Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T06:17:12.989Z Has data issue: false hasContentIssue false

8 - Lessons Learned from WhaleWatch

A Tool Using Satellite Data to Provide Near-Real-Time Predictions of Whale Occurrence

Published online by Cambridge University Press:  23 July 2018

Allison K. Leidner
Affiliation:
National Aeronautics and Space Administration, Washington DC
Graeme M. Buchanan
Affiliation:
Royal Society for the Protection of Birds (RSPB), Edinburgh
Get access

Summary

Blue whales (Balaenoptera musculus) are currently listed as Endangered on the International Union for Conservation of Nature’s (IUCN) Red List. Collisions with ships are an ongoing threat to their recovery. The goal of the WhaleWatch project was to create a near real-time tool predicting whale occurrence and densities in US West Coast waters to identify high-use areas and help reduce whale mortality from ship strikes. We combined remotely sensed environmental data and satellite telemetry of blue whales to create a habitat preference model and near real-time tool. During the development of WhaleWatch, several key lessons were learned: the importance of end user involvement in product development; the requirement of large telemetry data sets to describe species distributions over multiple years; the critical need for satellite-derived environmental data to develop the habitat model and to operationalise predictions based on current ocean conditions; the relevance of assessing biological realism versus statistical model fit in habitat models; the value of evaluating model performance using independent data sets; and the benefit of automation to improve sustainability beyond the lifetime of the initial development project. These near real-time tools will require regular evaluation and updating in response to changes in climate that alter the relationships between ocean conditions and marine species habitat use.
Type
Chapter
Information
Satellite Remote Sensing for Conservation Action
Case Studies from Aquatic and Terrestrial Ecosystems
, pp. 229 - 273
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarts, G., MacKenzie, M., McConnell, B., Fedak, M., and Matthiopoulos, J. (2008). Estimating space-use and habitat preference from wildlife telemetry data. Ecography, 31, 140160.CrossRefGoogle Scholar
Aarts, G., Fieberg, J., and Matthiopoulos, J. (2012). Comparative interpretation of count, presence–absence and point methods for species distribution models. Methods in Ecology and Evolution, 3, 177187.CrossRefGoogle Scholar
Ainley, D. G., Jongsomjit, D., Ballard, G., et al. (2012). Modeling the relationship of Antarctic minke whales to major ocean boundaries. Polar Biology, 35, 281290.CrossRefGoogle Scholar
Bailey, H., Shillinger, G., Palacios, D., et al. (2008). Identifying and comparing phases of movement by leatherback turtles using state-space models. Journal of Experimental Marine Biology and Ecology, 356, 128135.CrossRefGoogle Scholar
Bailey, H., Mate, B. R., Palacios, D. M., et al. (2009). Behavioural estimation of blue whale movements in the northeast Pacific from state-space model analysis of satellite tracks. Endangered Species Research, 10, 93106.CrossRefGoogle Scholar
Bailey, H., Benson, S. R., Shillinger, G. L., et al. (2012). Identification of distinct movement patterns in Pacific leatherback turtle populations influenced by ocean conditions. Ecological Applications, 22, 735747.CrossRefGoogle ScholarPubMed
Bailey, H., Hammond, P. S., and Thompson, P. M. (2014). Modelling harbour seal habitat by combining data from multiple tracking systems. Journal of Experimental Marine Biology and Ecology, 450, 3039.CrossRefGoogle Scholar
Barlow, J. and Forney, K. A. (2007). Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin, 105, 509526.Google Scholar
