Book contents
- Frontmatter
- Contents
- Foreword by A. J. Chorin
- Preface
- Introduction
- Chapter 1 Dimensional analysis and physical similarity
- Chapter 2 Self-similarity and intermediate asymptotics
- Chapter 3 Scaling laws and self-similar solutions that cannot be obtained by dimensional analysis
- Chapter 4 Complete and incomplete similarity. Self-similar solutions of the first and second kind
- Chapter 5 Scaling and transformation groups. Renormalization group
- Chapter 6 Self-similar phenomena and travelling waves
- Chapter 7 Scaling laws and fractals
- Chapter 8 Scaling laws for turbulent wall-bounded shear flows at very large Reynolds numbers
- References
- Index
Chapter 4 - Complete and incomplete similarity. Self-similar solutions of the first and second kind
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Foreword by A. J. Chorin
- Preface
- Introduction
- Chapter 1 Dimensional analysis and physical similarity
- Chapter 2 Self-similarity and intermediate asymptotics
- Chapter 3 Scaling laws and self-similar solutions that cannot be obtained by dimensional analysis
- Chapter 4 Complete and incomplete similarity. Self-similar solutions of the first and second kind
- Chapter 5 Scaling and transformation groups. Renormalization group
- Chapter 6 Self-similar phenomena and travelling waves
- Chapter 7 Scaling laws and fractals
- Chapter 8 Scaling laws for turbulent wall-bounded shear flows at very large Reynolds numbers
- References
- Index
Summary
Complete and incomplete similarity
In Chapters 2 and 3 we considered two instructive and fundamentally different, albeit seemingly analogous, problems. In the problem of very intense, instantaneous and infinitely concentrated flooding considered in Chapter 2, following exactly the basic idea demonstrated in the Introduction for a very intense explosion, we arrived at an idealized statement of infinitely concentrated flooding. Applying to this idealized problem the standard procedure of dimensional analysis presented in Chapter 1 we were able to reveal the self-similarity of the solution, to find the self-similar variables and to obtain the solution in a simple closed form.
Deeper consideration showed, however, that this simplicity is illusory and that in making the assumption of an infinitely concentrated flooding we went, we might say, to the brink of an abyss.We demonstrated this when in Chapter 3 we modified the formulation of the problem, seemingly only slightly, by introducing fluid absorption. It would seem that in the modified formulation the same ideal problem statement would be possible and that all our dimensional reasoning would preserve its validity. However, in proceeding with the modified formulation we arrived at a contradiction. It turned out that in the modified formulation the solution to the ideal problem of very intense, instantaneous and infinitely concentrated flooding does not exist.
- Type
- Chapter
- Information
- Scaling , pp. 82 - 93Publisher: Cambridge University PressPrint publication year: 2003