, 590594.Google Scholar
Ridgway, S. H., Carter, D. A., Smith, R. R., Kamolnick, T., & Schlundt, C. E. (1997). Behavioral Responses and Temporary Shift in Masked Hearing Thresholds of Bottlenose Dolphins, Tursiops truncatus, to 1-Second Tones of 141 to 201 dB re 1 micro Pa. Technical Report No. 1751. San Diego, CA: Naval Command, Control and Ocean Surveillance Centre.Google Scholar
Riedman, M. L. (1982). The evolution of alloparental care and adoption in mammals and birds. The Quarterly Review of Biology, 57, 405435.Google Scholar
Robeck, T. R., Atkinson, S., & Brook, F. M. (2001). Reproduction. In Dierauf, L. A. & Gulland, F. M. D. (Eds.), Handbook of Marine Mammal Medicine: Health, Disease and Rehabilitation (pp. 193236). Boca Raton, FL: CRC Press.Google Scholar
Rohr, J. J., Fish, F. E., & Gilpatrick, J. W. (2002). Maximum swim speeds of captive and free‐ranging delphinids: Critical analysis of extraordinary performance. Marine Mammal Science, 18(1), 119.Google Scholar
Samuels, A., & Gifford, T. (1997). A quantitative assessment of dominance relations among bottlenose dolphins. Marine Mammal Science, 13(1), 7099.Google Scholar
Schivo, M., Aksenov, A. A., Yeates, L. C., Pasamontes, A., & Davis, C. E. (2013). Diabetes and the metabolic syndrome: possibilities of a new breath test in a dolphin model. Frontiers in Endocrinology, 4, 163.Google Scholar
St. Aubin, D. J. (2001). Endocrinology. In Dierauf, L. A. & Gulland, F. M. D. (Eds.), Handbook of Marine Mammal Medicine: Health, Disease and Rehabilitation (pp. 165192). Boca Raton, FL: CRC Press.Google Scholar
St. Aubin, D. J., & Dierauf, L. A. (2001). Stress in marine mammals. In Dierauf, L. A. & Gulland, F. M. D. (Eds.), Handbook of Marine Mammal Medicine: Health, Disease and Rehabilitation (pp. 253269). Boca Raton, FL: CRC Press.Google Scholar
Song, Z., Yue, R., Sun, Y., Liu, C., Khan, S. H., Li, C., Zhao, Y., Zhou, X., Yang, L., & Zhao, D. (2017). Fatal bacterial septicemia in a bottlenose dolphin Tursiops truncates caused by Streptococcus iniae. Diseases of Aquatic Organisms, 122(3), 195203.Google Scholar
Sweeney, J. C., & Reddy, M. L. (2001). Cetacean cytology. In Dierauf, L. A. & Gulland, F. M. D. (Eds.), CRC Handbook of Marine Mammal Medicine, 2nd edn. (pp. 437446). Boca Raton, FL: CRC Press.Google Scholar
Tyack, P. L. (1985). An optical telemetry device to identify which dolphin produces a sound. The Journal of the Acoustical Society of America, 78, 18921895.Google Scholar
Xitco, M. J., Gory, J. D., & Kuczaj, S. A. II (2001). Spontaneous pointing by bottlenose dolphins (Tursiops trucatus). Animal Cognition, 4, 115123.Google Scholar
Venn-Watson, S., Smith, C. R., Johnson, S., Daniels, R., & Townsend, F. (2010). Clinical relevance of urate nephrolithiasis in bottlenose dolphins Tursiops truncatus. Diseases of Aquatic Organisms, 89, 167177.Google Scholar
Wood, F. G. Jr. (1953). Underwater sound production and concurrent behavior of captive porpoises, Turisops truncates and Stenella plagiodon. Bulletin of Marine Science of the Gulf and Caribbean, 3(2), 120133.Google Scholar
Yeater, D., & Kuczaj, S. A. II (2010). Observational learning in wild and captive dolphins. International Journal of Comparative Psychology. 23(3), 379385.Google Scholar
Zappulli, V., Mazzaroil, S., Cavicchioli, L., Petterino, C., Bargelloni, L., & Castagnaro, M. (2005). Fatal necrotizing fasciitis and myositis in a captive common bottlenose dolphin (Tursiops truncatus) associated with Streptococcus agalactiae. Journal of Veterinary Diagnostic Investigation, 17, 617622.Google Scholar

References

Ancel, A., Beaulieu, M., & Gilbert, C. (2013). The different breeding strategies of penguins: A review. Comptes Rendus Biologies, 336, 112.Google Scholar
Astheimer, L. B. & Grau, C. R. (1985). The timing and energetic consequences of egg formation in the Adélie penguin. Condor, 87(2), 256268.Google Scholar
Conde, D. A., Colchero, F., Gusset, M., Pearce-Kelly, P., Byers, O., Flesness, N., Browne, R. K., & Jones, O. R. (2013). Zoos through the lens of the IUCN Red List: A global metapopulation approach to support conservation breeding programs. PLoS One, 8(12), e80311.Google Scholar
Dann, P., Norman, F. I., Cullen, J. M., Neira, F. J., & Chiaradia, A., (2000). Mortality and breeding failure of little penguins, Eudyptula minor, in Victoria, 1995–96, following a widespread mortality of pilchard, Sardinops sagax. Marine & Freshwater Research, 51(4), 355362.Google Scholar
Ford, J. K. B, Ellis, G. M., Olesiuk, P. F., & Balcomb, K. C. (2010). Linking killer whale survival and prey abundance: Food limitations in the oceans’ apex predator? Biology Letters, 6(1), 139142.Google Scholar
Ginther, O. J. (1990). Prolonged luteal activity in mares – A semantic quagmire. Equine Veterinary Journal, 22(3), 152156.Google Scholar
Hickie, B. E., Ross, P. S., Macdonald, R. W., & Ford, J. K. (2007). Killer whales (Orcinus orca) face protracted health risks associated with lifetime exposure to PCBs. Environmental Science & Technology, 41(18), 66136619.Google Scholar
Heezik, Y. V., Seddon, P. J., Cooper, J., & Plös, A. L. (1994). Interrelationships between breeding frequency, timing and outcome in king penguins Aptenodytes patagonicus: Are king penguins biennial breeders? Ibis, 136(3), 279284.Google Scholar
IUCN (2014). IUCN Red List of Threatened Species. Version 2. Retrieved from www.iucnredlist.org.Google Scholar
Kellar, N. M., Trego, M. L., Chivers, S. J., & Archer, F. I. (2013). Pregnancy patterns of pantropical spotted dolphins (Stenella attenuata) in the eastern tropical Pacific determined from hormonal analysis of blubber biopsies and correlations with the purse-seine tuna fishery. Marine Biology, 160(12), 31133124.Google Scholar
Kusuda, S., Kakizoe, Y., Kanda, K., Sengoku, T., Fukumoto, Y., Adachi, I., & Watanabe, Y. (2011). Ovarian cycle approach by rectal temperature and fecal progesterone in a female killer whale, Orcinus orca. Zoo Biology, 30(3), 285295.Google Scholar
Lundin, J. I., Dills, R. L., Ylitalo, G. M., Hanson, M. B., Emmons, C. K., Schorr, G. S., … Wasser, S. K. (2016). Persistent organic pollutant determination in killer whale scat samples: Optimization of a gas chromatography/mass spectrometry method and application to field samples. Archives of Environmental Contamination & Toxicology, 70(1), 919.CrossRefGoogle ScholarPubMed
Murphy, S., Barber, J. L., Learmonth, J. A., Read, F. L., Deaville, R., Perkins, M. W., … & Jepson, P. D. (2015). Reproductive failure in UK harbour porpoises Phocoena phocoena: Legacy of pollutant exposure? PLoS One, 10(7), e0131085.Google Scholar
O’Brien, J. K., Montano, G. A., Steinman, K. J., & Robeck, T. R. (2016). Zoo-based research for understanding penguin reproductive biology and maximizing population genetic diversity. Presented at: 9th International Penguin Congress, Cape Town, South Africa, September 5–9.Google Scholar