Baumgartner, M. F., Fratantoni, D. M., Hurst, T. P., et al. (2013). Real-time reporting of baleen whale passive acoustic detections from ocean gliders. Journal of the Acoustical Society of America, 134, 18141823.CrossRefGoogle ScholarPubMed
Becker, J. J., Sandwell, D. T., Smith, W. H. F., et al. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS, revised for Marine Geodesy, January 20, 2009.CrossRefGoogle Scholar
Becker, E. A., Forney, K. A., Ferguson, M. C., et al. (2010). Comparing California Current cetacean-habitat models developed using in situ and remotely sensed sea surface temperature data. Marine Ecology Progress Series, 413, 163183.CrossRefGoogle Scholar
Becker, E. A., Foley, D. G., Forney, K. A., et al. (2012a). Forecasting cetacean abundance patterns to enhance management decisions. Endangered Species Research, 16, 97112.CrossRefGoogle Scholar
Becker, E. A., Forney, K. A., Ferguson, M. C., Barlow, J., and Redfern, J. V. (2012b). Predictive modeling of cetacean densities in the California Current Ecosystem based on summer/fall ship surveys in 1991–2008. US Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-499.Google Scholar
Becker, E. A., Forney, K. A., Foley, D. G., et al. (2014). Predicting seasonal density patterns of California cetaceans based on habitat models. Endangered Species Research, 23, 122.CrossRefGoogle Scholar
Becker, E. A., Forney, K. A., Fiedler, P. C., et al. (2016). Moving towards dynamic ocean management: How well do modeled ocean products predict species distributions? Remote Sensing, 8, 149.CrossRefGoogle Scholar
Benson, S. R., Croll, D. A., Marinovic, B. B., Chavez, F. P., and Harvey, J. T. (2002). Changes in the cetacean assemblage of a coastal upwelling ecosystem during El Niño 1997–98 and La Niña 1999. Progress in Oceanography, 54, 279291.CrossRefGoogle Scholar
Berman-Kowalewski, M., Gulland, F. M. D., Wilkin, S., et al. (2010). Association between blue whale (Balaenoptera musculus) mortality and ship strikes along the California coast. Aquatic Mammals, 36, 5966.CrossRefGoogle Scholar
Best, B. D., Halpin, P. N., Read, A. J., et al. (2012). Online cetacean habitat modeling system for the US east coast and Gulf of Mexico. Endangered Species Research, 18, 115.CrossRefGoogle Scholar
Bond, N. A., Cronin, M. F., Freeland, H., and Mantua, N. (2015). Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters, 42, 34143420.CrossRefGoogle Scholar
Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In Launer, R. L. and Wilkinson, G. N., eds. Robustness in Statistics, New York, NY: Academic Press, pp. 201236.CrossRefGoogle Scholar
Brookes, K. L., Bailey, H., and Thompson, P. M. (2013). Predictions from harbor porpoise habitat association models are confirmed by long-term passive acoustic monitoring. Journal of the Acoustical Society of America, 134, 25232533.CrossRefGoogle ScholarPubMed
Brown, M. W., Kraus, S. D., Slay, C. K., and Garrison, L. P. (2007). Surveying for discovery, science, and management. In Kraus, S. D. and Rolland, R. M., eds., The Urban Whale: North Atlantic Right Whales at the Crossroads, Cambridge, Massachusetts: Harvard University Press, pp. 105137.Google Scholar
Calambokidis, J. and Barlow, J. (2004). Abundance of blue and humpback whales in the eastern North Pacific estimated by capture–recapture and line-transect methods. Marine Mammal Science, 20, 6385.CrossRefGoogle Scholar
Calambokidis, J. and Barlow, J. (2013). Updated abundance estimates of blue and humpback whales off the US West Coast incorporating photo-identifications from 2010 and 2011. Cascadia Research final report for contract AB133F-10-RP-0106.Google Scholar
Calambokidis, J., Schorr, G. S., Steiger, G. H., et al. (2008). Insights into the underwater diving, feeding, and calling behavior of blue whales from a suction-cup-attached video-imaging tag (Crittercam). Marine Technology Society Journal, 41, 1929.CrossRefGoogle Scholar
