Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T03:56:43.574Z Has data issue: false hasContentIssue false

14 - The Future Exploration of Saturn

Published online by Cambridge University Press:  13 December 2018

Kevin H. Baines
Affiliation:
University of Wisconsin, Madison
F. Michael Flasar
Affiliation:
NASA-Goddard Space Flight Center
Norbert Krupp
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Tom Stallard
Affiliation:
University of Leicester
Get access

Summary

Despite the lack of another Flagship-class mission such as Cassini–Huygens, prospects for the future exploration of Saturn are nevertheless encouraging. Both NASA and the European Space Agency (ESA) are exploring the possibilities of focused interplanetary missions (1) to drop one or more in situ atmospheric entry probes into Saturn and (2) to explore the satellites Titan and Enceladus, which would provide opportunities for both in situ investigations of Saturn’s magnetosphere and detailed remote-sensing observations of Saturn’s atmosphere. Additionally, a new generation of powerful Earth-based and near-Earth telescopes with advanced instrumentation spanning the ultraviolet to the far-infrared promise to provide systematic observations of Saturn’s seasonally changing composition and thermal structure, cloud structures and wind fields. Finally, new advances in amateur telescopic observations brought on largely by the availability of low-cost, powerful computers, low-noise, large-format cameras, and attendant sophisticated software promise to provide regular, longterm observations of Saturn in remarkable detail.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonson, O., Hayes, A. G., Hayne, P. O. et al. (2014), Titan’s surface geology. Pages 63101 in: Müller-Wodarg, I., Griffith, C. A., Lellouch, E. and Cravens, T. E. (eds.), Titan: Interior, Surface, Atmosphere, and Space Environment. Cambridge: Cambridge University Press, Pp.Google Scholar
Atkinson, D. H., Pollack, J. B., Seiff, A. (1998), The Galileo probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter. J. Geophys. Res. 103, 2291122928.Google Scholar
Bacon, R., Bauer, S.-V., Böhm, R. et al. (2006), Probing unexplored territories with MUSE: A second-generation instrument for VLT. The Messenger 124, 510.Google Scholar
Badman, S., Branduardi-Raymont, G., Galand, M. et al. (2016), Auroral processes at the giant planets: Energy, deposition, emission mechanisms, morphology and spectra. Space Sci. Rev. 185, 99179. doi : 10.1007/s/11214–014-0042–x.Google Scholar
Baranec, C., Riddle, R., Law, N. M. et al. (2013), Bringing the visible universe into focus with Robo-AO. J. Visualized Experiments 72, e50021.Google Scholar
Baranec, C., Riddle, R., Law, N. M. et al. (2014), High-efficiency autonomous laser adaptive optics. Astrophys. J. Letts. 790, L8.CrossRefGoogle Scholar
Barret, D., Lam, T., Den Herder, J.-W. et al. (2016), The Athena X-ray Integral Field Unit (X-IFU). Proc. SPIE 9905 Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. doi 10.111712.2232432. arXiv: 1608.08105v1 (astro-ph.IM).Google Scholar
Bayer, B. E. (1976), Eastman Kodak Co. US patent 3971065.http:/worldwide.spacenet.com/textdoc?DB=EPOC&IDX=US3971065Google Scholar
Brandl, B. R., Feldt, M., Glasse, A. et al. (2014), METIS: The mid-infrared E-ELT imager and spectrograph. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9147, pp. 21.Google Scholar
Burton, M. and Dougherty, M. (2014), Saturn’s internal magnetic field: Expectations for Cassini’s upcoming proximal orbits, Fall AGU meeting, 2014.Google Scholar
Clarke, J. T., Nichols, J., Gérard, J.-C. et al. (2009), Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. (Space Physics), 114, A05210, doi:10.1029/2008JA013694.Google Scholar
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S. et al. (2009), The structure of Saturn’s rings. Pages 375412 in: Dougherty, M. K., Esposito, L. W. and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.Google Scholar
Connerney, J. E. P. (1986), Magnetic connection for Saturn’s rings and atmosphere. Geophys. Res. Lett., 13, 773776, doi:10.1029/GL013i008p00773.CrossRefGoogle Scholar
Coustenis, A., Lebreton, J.-P., Mousis, O. et al. (2014), Possible concepts for an in situ Saturn probe mission. Lunar and Planetary Science Conference 45, 1244.Google Scholar