O’Brien, J. K. & Robeck, T. R. (2012). The relationship of maternal characteristics and circulating progesterone concentrations with reproductive outcome after natural breeding and artificial insemination, with and without ovulation induction, in the bottlenose dolphin (Tursiops truncatus). Theriogenology, 78(3), 469482.Google Scholar
O’Brien, J. K., Schmitt, T. L., Nollens, H. H., Dubach, J. M., & Robeck, T. R. (2016). Reproductive physiology of the female Magellanic penguins (Spheniscus magellanicus): Insights from the study of a zoological colony. General & Comparative Endocrinology, 225, 8194.Google Scholar
Olesiuk, P. F., Bigg, M. A., & Ellis, G. M. (1990). Life history and population dynamics of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. International Whaling Commission, 12, 209244.Google Scholar
Olesiuk, P. F., Ellis, G. M., & Ford, J. K. (2005). Life History and Population Dynamics of Northern Resident Killer Whales (Orcinus orca) in British Columbia. Nanaimo, British Columbia: Fisheries and Oceans Canada.Google Scholar
Richard, J. T., Robeck, T. R., Osborn, S. D., Naples, L., McDermott, A., LaForge, R., … Sartini, B. L. (2016). Testosterone and progesterone concentrations in blow samples are biologically relevant in belugas (Delphinapterus leucas). General & Comparative Endocrinology, 246, 183193.Google Scholar
Robeck, T. R., Atkinson, S., & Brook, F. M. (2001). Reproduction. In Dierauf, L. & Gulland, F. (Eds.), CRC Handbook of Marine Mammal Medicine, 2nd edn. (pp. 193236). Boca Raton, FL: CRC Press.Google Scholar
Robeck, T. R., Steinman, K. J., & O’Brien, J. K. (2016). Characterization and longitudinal monitoring of serum progestagens and estrogens during normal pregnancy in the killer whale (Orcinus orca). General & Comparative Endocrinology, 236, 8397.Google Scholar
Robeck, T. R., Steinman, K. J., & O’Brien, J. K. (2017). Characterization and longitudinal monitoring of serum androgens and glucocorticoids during normal pregnancy in the killer whale (Orcinus orca). General & Comparative Endocrinology, 247, 116129.Google Scholar
Robeck, T. R., Willis, K., Scarpuzzi, M. R., & O’Brien, J. K. (2015). Comparisons of life-history parameters between free-ranging and captive killer whale (Orcinus orca) populations for application toward species management. Journal of Mammalogy, 96(5), 10551070.Google Scholar
Sherley, R. B., Underhill, L. G., Barham, B. J., Barham, P. J., Coetzee, J. C., Crawford, R. J., … Upfold, L. (2013). Influence of local and regional prey availability on breeding performance of African penguins Spheniscus demersus. Marine Ecology Progress Series, 473, 291301.Google Scholar
Steinman, K. J., O’Brien, J. K., Richard, J., & Robeck, T. R. (2015). High non-specific binding in enzyme immunoassays used for the measurement of reproductive hormones in cetacean blow. Presented at: 6th Annual Conference of the International Society of Wildlife Endocrinology Berlin, Germany, October 12–14.Google Scholar
Steinman, K. J., Robeck, T. R., & O’Brien, J. K. (2016). Characterization of estrogens, testosterone and cortisol in normal bottlenose dolphin (Tursiops truncatus) pregnancy. General & Comparative Endocrinology, 226, 102112.Google Scholar
Trathan, P. N., García-Borboroglu, P., Boersma, D., Bost, C. A., Crawford, R. J., Crossin, G. T., … Wienecke, B. (2015). Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conservation Biology, 29(1), 3141.Google Scholar
Wasser, S. K., Lundin, J. I., Ayres, K., Seely, E., Giles, D., Balcomb, K., … Booth, R. (2017). Population growth is limited by nutritional impacts on pregnancy success in endangered southern resident killer whales (Orcinus orca). PLoS One, 12(6), e0179824.Google Scholar
Wells, R. S., Smith, C. R., Sweeney, J. C., Townsend, F. I., Fauquier, D. A., Stone, R., … Rowles, T. K. (2014). Fetal survival of common bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida. Aquatic Mammals, 40(3), 252259.Google Scholar

References

Ahlering, M. A. & Faaborg, J., 2006. Avian habitat management meets conspecific attraction: If you build it, will they come? The Auk, 123, 301312.Google Scholar
Altmann, M. (1956). Patterns of herd behavior in free-ranging elk of Wyoming, Cervus canadensis nelsoni. Zoologica, 41(2), 6571.Google Scholar
Amundin, A., Starkhammar, J., Evander, M., Almqvist, M., Lindström, K. & Persson, H. W. (2008). An echolocation visualization and interface system for dolphin research. The Journal of the Acoustical Society of America, 123, 11881194.Google Scholar
Anon. (Ed.) (1975). Research in Zoos and Aquariums. Washington, DC: National Academy of Sciences.Google Scholar
Antonacci, D., Norscia, I., & Palagi, E. (2010). Stranger to familiar: Wild Strepsirhines manage xenophobia by playing. PLoS One, 5(10), e13218.Google Scholar
Baldwin, J. D. & Baldwin, J. I. (1974). Exploration and social play in squirrel monkeys (Saimiri). American Zoologist, 14, 303315.Google Scholar
Berger, J. (1980). The ecology, structure and functions of social play in bighorn sheep (Ovis canadensis). Journal of Zoology, 192(4), 531542.Google Scholar
Brando, S. & Buchanan-Smith, H. M. (2017). The 24/7 approach to promoting optimal welfare for captive wild animals. Behavioural Processes. In press.Google Scholar
Buchanan-Smith, H. M. (2010). Environmental enrichment for primates in laboratories. Advances in Science and Research, 5, 4156.Google Scholar
Burghardt, G. M. (1975). Behavioral research on common animals in small zoos. In Anon. (Ed.), Research in Zoos and Aquariums (pp. 103133). Washington, DC: National Academy of Sciences.Google Scholar
Burghardt, G. M. (1984). On the origins of play. In Smith, P. K. (Ed.), Play in Animals and Humans (pp. 541). Oxford: Basil Blackwell.Google Scholar
Burghardt, G. M. (1988). Anecdotes and critical anthropomorphism. Behavioral and Brain Sciences, 11, 248249.Google Scholar
Burghardt, G. M. (1991). Cognitive ethology and critical anthropomorphism: A snake with two heads and hognose snakes that play dead. In Ristau, C. A. (Ed.), Cognitive Ethology: The Minds of Other Animals (pp. 5390). San Francisco, CA: Erlbaum.Google Scholar
Burghardt, G. M. (1996). Environmental enrichment or controlled deprivation? In Burghardt, G. M., Bielitski, J. T., Boyce, J. R., & Schaefer, D. O. (Eds.), The Well-Being of Animals in Zoo and Aquarium Sponsored Research (pp. 91101). Greenbelt, MD: Scientists Center for Animal Welfare.Google Scholar
Burghardt, G. M. (2005). The Genesis of Animal Play: Testing the Limits. Cambridge, MA: MIT Press.Google Scholar
Burghardt, G. M. (2011). Defining and recognizing play. In Pellegrini, A. D. (Ed.), The Oxford Handbook of the Development of Play (pp. 918). New York: Oxford University Press.Google Scholar
