Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T09:05:12.747Z Has data issue: false hasContentIssue false

16 - Some concluding remarks on schema theory

Published online by Cambridge University Press:  22 October 2009

Sandra P. Marshall
Affiliation:
San Diego State University
Get access

Summary

One of the foremost challenges to schema theory in the past has been its lack of specificity. This is a critical issue, of course, because to be useful a theory must provide specific and testable propositions, and schema theory has not always done so. Among the unresolved issues have been questions about schema development, about activation of appropriate schema knowledge, and about the structure of schemas in general (e.g., W. F. Brewer & Nakamura, 1984). These questions have been the focus of most of the previous chapters. The theory presented here addresses these issues and generates statistical and simulation models with which to evaluate them.

A more recalcitrant issue, which has been raised many times but never satisfactorily settled, is the extent to which any schema theory is domain specific. Is it necessary to have a specific schema theory for each domain or is there a general framework that encompasses all schema development and use? This issue, of course, cannot be resolved here, because all the research described in these chapters comes from the domain of arithmetic problem solving. It is the only one, thus far, that has been evaluated fully under the schema theory I propose. A great deal of additional research from many domains is still needed.

My opinion is that schema researchers and theorists will eventually share a common theory of structure but will require specific models of implementation. The issues about general versus specific theory coincide to some extent with the question of whether one is constructing a theory or a model.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×