Calambokidis, J., Barlow, J., Ford, J. K. B., Chandler, T. E., and Douglas, A. B. (2009). Insights into the population structure of blue whales in the eastern North Pacific from recent sightings and photographic identification. Marine Mammal Science, 25, 816832.CrossRefGoogle Scholar
Carretta, J. V., Wilkin, S. M., Muto, M. M., and Wilkinson, K. (2013). Sources of human-related injury and mortality for U.S. Pacific west coast marine mammal stock assessments, 2007–2011. US Department of Commerce, NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-514.Google Scholar
Carretta, J. V., Oleson, E. M., Baker, J., et al. (2016). U.S. Pacific marine mammal stock assessments: 2015. US Department of Commerce, NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-561.Google Scholar
Casey, K. S., Brandon, T. B., Cornillon, P., and Evans, R. (2010). The past, present and future of the AVHRR Pathfinder SST Program. In Barale, V., Gower, J. F. R., and Alberotanza, L., eds. Oceanography from Space: Revisited. Springer, pp. 323341. See https://pathfinder.nodc.noaa.gov/OFS_21_Cas_09Dec2009.pdf.Google Scholar
Clapham, P. J., Young, S. B., and Brownell, R. L. Jr (1999). Baleen whales: conservation issues and the status of the most endangered populations. Mammal Review, 29, 3560.CrossRefGoogle Scholar
Costa, D. P., Robinson, P. W., Arnould, J. P. Y., et al. (2010). Accuracy of Argos locations of pinnipeds at-sea estimated using Fastloc GPS. PLOS ONE, 5, e8677,.CrossRefGoogle ScholarPubMed
Croll, D. A., Marinovic, B., Benson, S., , F. P. et al. (2005). From wind to whales: trophic links in a coastal upwelling system. Marine Ecology Progress Series, 289, 117130.CrossRefGoogle Scholar
Cuddington, K., Fortin, M. J., Gerber, L. R., et al. (2013). Process-based models are required to manage ecological systems in a changing world. Ecosphere, 4, article 20.CrossRefGoogle Scholar
Di Iorio, L. and Clark, C. W. (2010). Exposure to seismic survey alters blue whale acoustic communication. Biology Letters, 6, 5154.CrossRefGoogle ScholarPubMed
Di Lorenzo, E. and Mantua, N. (2016). Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change, 6, 10421047.CrossRefGoogle Scholar
Edrén, S. M. C., Wisz, M. S., Teilmann, J., Dietz, R., and Söderkvist, J. (2010). Modelling spatial patterns in harbour porpoise satellite telemetry data using maximum entropy. Ecography, 33, 698708.CrossRefGoogle Scholar
Fiedler, P. C., Reilly, S. B., Hewitt, R. P., et al. (1998). Blue whale habitat and prey in the California Channel Islands. Deep-Sea Research II, 45, 17811801.CrossRefGoogle Scholar
Forney, K. A., Ferguson, M. C., Becker, E. A., et al. (2012). Habitat-based spatial models of cetacean density in the eastern Pacific Ocean. Endangered Species Research, 16, 113133.CrossRefGoogle Scholar
Forney, K. A., Becker, E. A., Foley, D. G., Barlow, J., and Oleson, E. M. (2015). Habitat-based models of cetacean density and distribution in the central North Pacific. Endangered Species Research, 27, 120.CrossRefGoogle Scholar
Godley, B. J. and Wilson, R. P. (2008). Tracking vertebrates for conservation: introduction. Endangered Species Research, 4, 12.CrossRefGoogle Scholar
Goldbogen, J. A., Southall, B. L., DeRuiter, S. L., et al. (2013). Blue whales respond to simulated mid-frequency military sonar. Proceedings of the Royal Society B, 280, 20130657.CrossRefGoogle ScholarPubMed
Guisan, A. and Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147186.CrossRefGoogle Scholar
Guisan, A. and Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 9931009.CrossRefGoogle ScholarPubMed
Hays, G. C., Ferreira, L. C., Sequeira, A. M. M., et al. (2016). Key questions in marine megafauna movement ecology. Trends in Ecology & Evolution, 31, 463475.CrossRefGoogle ScholarPubMed
Hazen, E. L., Jorgensen, S., Rykaczewski, R. R., et al. (2012). Predicted habitat shifts of Pacific top predators in a changing climate. Nature Climate Change, 3, 234238.CrossRefGoogle Scholar