Burghardt, G. M. (2014). A brief glimpse at the long evolutionary history of play. Animal Behavior and Cognition, 1, 9098.Google Scholar
Burghardt, G. M., Bielitski, J. T., Boyce, J. R., & Schaefer, D. O. (Eds.) (1996). The Well-Being of Animals in Zoo and Aquarium Sponsored Research. Greenbelt, MA: Scientists Center for Animal Welfare.Google Scholar
Burghardt, G. M., Chiszar, D., Murphy, J. B., Romano, J., Walsh, T., & Manrod, J. (2002). Behavioral diversity, complexity, and play in Komodo dragons. In Murphy, J. B., Ciofi, C., de la Panouse, C., & Walsh, T. (Eds.), Komodo Dragons: Biology and Conservation (pp. 78117). Washington, DC: Smithsonian Press.Google Scholar
Burghardt, G. M., Ward, B., & Rosccoe, R. (1996). Problem of reptile play: Environmental enrichment and play behavior in a captive Nile soft-shelled turtle (Trionyx triunguis). Zoo Biology, 15, 223238.Google Scholar
Burleson, C. A., Pederson, R. W., Seddighi, S., DeBusk, L. E., Burghardt, G., M., & Cooper, M. A. (2016). Social play in juvenile hamsters alters dendritic morphology in the medial prefrontal cortex and attenuates effects of social stress in adulthood. Behavioral Neuroscience, 130, 437447.Google Scholar
Byers, J. A. (1985). Olfaction‐related behavior in collared peccaries. Ethology, 70(3), 201210.Google Scholar
Carrasco, L., Colell, M., Calvo, M., Abelló, M. T., Velasco, M., & Posada, S. (2009). Benefits of training/playing therapy in a group of captive lowland gorillas (Gorilla gorilla gorilla). Animal Welfare, 18, 919.Google Scholar
Cheney, D. L. (1978). The play partners of immature baboons. Animal Behaviour, 26, 10381050.Google Scholar
Cloutier, S., Panksepp, J., & Newberry, R. C. (2012). Playful handling by caretakers reduces fear of humans in the laboratory rat. Applied Animal Behaviour Science, 140, 161171.Google Scholar
Coe, J. (2011) Architects and Enrichment: How Can Zoo Architects Build-In Animal Enrichment Opportunities …And How Can Enrichment Specialists Help? Retrieved from www.joncoedesign.com/pub/PDFs/ArchitectsAndEnrichment2011.pdfGoogle Scholar
Cordoni, G., Norscia, I., Bobbio, M., & Palagi, E. (2018). Differences in play can illuminate differences in affiliation: A comparative study on chimpanzees and gorillas. PLoS One, 13(3), e0193096.Google Scholar
Csikszentmihalyi, M. (1991). Flow: The Psychology of Optimal Experience. New York: HarperCollins.Google Scholar
Darling, F. F. (1937). A Herd of Red Deer. Oxford: Oxford University Press.Google Scholar
Davis, H. & Balfour, D. (Eds.) (1992). The Inevitable Bond: Examining Scientist–Animal Interactions. Cambridge: Cambridge University Press.Google Scholar
Diamond, J. & Bond, A.B. (2003). A comparative analysis of social play in birds. Behaviour, 140, 10911115.Google Scholar
de Waal, F. B. M. (2016). Are We Smart Enough to Know How Smart Animals Are? New York: W. W. Norton.Google Scholar
Fagen, R. (1981). Animal Play Behavior. New York: Oxford University Press.Google Scholar
Fagot, J. & Bonté, E. (2010). Automated testing of cognitive performance in monkeys: Use of a battery of computerized test systems by a troop of semi-free-ranging baboons (Papio papio). Behavior Research Methods, 42, 507516.Google Scholar
Glickman, S. E. & Sroges, R. W. (1966). Curiosity in zoo animals. Behaviour, 26, 151188.Google Scholar
Graham, K. L. & Burghardt, G. M. (2010). Current perspectives on the biological study of play: Signs of progress. Quarterly Review of Biology, 85, 393418.Google Scholar
Hall, B. A., Melfi, V., Burns, A., McGill, D. M., & Doyles, R. E. (2018). Curious creatures: A multi-taxa investigation of responses to novelty in a zoo environment. PeerJ, 6, e4454.Google Scholar
Harlow, H. F. (1953). Mice, monkeys, men, and motives. Psychological Review, 60(1), 23.Google Scholar
Held, S. D. E. & Špinka, M. (2011). Animal play and animal welfare. Animal Behaviour, 81, 891899.Google Scholar
Henricks, T. S. (2014). Play as self realization. Toward a general theory of play. American Journal of Play, 6, 190213.Google Scholar
Henricks, T. S. (2015). Play and the Human Condition. Urbana-Champaign, IL: University of Illinois Press.Google Scholar
Hosey, G. & Melfi, V. (2012). Human–animal bonds between zoo professionals and the animals in their care. Zoo Biology, 31(1), 1326.Google Scholar
Jones, B. L. & Kuczaj, S. A. (2014). Beluga (Delphinapterus leucas) novel bubble helix play behavior. Animal Behavior and Cognition, 1, 206214.Google Scholar
Kim, L. C., Garner, J. P., & Millam, J. R. (2009). Preferences of orange-winged Amazon parrots (Amazona amazonica) for cage enrichment devices. Applied Animal Behaviour Science, 120(3), 216223.Google Scholar
Kotrschal, A. & Taborsky, B. (2010). Environmental change enhances cognitive abilities in fish. PLoS Biology, 8(4), e1000351.Google Scholar
Krebs, B. L., Marrin, D., Phelps, A., Krol, L., & Watters, J. V. (2018). Managing aged animals in zoos: A review and future directions. Animals, 8, 116.Google Scholar
Kuba, M. J., Byrne, R. A., Meisel, D. V., & Mather, J. A. (2006). When do octopuses play: Effects of repeated testing, object type, age, and food deprivation on object play in Octopus vulgaris. Journal of Comparative Psychology, 120, 184190.Google Scholar
Markowitz, H. (1982). Behavioral Enrichment in the Zoo. New York: Van Nostrand Reinhold.Google Scholar
Martin, P. & Caro, T. M. (1985). On the function of play and its role in behavioral development. Advances in the Study of Behavior, 15, 59103.Google Scholar
Mather, J. A. & Anderson, R. C. (1999). Exploration, play, and habituation in octopuses (Octopus dofleini). Journal of Comparative Psychology, 113, 333338.Google Scholar
Norscia, I. & Palagi, E. (2011). When play is a family business: Adult play, hierarchy, and possible stress reduction in common marmosets. Primates, 52(2), 101104.Google Scholar
Ono, K. A., Boness, D. J., & Oftedal, O. T. (1987). The effect of a natural environmental disturbance on maternal investment and pup behavior in the California sea lion. Behavioral Ecology and Sociobiology, 21, 109118.Google Scholar
Palagi, E. (2011). Playing at every age: Modalities and potential functions in non-human primates. In Pellegrini, A. D. (Ed.), Oxford Handbook of the Development of Play (pp. 7082). Oxford: Oxford University Press.Google Scholar
Palagi, E., Burghardt, G. M., Smuts, B., Cordoni, G., Dall’Olio, S., Fouts, H. N., … Pellis, S. M. (2016). Rough-and-tumble play as a window on animal communication. Biological Reviews, 91, 111127.Google Scholar
Paulos, R. D., Trone, M., & Kuczaj, S. A. (2010). Play in wild and captive cetaceans. International Journal of Comparative Psychology, 23, 701722.Google Scholar
Pellis, S. M. (1991). How motivationally distinct is play? A preliminary case study. Animal Behaviour, 42, 851853.Google Scholar