Davies, R., Schubert, J., Hartl, M. et al. (2016), MICADO: First light imager for the E-ELT. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9908.Google Scholar
de Pater, I., Sault, R. J., Butler, B. et al. (2016), Peering through Jupiter’s clouds with radio spectral imaging. Science 352, 11981201.CrossRefGoogle ScholarPubMed
DePoy, D. L., Allen, R., Barkhouser, R. et al. (2012), GMACS: A wide field, multi-object, moderate-resolution, optical spectrograph for the Giant Magellan Telescope. Ground-based and Airborne Instrumentation for Astronomy IV, Vol. 8446.Google Scholar
DeWitt, C. N., Richter, M. J., Kulas, K. R. et al. (2014), First light with the EXES instrument on SOFIA. AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 46.Google Scholar
Doody, D. (2004), Basics of Space Flight, Sep. 2004; available at http://www.jpl.nasa.govGoogle Scholar
Eikenberry, S., Andersen, D., Guzman, R. et al. (2006), IRMOS: The near-infrared multi-object spectrograph for the TMT. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269.Google Scholar
ESA. (2007), Cosmic Vision Call http://sci.esa.int/cosmic-vision/Google Scholar
Fischer, G., Kurth, W. S., Gurnett, D. A. et al. (2011), A giant thunderstorm on Saturn. Nature. 475, 7577.Google Scholar
Fletcher, L. N., Achterberg, R. K., Greathouse, T. K. et al. (2010), Seasonal change on Saturn from Cassini/CIRS observations, 2004–2009. Icarus 208, 337352.Google Scholar
Fletcher, L. N., Hesman, B. E., Achterberg, R. K. et al. (2012), The origin and evolution of Saturn’s 2011–2012 stratospheric vortex. Icarus 221, 560586.CrossRefGoogle Scholar
Fletcher, L. N., Hesman, B. E., Irwin, P. G. J. et al. (2011), Thermal structure and dynamics of Saturn’s northern springtime disturbance. Science 332, 14131417.Google Scholar
Fletcher, L. N., Irwin, P. G. J., Orton, G. O. et al. (2008), Temperature and composition of Saturns polar hot spots and hexagon. Science 319, 79821.Google Scholar
Fletcher, L. N., Orton, G. S., Teanby, N. A. et al. (2009a), Methane and its isotopologues on Saturn from Cassini/CIRS observations. Icarus 199, 351367.CrossRefGoogle Scholar
Fletcher, L. N., Orton, G. S., Yanamandra-Fisher, P. et al. (2009b), Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging. Icarus 200, 154175.Google Scholar
Fouchet, T., Guerlet, S., Strobel, D. F. et al. (2008), An equatorial oscillation in Saturn’s middle-atmosphere. 2008. Nature 453, 200202.Google Scholar
Fulchignoni, M., Ferri, F., Angrilli, F. et al. (2002), The characterization of Titan’s atmospheric physical properties by the Huygens Atmospheric Structure Instrument (HASI). Space Sci. Rev.104, 395431.Google Scholar
Geballe, T. R., Jagod, M., Oka, T. (1993), Detection of H3+ infrared emission lines in Saturn. Astrophys. J. Lett. 408, L109L112, doi:10.1086/186843.Google Scholar
Greathouse, T., Lacy, J., Bézard, B. et al. (2006), The first detection of propane on Saturn. Icarus 181, 266271.CrossRefGoogle Scholar
Greathouse, T. K., Roe, H. G., Richter, M. J. (2005), Changes in the temperature of Saturn’s stratosphere from 2002 to 2004 and direct evidence of a mesopause. 36th Annual Lunar and Planetary Science Conference, League City, Texas.Google Scholar
Griffith, C. A., Rafkin, S., Rannou, P. et al. (2014), Storms, cloud, and weather. Pages 190223 in: Müller-Wodarg, I., Griffith, C. A., Lellouch, E. and Cravens, T. E. (eds.), Titan: Interior, Surface, Atmosphere, and Space Environment. Cambridge: Cambridge University Press.Google Scholar
Guerlet, S., Spiga, A., Sylvestre, M. et al. (2014), Global climate modeling of Saturn’s atmosphere. Part I: Evaluation of the radiative transfer model. Icarus 238, 110124.Google Scholar
Helled, R. (2011), Constraining Saturn’s core properties by a measurement of its moment of inertia: Implications to the Cassini Solstice Mission, Ap.J.Lett. 735, L16.Google Scholar
Hohmann, W. (1925), Die Erreichbarkeit der Himmelskörper (The Accessibility of Celestial Bodies), München: Verlag Oldenbourg.Google Scholar
Jia, X., Kivelson, M. G. (2012), Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere: Magnetotail response to dual sources. J. Geophys. Res., 117, A11219, doi:10.1029/2012JA018183.Google Scholar