Hazen, E. L., Palacios, D., Forney, K. A., et al. (2016). WhaleWatch: a dynamic management tool for predicting blue whale density in the California Current. Journal of Applied Ecology, doi: 10.1111/1365–2664.12820.CrossRefGoogle Scholar
Hazen, E. L., Scales, K., Maxwell, S. M., et al. A dynamic ocean management tool to reduce by catch and support sustainable fisheries. Scientific Advances. In press.Google Scholar
Hobday, A. J., Hartog, J. R., Spillman, C. M., and Alves, O. (2011). Seasonal forecasting of tuna habitat for dynamic spatial management. Canadian Journal of Fisheries and Aquatic Sciences, 68, 898911.CrossRefGoogle Scholar
Hobday, A. J., Maxwell, S. M., Forgie, J., et al. (2014). Dynamic ocean management: integrating scientific and technological capacity with law, policy, and management. Stanford Environmental Law Journal, 33, 125165.Google Scholar
Hobday, A. J., Alexander, L. V., Perkins, S. E., et al. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141, 227238.CrossRefGoogle Scholar
Horning, N., Robinson, J. A., Sterling, E. J., Turner, W., and Spector, S. (2010). Remote Sensing for Ecology and Conservation: A Handbook of Techniques. Oxford: Oxford University Press.CrossRefGoogle Scholar
Howell, E. A., Kobayashi, D. R., Parker, D. M., Balazs, G. H., and Polovina, J. J. (2008). TurtleWatch: a tool to aid in the bycatch reduction of loggerhead turtles Caretta caretta in the Hawaii-based pelagic longline fishery. Endangered Species Research, 5, 267278.CrossRefGoogle Scholar
Howell, E. A., Hoover, A., Benson, S. R., et al. (2015). Enhancing the TurtleWatch product for leatherback sea turtles, a dynamic habitat model for ecosystem-based management. Fisheries Oceanography, 24, 5768.CrossRefGoogle Scholar
Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., et al. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543, 373377.CrossRefGoogle ScholarPubMed
Irvine, L. M., Mate, B. R., Winsor, M. H., et al. (2014). Spatial and temporal occurrence of blue whales off the US west coast, with implications for management. PLOS ONE, 9, e102959.CrossRefGoogle ScholarPubMed
Jacox, M. G., Hazen, E. L., Zaba, K. D., et al. (2016). Impacts of the 2015–2016 El Niño on the California Current System: early assessment and comparison to past events. Geophysical Research Letters, 43, 70727080.CrossRefGoogle Scholar
Jonsen, I. D., Fleming, J. M., and Myers, R. A. (2005). Robust state-space modeling of animal movement data. Ecology, 86, 28742880.CrossRefGoogle Scholar
Jonsen, I. D., Basson, M., Bestley, S., et al. (2013). State-space models for bio-loggers: a methodological road map. Deep-Sea Research II, 88 –89, 3446.CrossRefGoogle Scholar
Kraus, S. D., Brown, M. W., Caswell, H., et al. (2005). North Atlantic right whales in crisis. Science, 309, 561562.CrossRefGoogle ScholarPubMed
Laist, D. W., Knowlton, A. R., Mead, J. G., Collet, A. S., and Podesta, M. (2001). Collisions between ships and whales. Marine Mammal Science, 17, 3575.CrossRefGoogle Scholar
Laist, D. W., Knowlton, A. R., and Pendleton, D. (2014). Effectiveness of mandatory vessel speed limits for protecting North Atlantic right whales. Endangered Species Research, 23, 133147.CrossRefGoogle Scholar
Lefevre, S., McKenzie, D. J., and Nilsson, G. E. (2017). Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms. Global Change Biology, doi: 10.1111/gcb.13652.CrossRefGoogle Scholar
Lewison, R., Hobday, A. J., Maxwell, S., et al. (2015). Dynamic ocean management: identifying the critical ingredients of dynamic approaches to ocean resource management. BioScience, 65, 486498.CrossRefGoogle Scholar
Mate, B., Lagerquist, B., and Calambokidis, J. (1999). Movements of North Pacific blue whales during the feeding season off southern California and their southern fall migration. Marine Mammal Science, 15, 12461257.CrossRefGoogle Scholar