Pellis, S. M. & Burghardt, G. M. (2017). Play and exploration. In Call, J. (Ed.), Burghardt, G. M., Pepperberg, I. M., Snowdon, C. T., & Zentall, T. (Assoc. Eds.), APA Handbook of Comparative Psychology: Vol. 1. Basic Concepts, Methods, Neural Substrate, and Behavior (pp. 699722). Washington, DC: American Psychological Association.Google Scholar
Pellis, S. M. & Iwaniuk, A. N. (1999). The problem of adult play fighting: A comparative analysis of play and courtship in primates. Ethology, 105, 783806.Google Scholar
Pellis, S. M. & Iwaniuk, A. N. (2000). Adult–adult play in primates: Comparative analyses of its origin, distribution, and evolution. Ethology, 106, 10831104.Google Scholar
Pellis, S. M. & Pellis, V. C. (2009). The Playful Brain: Venturing to the Limits of Neuroscience. Oxford: Oneworld press.Google Scholar
Pellis, S. M. & Pellis, V. C. (2011). Rough-and-tumble play: Training and using the social brain. In Pellegrini, A. D. (Ed.), The Oxford Handbook of the Development of Play (pp. 245259). New York: Oxford University Press.Google Scholar
Pellis, S. M. & Pellis, V. C. (2018). “I am going to groom you”: Multiple forms of play fighting in gray mouse lemurs (Micricebus murinus). Journal of Comparative Psychology, 132, 615.CrossRefGoogle ScholarPubMed
Pellis, S. M., Pellis, V., Barrett, L., & Henzi, S. P. (2014). One good turn deserves another: Combat versus other functions of acrobatic maneuvers in the play fighting of vervet monkeys (Chlorocebus aethiops). Animal Behavior and Cognition, 1, 128143.Google Scholar
Poole, T. B. (1998). Meeting a mammal’s psychological needs: Basic principles. In Shepherdson, D. J. & Mellen, J. D. (Eds.), Second Nature: Environmental Enrichment for Captive Animals (pp. 8394). Washington, DC: Smithsonian Institution Press.Google Scholar
Rivas, J. & Burghardt, G. M. (2002). Crotalomorphism: A metaphor for understanding anthropomorphism by omission. In Bekoff, M., Allen, C., & Burghardt, G. M. (Eds.), The Cognitive Animal: Theoretical, Methodological, and Empirical Approaches (pp. 918). Cambridge, MA: MIT Press.Google Scholar
Sharpe, L. L. (2005a). Frequency of social play does not affect dispersal partnerships in wild meerkats. Animal Behavior, 70, 559569.CrossRefGoogle Scholar
Sharpe, L. L. (2005b). Play does not enhance social cohesion in a cooperative mammal. Animal Behavior, 70, 551558.Google Scholar
Sharpe, L. L. (2005c). Play fighting does not affect subsequent fighting success in wild meerkats. Animal Behavior, 69, 10231029.Google Scholar
Sharpe, L. L. & Cherry, M. I. (2003). Social play does not reduce aggression in wild meerkats. Animal Behavior, 66, 989997.Google Scholar
Siviy, S. M. (2010). Play and adversity: How the mammalian brain withstands threats and anxieties American Journal of Play, 2, 297314.Google Scholar
Špinka, M., Newberry, R. C., & Bekoff, M. (2001). Mammalian play: Training for the unexpected. The Quarterly Review of Biology, 76(2), 141168.Google Scholar
Starkhammar, J., Amundin, M., Olsén, H., Almqvist, M., Lindström, K., & Persson, H. W. (2007). Acoustic Touch Screen for Dolphins, First application of ELVIS – an Echo-Location Visualization and Interface System. Retrieved from http://lup.lub.lu.se/record/768807.Google Scholar
Sutton-Smith, B. (2003). Play as a parody of emotional vulnerability. In Lytle, D. E. (Ed.), Play and Educational Theory and Practice (pp. 317). Stamford, CT: Greenwood Press.Google Scholar
Tacconi, G. & Palagi, E. (2009). Play behavioural tactics under space reduction: Social challenges in bonobos, Pan paniscus. Animal Behaviour, 78(2), 469476.Google Scholar
Thompson, K. V., Baker, A. J., & Baker, A. M. (2010). Parental care and behavioral development in captive mammals. In Kleiman, D. G., Thompson, K. V., & Baer, C. K. (Eds.), Wild Mammals in Captivity: Principles and Techniques (pp. 367385). Chicago, IL: University of Chicago Press.Google Scholar
Vanderschuren, L. J. & Trezza, V. (2014). What the laboratory rat has taught us about social play behavior: Role in behavioral development and neural mechanisms. Current Topics in Behavioral Neuroscience, 16, 189212.CrossRefGoogle ScholarPubMed
Visalberghi, E. & Guidi, C. (1998). Play behaviour in young tufted capuchin monkeys. Folia Primatologica, 69(6), 419422.Google Scholar
van den Berg, C. L., Hol, T., van Ree, J. M., Spruijt, B. M., Everts, H., & Koolhaas, J. M. (1999). Play is indispensable for an adequate development of coping with social challenges in the rat. Developmental Psychobiology, 34, 129138.Google Scholar
Waller, B. M. & Cherry, L. (2012). Facilitating play through communication: Significance of teeth exposure in the gorilla play face. American Journal of Primatology, 74(2), 157164.CrossRefGoogle ScholarPubMed
Yamanashi, Y., Nogami, E., Teramoto, M., Morimura, N., & Hirata, S. (2018). Adult–adult social play in captive chimpanzees: Is it indicative of positive animal welfare? Applied Animal Behaviour Science, 199, 7583.Google Scholar

References

Astley, H. C., Gong, C., Travers, M., Serrano, M. M., Vela, P. A., Choset, H., … Goldman, D. I. (2015). Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion. Proceedings of the National Academy of Sciences, 112, 62006205.Google Scholar
Attractions Magazine (2012). Cheetah and dog friends celebrate anniversary together at Busch Gardens Tampa [Video File]. Retrieved from www.youtube.com/watch?v=Ndlf5_L5gsE.Google Scholar
Auffenberg, W. (1981). The Behavioral Ecology of the Komodo Monitor. Gainsville, FL: University Press of Florida.Google Scholar
Avise, J. C. (2008). Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals. New York: Oxford University Press.Google Scholar
Bachtrog, D., Kirkpatrick, M. Mank, J. E., McDaniel, S. F., Pires, J. S., Rice, W. R., & Valenzuela, N. (2011). Are all sex chromosomes created equal? Trend in Genetics, 27, 350357.Google Scholar
Barabanov, V., Gulimova, V., Berdiev, R., & Saveliev, S. (2015). Object play in thick-toed geckos during a space experiment. Journal of Ethology, 33, 109115.Google Scholar
Bateson, P. & Martin, P. (2013). Play, Playfulness, Creativity, and Innovation. Cambridge: Cambridge University Press.Google Scholar
Beach, F. A. (1945). Current concepts of play in animals. American Naturalist, 79, 523541.Google Scholar
Becak, W. & Becak, M. L. (1969). Cytotaxonomy and chromosomal evolution in Serpentes. Cytogenetics, 8, 247262.Google Scholar
Bekoff, M. (2007). The Emotional Lives of Animals. Novato, CA: New World Library.Google Scholar
Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin, C. L., … Hines, H. B. (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central AmericaProceedings of the National Academy of Sciences, 95, 90319036.Google Scholar