Koskinen, T. T., Sandel, B. R., Yelle, R. V. et al. (2013), The density and temperature structure near the exobase of Saturn from Cassini UVIS solar occultations. Icarus 226, 13181330, doi:10.1016/j.icarus.2013.07.037.Google Scholar
Lam, T., Landau, D., Strange, N. (2009), Broad search solar electric propulsion trajectories to Saturn with gravity assists, AAS Paper 09–355, Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, August 2009, Pittsburgh, PA.Google Scholar
Larkin, J. E., Moore, A. M., Wright, S. A. et al. (2016), The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument overview. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9908.Google Scholar
Lecacheux, A. and Aubier, M. (1997), Re-visiting Saturnian kilometric radiation with Ulysses/URAP. Page 313 in: Rucker, H. O., Bauer, S. J. and Lecacheux, A. (eds.), Planetary Radio Emissions IV.Google Scholar
Lee, S., Yuk, I.-S., Lee, H. et al. (2010), GMTNIRS (Giant Magellan Telescope near-infrared spectrograph): Design concept. Ground-based and Airborne Instrumentation for Astronomy III, Vol. 7735.Google Scholar
Lellouch, E. (2008), Planetary atmospheres with ALMA. Astrophys. Space Sci. 313, 175181.Google Scholar
Li, C. and Ingersoll, A. P. (2015), Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms. Nature GeoSci. DOI:10.1038/NGE02405.Google Scholar
Marty, B., Guillot, T., Coustenis, A. et al. (2009), Kronos: Exploring the depths of Saturn with probes and remote sensing through an international mission. Exp. Astron. 23, 947976.CrossRefGoogle Scholar
McGregor, P. J., Bloxham, G. J., Boz, R. et al. (2012), GMT Integral-Field Spectrograph (GMTIFS) conceptual design. Ground-based and Airborne Instrumentation for Astronomy IV, Vol. 8446.Google Scholar
Mousis, O., Atkinson, D. H., Blanc, M. et al. (2016), Hera Saturn Entry Probe Mission. A proposal in response to the ESA call for a medium-size mission opportunity in ESA’s science programme for launch in 2029–2030 (M5). Submitted to ESA.Google Scholar
Mousis, O., Fletcher, L. N., Lebreton, J.-P. et al. (2014), Scientific rationale of Saturn’s in situ exploration. Planet. and Space Sci., 104, 2947.Google Scholar
Müller-Wodarg, I. C. F., Moore, L., Galand, M. et al. (2012), Magnetosphere-atmosphere coupling at Saturn. 1: Response of thermosphere and ionosphere to steady state polar forcing. Icarus 221, 481494, doi:10.1016/j.icarus.2012.08.034.Google Scholar
NASA, ESA (2009), Titan Saturn System Mission (TSSM) NASA/ESA Joint Summary Report, January 19, 2009.Google Scholar
National Research Council (NRC), Committee on the Planetary Science Decadal Survey (2011), Vision and Voyages for Planetary Science in the Decade 2013–2022. Washington, DC: The National Academies Press, http://www.nap.edu/catalog/13117.htmlGoogle Scholar
Nichols, J. D., Cecconi, B., Clarke, J. T. et al. (2010), Variation of Saturn’s UV aurora with SKR phase. Geophys. Res. Lett. 37, L15102, doi:10.1029/2010GL044057.Google Scholar
Nicholson, P. D., Drench, R. G., Bosh, A. S. (1999), Ring plane crossings and Saturn’s pole precession. Bull. Am. Astron. Soc. 31, 44.01.Google Scholar
Niemann, H. B., Atreya, S. K., Bauer, S. J. et al. (2005), The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 779784.CrossRefGoogle ScholarPubMed
Niemann, H. B., Atreya, S. K., Carignan, G. R. et al. (1998), The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. 103, 2283122846.CrossRefGoogle ScholarPubMed
Norwood, J., Moses, J., Fletcher, L. N. et al., (2016), Giant planet observations with the James Webb Space Telescope. doi:10.1088/1538–3873/128/959/018005.Google Scholar
O’Donoghue, J., Stallard, T. S., Melin, H. et al. (2013), The domination of Saturn’s low- latitude ionosphere by ring “rain.” Nature 496, 193195, doi:10.1038/nature12049.Google Scholar
Orton, G. S. and Yanamandra-Fisher, P. A. (2005), Saturn’s temperature field from high- resolution middle-infrared imaging. Science 307, 696698.Google Scholar
Orton, G. S., Yanamandra-Fisher, P. A., Brendan, M. et al. (2008), Semi-annual oscillations in Saturn’s low-latitude stratospheric temperatures. Nature 453, 196199.Google Scholar
Packham, C., Honda, M., Richter, M. et al. (2012), Key science drivers for MICHI: A mid- IR instrument concept for the TMT. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. doi:10.1117/12.924996.CrossRefGoogle Scholar