Mate, B., Mesecar, R., and Lagerquist, B. (2007). The evolution of satellite-monitored radio tags for large whales: one laboratory’s experience. Deep-Sea Research II, 54, 224247.CrossRefGoogle Scholar
Mate, B. R., Irvine, L. M., and Palacios, D. M. (2016). The development of an intermediate-duration tag to characterize the diving behavior of large whales. Ecology and Evolution, doi: 10.1002/ece3.2649.CrossRefGoogle Scholar
Maxwell, S. M., Hazen, E. L., Lewison, R. L., et al. (2015). Dynamic ocean management: defining and conceptualizing real-time management of the ocean. Marine Policy, 58, 4250.CrossRefGoogle Scholar
Monsarrat, S., Pennino, M. G., Smith, T. D., et al. (2015). Historical summer distribution of the endangered North Atlantic right whale (Eubalaena glacialis): a hypothesis based on environmental preferences of a congeneric species. Diversity and Distributions, doi: 10.1111/ddi.12314.CrossRefGoogle Scholar
Moore, J. E., Wallace, B. P., Lewison, R. L., et al. (2009). A review of marine mammals, sea turtle and seabird bycatch in USA fisheries and the role of policy in shaping management. Marine Policy, 33, 435451.CrossRefGoogle Scholar
National Geophysical Data Center (2006). 2-minute gridded global relief data (ETOPO2) v2. National Geophysical Data Center, NOAA. doi: 10.7289/V5J1012Q (accessed May 2015).CrossRefGoogle Scholar
National Marine Fisheries Service (2017). 2016 West coast entanglement summary. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. See www.westcoast.fisheries.noaa.gov/publications/protected_species/marine_mammals/cetaceans/wcr_2016_whale_entanglements_3-26-17_final.pdf. Accessed March 2017.Google Scholar
Nowacek, D. P., Thorne, L. H., Johnston, D. W., and Tyack, P. L. (2007). Responses of cetaceans to anthropogenic noise. Mammal Review, 37, 81115.CrossRefGoogle Scholar
O’Reilly, J. E., Maritorena, S., Mitchell, B. G., et al. (1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103, 24,93724,953.CrossRefGoogle Scholar
Page, B., McKenzie, J., Sumner, M. D., Coyne, M., and Goldsworthy, S. D. (2006). Spatial separation of foraging habitats among New Zealand fur seals. Marine Ecology Progress Series, 323, 263279.CrossRefGoogle Scholar
Pardo, M. A., Gerrodette, T., Beier, E., et al. (2015). Inferring cetacean population densities from the absolute dynamic topography of the ocean in a hierarchical Bayesian framework. PLOS ONE, 10, e0120727.CrossRefGoogle Scholar
Parks, S. E., Warren, J. D., Stamiezkin, K., Mayo, C. A., and Wiley, D. (2012). Dangerous dining: surface foraging of North Atlantic right whales increases risk of vessel collisions. Biology Letters, 8, 5760.CrossRefGoogle ScholarPubMed
Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O., and Matthiopoulos, J. (2008). State-space models of individual animal movement. Trends in Ecology and Evolution, 23, 8794.CrossRefGoogle ScholarPubMed
Read, A. J., Drinker, P., and Northridge, S. (2006). Bycatch of marine mammals in US and global fisheries. Conservation Biology, 20, 163169.CrossRefGoogle ScholarPubMed
Redfern, J. V., Ferguson, M. C., Becker, E. A., et al. (2006). Techniques for cetacean-habitat modeling. Marine Ecology Progress Series, 310, 271295.CrossRefGoogle Scholar
Redfern, J. V., McKenna, M. F., Moore, T. J., et al. (2013). Assessing the risk of ships striking large whales in marine spatial planning. Conservation Biology, 27, 292302.CrossRefGoogle ScholarPubMed
Reilly, S. B., Bannister, J. L., Best, P. B., et al. (2008). Balaenoptera musculus. The IUCN Red List of Threatened Species 2008:e.T2477A9447146. www.iucnredlist.org/pdflink.9447146. Accessed May 2017.Google Scholar
Reynolds, R. W., Smith, T. M., Liu, C., et al. (2007). Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20, 54735496.CrossRefGoogle Scholar
Rutz, C. and Hays, G. C. (2009). New frontiers in biologging science. Biology Letters, 5, 289292.CrossRefGoogle ScholarPubMed