Blehert, D. S., Hicks, A. C., Behr, M., Meteyer, C. U., Berlowski-Zier, B. M., Buckles, E. L., … Okoniewski, J. C. (2009). Bat white-nose syndrome: An emerging fungal pathogen? Science, 323, 227227.Google Scholar
Booth, W. & Schuett, G. W. (2011). Molecular genetic evidence for alternative reproductive strategies in North American pitvipers (Serpentes, Viperidae): Long-term sperm storage and facultative parthenogenesis. Biological Journal of the Linnean Society, 104, 934942.Google Scholar
Booth, W. & Schuett, G. W. (2016). The emerging phylogenetic pattern of parthenogenesis in snakes. Biological Journal of the Linnean Society, 118, 172186.Google Scholar
Booth, W., Johnson, D. H., Moore, S., Schal, C., & Vargo, E. L. (2011). Evidence for viable, non-clonal but fatherless boa constrictors. Biology Letters, 7, 257260.Google Scholar
Booth, W., Million, L., Reynolds, R. G., Burghardt, G. M., Vargo, E. L., Schal, C., … Schuett, G. W. (2011). Consecutive virgin births in the New World boid snake, the Colombian Rainbow Boa, Epicrates maurus. Journal of Heredity, 102, 759763.Google Scholar
Booth, W, Schuett, G. W., Ridgway, A., Buxton, D., Castoe, T. A., Bastone, G., … McMahan, C. W. (2014). New insights on facultative parthenogenesis in pythons. Biological Journal of the Linnean Society, 112, 461468.Google Scholar
Booth, W., Smith, C. F., Eskridge, P. H., Hoss, S. K., Mendelson, J. R. III, & Schuett, G. W. (2012). Facultative parthenogenesis discovered in wild vertebrates. Biology Letters, 8, 983985.Google Scholar
Bull, J. J. (1983). Evolution of Sex Determining Mechanisms. Menlo Park, CA: Benjamin Cummings.Google Scholar
Burghardt, G. M. (1999). Play. In Greenberg, G. & Haraway, M. M. (Eds.), Comparative Psychology: A Handbook (pp. 725735). New York: Garland Publishing Co.Google Scholar
Burghardt, G. M. (2005). The Genesis of Animal Play: Testing the Limits. Cambridge, MA: MIT Press.Google Scholar
Burghardt, G. M. (2011). Defining and recognizing play. In Pellegrini, A. D. (Ed.), The Oxford Handbook of the Development of Play (pp. 918). New York: Oxford University Press.Google Scholar
Burghardt, G. M. (2013). Environmental enrichment and cognitive complexities in reptiles and amphibians: Concepts, review and implications for captive populations. Applied Animal Behaviour Science, 147, 286298.Google Scholar
Burghardt, G. M. (2014). A brief glimpse at the long evolutionary history of play. Animal Behavior and Cognition, 1, 9098.Google Scholar
Burghardt, G. M. (2015). Play in fishes, frogs and reptiles. Current Biology, 25, R9R10.Google Scholar
Burghardt, G. M., Chiszar, D., Murphy, J. B., Romano, J., Walsh, T., & Manrod, J. (2002). Behavioral complexity, behavioral development, and play. In Murphy, J. B., Ciofi, C., Panouse, C., & Walsh, T. (Eds.), Komodo Dragons: Biology and Conservation (pp. 78118). Washington, DC: Smithsonian Institution Press.Google Scholar
Burghardt, G. M., Dinets, V., & Murphy, J. B. (2014). Highly repetitive object play in a cichlid fish (Tropheus duboisi). Ethology, 121, 3844.Google Scholar
Burghardt, G. M., Ward, B., & Rosscoe, R. (1996). Problem of reptile play: Environmental enrichment and play behavior in a captive Nile soft-shelled turtle (Trionyx triunguis). Zoo Biology, 15, 223228.3.0.CO;2-D>CrossRefGoogle Scholar
Burggren, W. & Johansen, K., (1982). Ventricular haemodynamics in the monitor lizard Varanus exanthematicus: Pulmonary and systemic pressure separation. Journal of Experimental Biology, 96, 343354.Google Scholar
Card, W. C., Roberts, D. T., & Odum, R. A. (1998). Does zoo herpetology have a future? Zoo Biology, 17, 453462.Google Scholar
Chapman, D. D., Firchau, B., & Shivji, M. S. (2008). Parthenogenesis in a large-bodied requiem shark, the blacktip Carcharhinus limbatus. Journal of Fish Biology, 73, 14731477.Google Scholar
Chapman, D. D., Shivji, M. S., Louis, E., Sommer, J., Fletcher, H., & Prödohl, P. A. (2007). Virgin birth in a hammerhead shark. Biology Letters, 3, 425427.Google Scholar
Charlesworth, D. & Mank, J. E. (2010) The birds and the bees and the flowers and the trees: Lessons from genetic mapping of sex determination in plants and animals. Genetics, 186, 931.Google Scholar
Cohen, P. (1998). Like a virgin. New Scientist, 160, 3639.Google Scholar
Cole, C. J. (1984). Unisexual lizards, Scientific American, 50, 94101.Google Scholar
Coles, J. (2012). Virgin births discovered in wild snakes. BBC Nature (September 12, 2012). Retrieved from www.bbc.co.uk/nature/19555550.Google Scholar
Collins, J. P. (2002). May you live in interesting times: Using multidisciplinary and interdisciplinary programs to cope with change in the life sciences. BioScience, 52, 7583.Google Scholar
Collins, J. P., Crump, M. L., & Lovejoy, T. E. III (2009). Extinction in Our Times: Global Amphibian Decline. New York: Oxford University Press.Google Scholar
Darwin, C. (1874). The Descent of Man, 2nd edn. London: Murray.Google Scholar
Darevsky, I. S. (1958). Natural parthenogenesis in certain subspecies of the rock-lizard Lacerta saxicola Eversmann. Doklady Academii Nauk SSSR, 122, 730732.Google Scholar
Darevsky, I. S. (1966). Natural parthenogenesis in a polymorphic group of Caucasian rock lizards related to Lacerta saxicola Eversmann. Journal of the Ohio Herpetological Society, 5, 115152.Google Scholar
Darevsky, I. S., Kupriyanova, L. A., & Uzzell, T. (1985). Parthenogenesis in reptiles. In Gans, C. & Billett, D. F. (Eds.), Biology of the Reptilia, 15 (pp. 413526). New York: John Wiley & Sons.Google Scholar
Demlong, M. & Schuett, G. (1998). The Phoenix Zoo announces birth. Communiqué, July, 35.Google Scholar
Deufel, A. & Cundall, D. (2003). Feeding in Atractaspis (Serpentes: Atractaspididae): A study in conflicting functional constraints. Zoology, 106, 4361.Google Scholar
Dinets, V. (2015). Play behavior in crocodilians. Animal Behavior and Cognition, 2, 4955.Google Scholar
Ding, Y., Sharpe, S. S., Masse, A., & Goldman, D. I. (2012). Mechanics of undulatory swimming in a frictional fluid. PLoS Computational Biology, 8, e1002810.Google Scholar
Doody, J. S., Burghardt, G. M., & Dinets, V. (2013). Breaking the social–non-social dichotomy: A role for reptiles in vertebrate social behavior research? Ethology, 199, 19.Google Scholar
Dubach, J., Sajewicz, A., & Pawley, R. (1997). Parthenogenesis in the Arafuran filesnake (Acrochordus arafurae). Herpetological Natural History, 5, 1118.Google Scholar
Dudgeon, C. L., Coulton, L., Bone, R., Ovenden, J. R., & Thomas, S. (2017). Switch from sexual to parthenogenetic reproduction in a zebra shark. Scientific Reports, 7, 40537.Google Scholar
Emerson, J. J. (2017). Evolution: A paradigm shift in snake sex chromosome genetics. Current Biology, 27, R800R803.Google Scholar