Pazder, J. S., Roberts, S., Abraham, R. et al. (2006), WFOS: A wide field optical spectrograph for the Thirty Meter Telescope. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269.Google Scholar
Reh, K. et al. (2009), Titan Saturn System Mission Study Final Report. JPL D–48148.Google Scholar
Sánchez-Lavega, A., Colas, F., Lecacheux, J. et al. (1991), The great white spot and disturbances in Saturn’s equatorial atmospheres during 1990. Nature 353, 397401.Google Scholar
Sánchez-Lavega, A., del Río-Gaztelurrutia, T., Delcroix, M. et al. (2012), Ground-based observations of the long-term evolution and death of Saturn’s 2010 Great White Spot. Icarus 220, 561576.Google Scholar
Sánchez-Lavega, A., del Río-Gaztelurrutia, T., Hueso, R. et al. (2011), Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature 475, 7174, doi:10.1038/nature10203.Google Scholar
Sánchez-Lavega, A., Pérez-Hoyos, S., Rjoas, J. F. et al. (2003), A strong decrease in Saturn’s equatorial jet at cloud level. Nature 423, 623625.Google Scholar
Sánchez-Lavega, A., Wesley, A., Orton, G. et al. (2010), The impact of a large object with Jupiter in July 2009. Astrophys. J. 715, L155L159.Google Scholar
Sanz-Requena, J. F., Pérez-Hoyos, S., Sánchez-Lavega, A. et al. (2012), Cloud structure of Saturn’s 2010 storm from ground-based visual imaging. Icarus 219, 142149.Google Scholar
Sayanagi, K. M., Dyudina, U. A., Ewald, S. P. et al. (2013), Dynamics of Saturn’s great storm of 2010–2011 from Cassini ISS and RPWS. Icarus 223, 460478.Google Scholar
Sinclair, J. A., Irwin, P. G. J., Fletcher, L. N. et al. (2014), From Voyager-IRIS to Cassini-CIRS: Interannual variability in Saturn’s stratosphere? Icarus 233, 281292.Google Scholar
Smith, C. G. A. (2006), Periodic modulation of gas giant magnetospheres by the neutral upper atmosphere. Annales Geophysicae 24, 27092717, doi:10.5194/angeo-24-2709–2006.Google Scholar
Southwood, D. J. and Cowley, S. W. H. (2014), The origin of Saturn’s magnetic periodicities: Northern and southern current systems, J. Geophys. Res. (Space Physics) 119, 15631571, doi:10.1002/2013JA019632.Google Scholar
Spencer, J. R., Barr, A. C., Esposito, L. W. et al. (2009), Enceladius: An active cryovolcanic satellite. Pp. 683724 in: Dougherty, M. K., Esposito, L. W. and Krimigis, S. M. (eds), Saturn from Cassini-Huygens. Springer.Google Scholar
Sromovsky, L. A., Baines, K. H. and Fry, P. M. (2013), Saturn’s Great Storm of 2010-2011: Evidence for ammonia and water ices from analysis of VIMS spectra. Icarus 226, 402418.Google Scholar
Stallard, T. S., Melin, H., Miller, S. et al. (2012), Temperature changes and energy inputs in giant planet atmospheres: what we are learning from H3+. Royal Society of London Philosophical Transactions Series A, 370, 52135224, doi:10.1098/rsta.2012.0028.Google Scholar
Szentgyorgyi, A., Bean, J., Bigelow, B. et al. (2014), A preliminary design for the GMT- Consortium Large Earth Finder (G-CLEF). Ground-based and Airborne Instrumentation for Astronomy V, Vol. 9147.Google Scholar
Temi, P., Marcum, P. M., Young, E. et al. (2014), The SOFIA observatory at the start of routine science operations: Mission capabilities and performance. The Astrophysical Journal Supplement Series 212, 24.Google Scholar
Thatte, N. A., Clarke, F., Bryson, I. et al. (2014), HARMONI: The first light integral field spectrograph for the E-ELT. Ground-based and Airborne Instrumentation for Astronomy V, Vol. 9147.Google Scholar
Thronson, H., Mandell, A., Polidan, R. S. et al. (2016), Special section guest editorial: Future large-aperture ultraviolet/optical/infrared space observatory. J. Astron. Telesc. Instrum. Syst. 2(4), 041201. doi:10.1117/1JATIS.2.4.041201.Google Scholar
Wong, M. H., Ádámkovics, M., Atreya, S. K. et al. (2009), A dedicated space observatory for time-domain solar system science. White Paper submitted to the 2009–2011 Planetary Science Decadal Survey, online at www8.nationalacademies.org/ssbsurvey/DetailFileDisplay.aspx?id=186&parm_type=PSDS (see pp. 208209 of the 2013–2022 Planetary Decadal Survey).Google Scholar
Zander, F. A. (1964), Problems of flight by jet propulsion: interplanetary flights, original publication 1925. NASA Technical Translation F-147.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×