Santora, J. A., Sydeman, W. J., Schroeder, I. D., Wells, B. K., and Field, J. C. (2011). Mesoscale structure and oceanographic determinants of krill hotspots in the California Current: implications for trophic transfer and conservation. Progress in Oceanography, 91, 397409.CrossRefGoogle Scholar
Santora, J. A., Field, J. C., Schroeder, I. D., et al. (2012). Spatial ecology of krill, micronekton and top predators in the central California Current: implications for defining ecologically important areas. Progress in Oceanography, 106, 154174.CrossRefGoogle Scholar
Sargaent, B. L., Wirsing, A. J., Heithaus, M. R., and Mann, J. (2007). Can environmental heterogeneity explain individual foraging variation in wild bottlenose dolphins (Tursiops sp.)? Behavioral Ecology and Sociobiology, 61, 679688.CrossRefGoogle Scholar
Saulitis, E., Matkin, C., Barrett-Lennard, L., Heise, K., and Ellis, G. (2000). Foraging strategies of sympatric killer whale (Orcinus orca) populations in Prince William Sound, Alaska. Marine Mammal Science, 16, 94109.CrossRefGoogle Scholar
Sears, R. and Perrin, W. F. (2009). Blue whale (Balaenoptera musculus). In Perrin, W. F., Würsig, B., and Thewissen, J. G. M., eds., Encyclopedia of Marine Mammals. San Diego, CA: Academic Press, pp. 120124.CrossRefGoogle Scholar
Shillinger, G. L., Bailey, H., Bograd, S. J., et al. (2012). Tagging through the stages: technical and ecological challenges in observing life histories through biologging. Marine Ecology Progress Series, 457, 165170.CrossRefGoogle Scholar
Silber, G. K., Adams, J. D., and Fonnesbeck, C. J. (2014). Compliance with vessel speed restrictions to protect North Atlantic right whales. PeerJ, 2, e399.CrossRefGoogle ScholarPubMed
Silber, G. K., Adams, J. D., Asaro, M. J., et al. (2015). The right whale mandatory ship reporting system: a retrospective. PeerJ, 3, e866.CrossRefGoogle ScholarPubMed
Silber, G. K., Lettrich, M., and Thomas, P. O. (2016). Report of a workshop on best approaches and needs for projecting marine mammal distributions in a changing climate. 12–14 January 2016, Santa Cruz, California, USA. US Department of Commerce, NOAA Technical Memorandum NMFS-OPR-54.Google Scholar
Simons, R. A. (2016). ERDDAP. See https://coastwatch.pfeg.noaa.gov/erddap.Google Scholar
Stone, G., Florez-Gonzalez, L., and Katona, S. (1990). Whale migration record. Nature, 346, 705.CrossRefGoogle Scholar
Thomas, P. I., Reeves, R. R., and Brownell, R. L. Jr (2016). Status of the world’s baleen whales. Marine Mammal Science, 32, 682734.CrossRefGoogle Scholar
Thompson, P. M., Brookes, K. L., and Cordes, L. S. (2015). Integrating passive acoustic and visual data to model spatial patterns of occurrence in coastal dolphins. ICES Journal of Marine Science, 72, 651660.CrossRefGoogle Scholar
Tremblay, Y. and Cherel, Y. (2003). Geographic variation in the foraging behaviour, diet and chick growth of rockhopper penguins. Marine Ecology Progress Series, 251, 279297.CrossRefGoogle Scholar
Van Parijs, S. M., Clark, C. W., Sousa-Lima, R. S., et al. (2009). Management and research applications of real-time and archival passive acoustic sensors over varying temporal and spatial scales. Marine Ecology Progress Series, 395, 2136.CrossRefGoogle Scholar
Van Waerebeek, K., Baker, A. N., Félix, F., et al. (2007). Vessel collisions with small cetaceans worldwide and with large whales in the southern hemisphere, an initial assessment. Latin American Journal of Aquatic Mammals, 6, 4369.CrossRefGoogle Scholar
Vanderlaan, A. S. M. and Taggart, C. T. (2007). Vessel collisions with whales: the probability of lethal injury based on vessel speed. Marine Mammal Science, 23, 144156.CrossRefGoogle Scholar
Wiley, D. N., Thompson, M. A., Pace, R. M., and Levenson, J. (2011). Modeling speed restrictions to mitigate lethal collisions between ships and whales in the Stellwagen Bank National Marine Sanctuary, USA. Biological Conservation, 144, 23772381.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×