Facultative Parthenogenesis in Reptilia (2014). Faculative Parthenogensis in Reptilia Facebook group page. Retrieved from www.facebook.com/groups/463481383787022.Google Scholar
Fagan, R. (1981). Animal Play Behavior. New York: Oxford University Press.Google Scholar
Feldheim, K. A., Chapman, D. D., Sweet, D., Fitzpatrick, S., Prodöhl, P. A., Shivji, M. S., & Snowden, B. (2010). Shark virgin birth produces multiple viable offspring. Journal of Heredity, 101, 374377.Google Scholar
Firestein, S. (2012). Ignorance: How It Drives Science. New York: Oxford University Press.Google Scholar
Gamble, T. & Zarkower, D. (2014). Identification of sex-specific molecular markers using restriction site associated DNA sequencing. Molecular Ecology Resources, 14, 902913.Google Scholar
Gamble, T., Castoe, T. A., Nielsen, S. V., Banks, J. L., Jaison, L., Card, D. C., … Booth, W. (2017). The discovery of XY sex chromosomes in Boa and Python. Current Biology, 27, 21482153.Google Scholar
Gamble, T., Coryell, J., Ezaz, T., Lynch, J., Scantlebury, D. P., & Zarkower, D. (2015). Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Molecular Biology and Evolution, 32, 12961309.Google Scholar
Gans, C. (1994). Directions for future research at academic institutions. In Murphy, J. B., Adler, K., & Collins, J. T. (Eds.), Captive Management and Conservation of Amphibians and Reptiles, Contributions to Herpetology, Vol. 1 (pp. 391395). Ithaca, NY: Society for the Study of Amphibians and Reptiles.Google Scholar
Gong, C., Travers, M., Astley, H., Li, L., Mendelson, J., Hu, D., … Choset, H. (2015). Kinematic gait synthesis for snake robots. The International Journal of Robotics Research, 34, 114.Google Scholar
Graham, K. L. & Burghardt, G. M. (2010). Current perspectives on the biological study of play: Signs of progress. Quarterly Review of Biology, 85, 393418.Google Scholar
Greene, H. W. (1976). Scale overlap, a directional sign stimulus for prey ingestion by ophiophagous snakes. Ethology, 41, 113120.Google Scholar
Greene, H. W. & Burghardt, G. M. (1978). Behavior and phylogeny: Constriction in ancient and modern snakes. Science, 200, 7477.Google Scholar
Graves, J. A. M. (2013). How to evolve new vertebrate sex determining genes. Developmental Dynamics, 242, 354359.Google Scholar
Groot, T. V. M., Bruins, E., & Breeuwer, J. A. J. (2003). Molecular genetic evidence for parthenogenesis in the Burmese python, Python molurus bivittatus. Heredity, 90, 130135.Google Scholar
Haig, D. (2002). Genomic Imprinting and Kinship. New Brunswick, NJ: Rutgers University Press.Google Scholar
Harvey, P. H. & Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.Google Scholar
Hill, C. (1946). Playtime at the zoo. ZOO-LIFE, 1, 2426.Google Scholar
Hill, R. L., Mendelson, J. R. III, & Stabile, J. L. (2015). Direct observation and review of herbivory in Sirenidae (Amphibia: Caudata). The Southeastern Naturalist, 14, N5N9.Google Scholar
Hopper, L. M. (2017). Cognitive research in zoos. Current Opinions in Behavioral Sciences 16, 100110.Google Scholar
Jaenisch, R. (1997). DNA methylation: Why bother? Trends in Genetics, 13, 323329.Google Scholar
Koshiba-Takeuchi, K. T., Mori, A. D., Kaynak, B. L., Cebra-Thomas, J., Sukonnik, T., Georges, R. O., … Bruneau, B.G. (2009). Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature, 461, 9598.Google Scholar
Kramer, M. & Burghardt, G. M. (1998). Precocious courtship and play in emydid turtles. Ethology, 104, 3856.Google Scholar
Krogh, A. (1929). The progress of physiology. American Journal of Physiology – Legacy Content, 90, 243251.Google Scholar
Kuhn, T. S. (1996). The Structure of Scientific Revolutions, 3rd edn. Chicago, IL: University of Chicago Press.Google Scholar
Lampert, K. P. (2008). Facultative parthenogenesis in vertebrates: Reproductive error or chance? Sexual Development, 2, 290301.Google Scholar
Lazell, J. D. & Spitzer, N. C. (1977). Apparent play in an American alligator. Copeia, 1977, 18.Google Scholar
Lindstedt, S. (2014). Krogh 1929 or The Krogh Principle. Journal of Experimental Biology, 217, 16401641.Google Scholar
Lips, K. R. (1998). Decline of a tropical montane amphibian fauna. Conservation Biology, 12, 106117.Google Scholar
Lips, K. R. & Mendelson, J. R. III (2014). Stopping the next amphibian apocalypse. New York Times. November 14, 2014.Google Scholar
Longcore, J. E., Pessier, A. P., & Nichols, D. K. (1999). Batrachochytrium dendrobatidis gen. et sp. nov.: A chytrid pathogenic to amphibians. Mycologia, 1999, 219227.Google Scholar
Mank, J. E., Nam, K., & Ellegren, H. (2010). Faster Z evolution is predominantly due to genetic drift. Molecular Biology and Evolution, 27, 661670.Google Scholar
Martel, A., Spitzen-van der Sluijs, A., Blooi, M., Bert, W., Ducatelle, R., Fisher, M. C., … Pasmans, F. (2013). Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proceedings of the National Academy of Sciences, 110, 1532515329.Google Scholar
Marvi, H., Bridges, J., & Hu, D.L. (2013). Snakes mimic earthworms: Propulsion using rectilinear travelling waves. Journal of the Royal Society Interface, 10, 20130188.Google Scholar
Marvi, H., Gong, C., Gravish, N., Astley, H., Hatton, R. L., Mendelson, J. R. III, … Goldman, D. I. (2014). Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science, 346, 224229.Google Scholar
Medvedev, M. & Makova, K. D. (2017). Y and W chromosome assemblies: Approaches and discoveries. Trends in Genetics, 33, 266282.Google Scholar
Mendelson, J. R. III, Lips, K. R., Gagliardo, R. W., Rabb, G. B., Collins, J. P., Diffendorfer, J. E., … Brodie, E. D. Jr. (2006). Policy forum: Confronting amphibian declines and extinctions. Science, 313, 48.Google Scholar
Mikloski, A. & Soproni, A. (2006). A comparative analysis of animals’ understanding of the human pointing gesture. Animal Cognition, 9, 8193.CrossRefGoogle Scholar
Miller, L. J. (2017). Creating a common terminology for play behavior to increase cross-disciplinary research. Learning and Behavior, 45, 330334.Google Scholar
Moberg, G. P. (1985). Animal Stress. Bethesda, MD: American Physiological Society.Google Scholar
Monaghan, P. (1997). Reports of ‘virgin birth’ of snakes prompt excitement and skepticism. The Chronicles of Higher Education (December 19, 1997). Retrieved from www.chronicle.com/article/reports-of-virgin-birth-of/101039.Google Scholar
Murphy, J. B. (2007). Herpetological History of the Zoo and Aquarium World. Malabar, FL: Krieger Publishing Co..Google Scholar
Murphy, J. B., Adler, K., & Collins, J. T. (Eds.) (1994). Captive Management and Conservation of Amphibians and Reptiles. Contributions to Herpetology. Ithaca, NY: Society for the Study of Amphibians and Reptiles.Google Scholar
Murphy, J. B., Ciofi, C., de La Panouse, C., & Walsh, T. (Eds.) (2002). Komodo Dragons: Biology and Conservation. Washington, DC: Smithsonian Institution.Google Scholar
