Clues to the Rotation Rate of the Planet
Published online by Cambridge University Press: 13 December 2018
The rotation rate of a planet is a fundamental parameter, no less than its mass or composition, and planetary investigators require this rate to assess various other phenomena such as planetary wind speeds, internal and atmospheric models, ring dynamics and so forth. Saturn presents a conundrum, however, because none of its various planetary periods indicates the “true” rotation of the planet. Thus, although the planet displays an abundance of periodicities near 10.7 hours, the exact rotation period of Saturn is unknown. In the magnetosphere, “planetary-period oscillations” (PPOs) appear in charged particles, magnetic fields, energetic neutral atoms, radio emissions and motions of the plasma sheet and magnetopause. In Saturn’s rings, the spoke phenomenon can exhibit periodicities near 10.7 hours, and ring phenomena themselves may be related to the interior rotation of the planet. In the high-latitude ionosphere, modulations near this period appear in auroral motions and intensities. In the upper atmosphere, some cloud features rotate near this period, although wind speeds are generally faster, and the well-known polar hexagon rotates with a period close to 10.7 hours. Some of the magnetospheric/ionospheric oscillations differ in the northern and southern hemispheres and their periods do not remain constant, sometimes varying on long time scales of a year or longer and sometimes on much shorter time scales. These variations in the period argue against a cause related to changes interior to Saturn, and because the magnetic and spin axes of Saturn are reported to be axisymmetric (unlike those of any other known planet), Saturn’s periodicities cannot be explained as “wobble” caused by a geometric tilt or by a nondipolar magnetic anomaly. Several models have been proposed to account for the observed periodicities, including rotating atmospheric vortices, periodic plasma releases and a flapping magnetodisk, but none can satisfactorily explain all of Saturn’s periodicities nor their common origin, and none can determine the exact rotation rate of the planet. This chapter reviews Saturn’s periodicities, theories thereof, and how they might be used to determine the elusive rotation rate of the planet.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.