Neaves, W. B. & Baumann, P. (2011). Unisexual reproduction among vertebrates. Trends in Genetics, 27, 8188.Google Scholar
Nichols, D. K. (2003). Tracking down the killer chytrid of amphibians. Herpetological Review, 34, 101104.Google Scholar
Norris, K. S. & Kavanau, J. L. (1966). The burrowing environment of the western shovel-nosed snake, Chionactis occipitalis Hallowell, and the undersand environment. Copeia, 1966, 650664.Google Scholar
Ohno, S. (1967). Sex Chromosomes and Sex-linked Genes. Berlin: Springer-Verlag.Google Scholar
Olena, A. (2017). Snake sex determination dogma overturned. The Scientist. Retrieved from www.the-scientist.com/?articles.view/articleNo/49814/title/snake-sex-determination-dogma-overturned.Google Scholar
Olsen, M. W. (1975). Avian parthenogenesis. Agricultural Research Service, United States Department of Agriculture, 65, 182.Google Scholar
Olsen, W. W. & Marsden, S. J. (1954) Natural parthenogenesis in turkey eggs. Science, 120, 545546.Google Scholar
Pough, F. H. 1993. Zoo-academic research collaborations: How close are we? Herpetologica 49: 500-508.Google Scholar
Pruitt, J. N., Burghardt, G. M., & Riechert, S. E. (2012). Non-conceptive sexual behavior in spiders: A form of play associated with body condition, personality type, and male intrasexual selection. Ethology, 118, 3340.Google Scholar
Rabb, G. B. & Rabb, M. S. (1960). On the mating and egg-laying behavior of the Surinam toad, Pipa pipa. Copeia, 1960, 271276.Google Scholar
Radcliffe, C. W., Chiszar, D., & O’Connell, B. (1980). Effects of prey size on poststrike behavior in rattlesnakes (Crotalus durissus, C. enyo, and C. viridis). Bulletin of the Psychonomic Society, 16, 449450.Google Scholar
Schloegel, L. M., Toledo, L. F., Longcore, J. E., Greenspan, S. E., Vieira, C. A., Lee, M., … Davies, A. J. (2012). Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Molecular Ecology, 21, 51625177.Google Scholar
Schuett, G. W., Clark, R. W., Repp, R. A., Amarello, M., Smith, C. F., & Greene, H. W. (2016). Social behavior of rattlesnakes: a shifting paradigm. In Schuett, G. W., Feldner, M. J., Smith, C. F., & Reiserer, R. S. (Eds.), Rattlesnakes of Arizona, 2 (pp. 161244). Rodeo, NM: ECO Publishing.Google Scholar
Schuett, G. W., Fernandez, P. J., Gergits, W. F., Casna, N. J., Chiszar, D., Smith, H. M., … Demlong, M. J. (1997). Production of offspring in the absence of males: Evidence for facultative parthenogenesis in bisexual snakes. Herpetological Natural History, 5, 110.Google Scholar
Schuett, G. W., Fernandez, P. J., Chiszar, D., & Smith, H. M. (1998). Fatherless sons: A new type of parthenogenesis in snakes. Fauna, 1, 2025.Google Scholar
Schuett, G. W. & Booth, W. (2017). Facultative parthenogenesis in reptiles: Discovery and progress – Role of zoos and private citizens. Presented at: International Herpetological Symposium, Chiricahua Desert Museum & Geronimo Event Center, Rodeo, New Mexico, July 19–23.Google Scholar
Schuetz, A., Farmer, K., & Krueger, K. (2017). Social learning across species: Horses (Equus caballus) learn from humans by observation. Animal Cognition, 20, 567573.Google Scholar
Schut, E., Hemmings, N., & Birkhead, T. R. (2008). Parthenogenesis in a passerine bird, the zebra finch Taeniopygia guttata. Ibis, 150, 197199.Google Scholar
Serres, A. & Delfour, F. (2017). Environmental changes and anthropogenic factors modulate social play in captive bottlenose dolphins (Tursiops truncatus). Zoo Biology, 36, 99111.Google Scholar
Sharpe, S. S., Koehler, S. A., Kuckuk, R. M., Serrano, M., Vela, P. A., Mendelson, J. R. III, & Goldman, D. I. (2015). Locomotor advantages of being a slender and slick sand-swimmer. Journal of Experimental Biology, 218, 440450.Google Scholar
Tomaszkiewicz, M., Medvedev, P., and Makova1, K. D. (2017). Y and W chromosome assemblies: approaches and discoveries. Trends in Genetics 33: 266-282.Google Scholar
Vicoso, B., Emerson, J. J., Zektser, Y., Mahajan, S., & Bachtrog, D. (2013). Comparative sex chromosome genomics in snakes: Differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biology, 11, e1001643.Google Scholar
Walker, M. (2011), Snake gives ‘virgin birth’ to extraordinary babies. Retrieved from news.bbc.co.uk/earth/hi/earth_news/newsid_9139000/9139971.stm.Google Scholar
Waters, R. M., Bowers, B. B., & Burghardt, G.M. (2017). Personality and individuality in reptile behavior. In Vonk, J., Weiss, A., & Kuczaj, S. (Eds.), Personality in Nonhuman Animals (pp. 153184). New York: Springer Publishing.Google Scholar
Watts, P. C., Buley, K. R., Sanderson, S., Boardman, W., Ciofi, C., & Gibson, R. (2006). Parthenogenesis in Komodo dragons. Nature, 444, 10211022.Google Scholar
Westlund, K. (2014). Training is enrichment – And beyond. Applied Animal Behaviour Science, 152, 16.Google Scholar
Zylinski, S. (2015). Fun and play in invertebrates. Current Biology, 25, R10R12.Google Scholar

References

Allard, S. M., Earles, J. L., & DesFosses, L. (2014). Spatial memory in captive giant anteaters. Animal Behavior and Cognition, 1(3), 331340.Google Scholar
Anderson, U. S., Maple, T. L., & Bloomsmith, M. A. (2010). Factors facilitation research: A survey of zoo professionals. Zoo Biology, 29, 663675.Google Scholar
Bierens de Haan, J. A. (1935). Probleme des tiereschen instinktes. Die Naturwissenschaften, 6.Google Scholar
Call, J. & Tomasello, M. (1999). A nonverbal false belief task: The performance of children and great apes. Child Development, 70(2), 381395.Google Scholar
Carpenter, C. R. (1937). An observational study of two captive mountain gorillas (Gorilla beringei). Human Biology, 9, 175196.Google Scholar
Finlay, T. W. & Maple, T. L. (1986). A survey of research in American zoos and aquariums. Zoo Biology, 5(3), 261268.Google Scholar
Harlow, H. F., Uehling, H., & Maslow, A. H. (1932). Comparative behavior of primates. 1. Delayed reaction tests on primates from the lemur to the orang-utan. Journal of Comparative Psychology, 13(3), 313.Google Scholar
Hediger, H. (1969). Man and Animal in the Zoo. New York: Delacorte Press.Google Scholar
Hoff, M. P., Forthman, D., & Maple, T. L. (1994). Dyadic interactions of infant lowland gorillas in an outdoor exhibit compared to an indoor holding area. Zoo Biology, 13(3), 245256.Google Scholar
Hoff, M. P., Nadler, R. D., Hoff, K. T., & Maple, T. L. (1994). Separation and depression in infant gorillas. Developmental Psychobiology, 27(7), 439452.Google Scholar
Hoff, M. P. & Maple, T. L. (1995). Post-occupancy modification of a lowland gorilla enclosure at Zoo Atlanta. International Zoo Yearbook, 34, 153160.Google Scholar
Hoff, M. P., Hoff, K. T., Horton, L. C., & Maple, T. L. (1996). Behavioral effects of changing group membership among captive lowland gorillas. Zoo Biology, 15(4), 383393.Google Scholar
Hoff, M. P., Powell, D., Lukas, K. E., & Maple, T. L. (1997). Social and individual behaviour of adult gorillas in indoor conditions compared to outdoor conditions. Journal of Applied Animal Behaviour Science, 54, 359370.Google Scholar
Hoff, M. P., Hoff, K. T., & Maple, T. L. (1998). Behavioural response of a Western lowland gorilla group to the loss of the silverback male at Zoo Atlanta. International Zoo Yearbook, 36, 9096.Google Scholar
Hoff, M. P., Bloomsmith, M. A., & Zucker, E. L. (Eds.) (2014). Celebrating the Career of Terry L. Maple: A Festschrift. Tequesta, FL: Red Leaf Press.Google Scholar
Kohler, W. (1925). The Mentality of Apes. London: K. Paul, Trench, Trubner and Co.Google Scholar
Kuhar, C. W. (2006). In the deep end: Pooling data and other statistical challenges of zoo and aquarium research. Zoo Biology, 25(4), 339352.Google Scholar
Lindburg, D. & Baragona, K. (Eds.) (2004). Giant Pandas: Biology and Conservation. Berkeley, CA: University of California Press.Google Scholar
Lukas, K. E., Hoff, M. P., & Maple, T. L. (2003). Gorilla behavior in response to systematic alternation between zoo enclosures. Applied Animal Behaviour Science, 81(4), 367386.Google Scholar
Maple, T. L. (1979). Primate psychology in historical perspective. In Erwin, J. (Ed.), Captivity and Behavior (pp. 2958). New York: Van Nostrand Reinhold Co.Google Scholar
Maple, T. L. (1999). Zoo Atlanta's scientific vision. Georgia Journal of Science, 57(3), 159179.Google Scholar
Maple, T. L. (2016). Professor in the Zoo. Fernandina Beach, FL: Red Leaf Press.Google Scholar
Maple, T. L. (2017). A Conversation with Heini Hediger. Video production on YouTube. Retrieved from https://youtu.be/doLIMD_P598.Google Scholar
Maple, T. L. & Bashaw, M. J. (2010). Research trends in zoos. In Kleiman, D. G. et al. (Eds.), Wild Mammals in Captivity (pp. 288298). Chicago, IL: University of Chicago Press.Google Scholar
Maple, T. L., Bloomsmith, M. A., & Martin, A. L. (2009). Primates and pachyderms: A primate model of zoo elephant welfare. In Forthman, D. et al. (Eds.), An Elephant in the Room: The Science and Well-Being of Elephants in Captivity (pp. 129153). North Grafton, MA: Tufts University Center for Animals and Public Policy.Google Scholar
Maple, T. L. & Bocian, D. (2013). Commentary: Wellness as welfare. Zoo Biology, 32(4), 363365.Google Scholar
Maple, T. L. & Hoff, M. P. (1982). Gorilla Behavior. New York: Van Nostrand Reinhold.Google Scholar
Maple, T. L. & Kuhar, C. W. (2006). The comparative psychology of Duane Rumbaugh and its impact on zoo biology. In Washburn, D. (Ed.), Primate Perspectives on Behavior and Cognition (pp. 716) Washington, DC: American Psychological Association.Google Scholar
Maple, T. L. & Lindburg, D. G. (Eds.) (2008). Empirical zoo: Opportunities and challenges to research in zoos and aquariums. Special issue of Zoo Biology 27(6), 431504.Google Scholar
Maple, T. L. & Perdue, B. M. (2013). Zoo Animal Welfare. Heidelberg: Springer-Verlag.Google Scholar
Maple, T. L. & Segura, V. D. (2018). Wildlife wellness: A new ethical frontier for zoos and aquariums. In Minteer, B. A., Maienshein, J., & Collins, J. P. (Eds.), The Ark and Beyond: The Evolution of Zoo and Aquarium Conservation (pp. 226237). Chicago, IL: University of Chicago Press.Google Scholar
Markowitz, H., Schmidt, M., Nadal, L., & Squier, L. (1975). Do elephants ever forget? Journal of Applied Behavior Analysis, 8(3), 333335.CrossRefGoogle ScholarPubMed
Marvi, H., Gong, C., Gravish, N., Astley, H., Hatton, R. L., Mendelson, J. R. III, … Goldman, D. I. (2014). Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science, 346, 224229.Google Scholar
Mellor, D. J., Hunt, S., & Gussett, M. (2015). Caring for Wildlife: The World Zoo and Aquarium Animal Welfare Strategy. Gland: World Zoo and Aquarium Association.Google Scholar
Minteer, B. A., Maienschein, J., & Collins, J. P. (Eds.) (2018). The Ark and Beyond. Chicago, IL: University of Chicago Press.Google Scholar
Mitchell, G., Obradovich, D, Herring, F. H., Dowd, B., & Tromborg, C. (1991). Threats to observers, keepers, visitors, and others by zoo mangabeys. Primates, 32(4), 515522.Google Scholar
Nieuwenhuijsen, C. & de Waal, F. B. M. (1982). Effects of spatial crowding on social behavior in a chimpanzee colony. Zoo Biology, 1, 628.Google Scholar
Pearson, E. L., Lowry, R., Dorrian, J., & Litchfield, C. A. (2014). Evaluating the conservation impact of an innovative zoo‐based educational campaign: “Don’t Palm Us Off” for orang‐utan conservation. Zoo Biology, 33(3), 184196.Google Scholar
Rumbaugh, D. M. & McCormack, D. (1967). The learning skills of primates: A comparative study of apes and monkeys. In Stark, D., Schneider, R., & Kuhn, J. J. (Eds.), Progress in Primatology (pp. 289306). Stuttgart: Gustav Fischer.Google Scholar
Rubel, A. (2009). Heini Hediger (1908–1992): Tierpsychologe-Pergartenbiologe-Zoodirektor: Volume 172. Zurich: Gelehrte Gesellschaft.Google Scholar
Skibins, J. C. & Powell, R. B. (2013). Conservation caring: Measuring the influence of zoo visitors’ connection to wildlife on pro‐conservation behaviors. Zoo Biology, 32(5), 528540.Google Scholar
Snyder, R. J., Perdue, B. M., Zhang, Z., Maple, T. L., & Charlton, B. D. (2016). Giant panda maternal care: A test of the experience constraint hypothesis. Scientific Reports, 6, 27509.Google Scholar
Stoinski, T. S., Lukas, K. E., & Maple, T. L. (1998). A survey of research in American zoos and aquariums. Zoo Biology, 17(3), 167180.Google Scholar
Stoinski, T. S., Hoff, M. P., & Maple, T. L. (2001). Habitat use and structural preferences of captive lowland gorillas: The effect of environmental and social variables. International Journal of Primatology, 22, 431447.Google Scholar
Stoinski, T. S., Hoff, M. P., Lukas, K. E., & Maple, T. L. (2001). A behavioral comparison of two captive all-male gorilla groups. Zoo Biology, 20, 2740.Google Scholar
Swaisgood, R. R., Ellis, S., Forthman, D. L., & Shepherdson, J. (2003). Improving well-being for captive giant pandas: Theoretical and practical issues. Zoo Biology, 22, 347354.Google Scholar
Tarou, T. R., Bashaw, M. J., & Maple, T. L. (2000). Social attachment in giraffe: Response to social separation. Zoo Biology, 19, 4155.Google Scholar
van Hooff, J. A. R. A. M. & Wensing, J. A. B. (1987). Dominance and its behavioral measures in a captive wolf pack. In Frank, H. (Ed.), Man and Wolf: Advances, Issues, and Problems in Captive Wolf Research (pp. 219252). Boston, MA: Dr. W. Junk Publishers.Google Scholar
Yerkes, R. M. (1916). The mental life of monkeys and apes: A study of ideational behavior. Behavior Monographs, 3, 1145.Google Scholar
Yerkes, R. M. (1927). The mind of a gorilla. Genetic Psychology Monographs, 2, 1193.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×