Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T21:21:31.228Z Has data issue: false hasContentIssue false

10 - Storm Processes and Salt Marsh Dynamics

from Part II - Marsh Dynamics

Published online by Cambridge University Press:  19 June 2021

Duncan M. FitzGerald
Affiliation:
Boston University
Zoe J. Hughes
Affiliation:
Boston University
Get access

Summary

Marshes have long been considered useful for their ecosystem service of coastal protection. Their roles in protection from storms and floods are seen as necessary and important to many coastal communities (Barbier et al. 2011; Costanza et al. 1997; Millennium Ecosystem Assessment. 2005; Morgan et al. 2009). Understanding the impacts that storms have on coastal ecosystems and adjacent coastal communities is imperative to increasing coastal resilience in the face of future increases in coastal flooding and associated damage (Mendelsohn et al. 2012; Pielke et al. 2008). Salt marshes have been lauded as buffers to storm surges, wind-generated waves, and elevated water levels (French 2006; Möller 2012). The ecological restoration economy, which includes salt marsh restoration, in the USA alone generates $9.5 billion in annual economic output and employs an estimated 126,000 workers (BenDor et al. 2015). After Hurricane Sandy, the US Fish and Wildlife Service spent more than $40 million on salt marsh restoration projects in response to this single event, including $11 million toward restoring a series of salt marshes along Long Island.

Type
Chapter
Information
Salt Marshes
Function, Dynamics, and Stresses
, pp. 257 - 277
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. L. 1989. Evolution of salt‐marsh cliffs in muddy and sandy systems: A qualitative comparison of British West‐Coast estuaries. Earth Surface Processes and Landforms, 14: 8592.Google Scholar
Allison, M. A., and Kepple, E. 2001. Modern sediment supply to the lower delta plain of the Ganges-Brahmaputra River in Bangladesh. Geo-Marine Letters, 21: 6674.Google Scholar
Barbier, E. B., Georgiou, I. Y., Enchelmeyer, B., and Reed, D. J. 2013. The value of wetlands in protecting Southeast Louisiana from hurricane storm surges. PLOS ONE, 8: 16.Google Scholar
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs, 81: 169193.CrossRefGoogle Scholar
Barras, J. A. 2007. Land area changes in coastal Louisiana after Hurricanes Katrina and Rita. In Farris, G. S., Smith, G. J., Crane, M. P., Demas, C. R., Robbins, L. L., and Lavoie, D. L., eds., Science and the Storms: The USGS Response to the Hurricanes of 2005 pp. 97–112. U.S. Geological Survey Circular 1306.Google Scholar
Baustian, J. J., and Mendelssohn, I. A. 2015. Hurricane-induced sedimentation improves marsh resilience and vegetation vigor under high rates of relative sea level rise. Wetlands, 35: 795802.Google Scholar
BenDor, T., Lester, T. W., Livengood, A., Davis, A., and Yonavjak, L. 2015. Estimating the size and impact of the ecological restoration economy. PLOS ONE, 10: 115. https://doi.org/10.1371/journal.pone.0128339Google Scholar
Boldt, K. V., Lane, P., Woodruff, J. D., and Donnelly, J. P. 2010. Calibrating a sedimentary record of overwash from Southeastern New England using modeled historic hurricane surges. Marine Geology, 275: 127139.Google Scholar
Boose, E. R., Chamberlin, K. E., and Foster, D. R. 2001. Landscape and regional impacts of hurricanes in New England. Ecological Monographs, 71: 2748.Google Scholar
Brandon, C. M., Woodruff, J. D., Lane, D. P., and Donnelly, J. P. 2013. Tropical cyclone wind speed constraints from resultant storm surge deposition: A 2500 year reconstruction of hurricane activity from St. Marks, FL. Geochemistry, Geophysics, Geosystems, 14: 29933008.Google Scholar
Burkett, V., Groat, C. G., and Reed, D. 2007. Hurricanes not the key to a sustainable coast. Science, 315: 13661367.Google Scholar
Cahoon, D. R. 2006. A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts, 29: 889898.Google Scholar
Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M.. Limburg, K. et al. 1997. The value of the world’s ecosystem services and natural capital. Nature, 387: 253260.Google Scholar
Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., and Turner, R. K. 2014. Changes in the global value of ecosystem services. Global Environmental Change, 26: 152158.Google Scholar
Craft, C., Clough, J., Ehman, J., Jove, S., Park, R., Pennings, S., Guo, H. and Machmuller, M. 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment, 7: 7378.Google Scholar
Day, J. W., Boesch, D. F., Clairain, E. J., Kemp, G. P., Laska, S. B., Mitsch, W. J., Orth, K. et al. 2007. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science, 315: 16791684.Google Scholar
Donnelly, J. P. 2004. Coupling instrumental and geological records of sea-level change: Evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century. Geophysical Research Letters, 31: 25.Google Scholar
Donnelly, J. P., Hawkes, A. D., Lane, P., Macdonald, D., Shuman, B. N., Toomey, M. R., van Hengstum, P. J., and Woodruff, J. D. 2015. Climate forcing of unprecedented intense-hurricane activity in the last 2000 years. Earth’s Future, 3: 4965.Google Scholar
Donnelly, J. P., Roll, S., Wengren, M., Butler, J., Lederer, R., and Webb, T. 2001. Sedimentary evidence of intense hurricane strikes from New Jersey. Geology, 29: 615618.Google Scholar
Donnelly, J. P., Smith Bryant, S., Butler, J., Dowling, J., Fan, L., Hausmann, N., Newby, P., et al. 2001. 700 yr sedimentary record of intense hurricane landfalls in southern New England. Geological Society of America Bulletin, 113: 714727.Google Scholar
Elsey-Quirk, T. 2016. Impact of Hurricane Sandy on salt marshes of New Jersey. Estuarine, Coastal and Shelf Science, 183: 235248.CrossRefGoogle Scholar
Engelhart, S. E., Horton, B. P., Douglas, B. C., Peltier, W. R., and Törnqvist, T. E. 2009. Spatial variability of late Holocene and 20th century sea-level rise along the Atlantic coast of the United States. Geology, 37: 11151118.Google Scholar
Fagherazzi, S., Mariotti, G., Wiberg, P. L., and McGlathery, K. J. 2013. Marsh collapse does not require sea level rise. Oceanography, 26: 7077.Google Scholar
Feagin, R. A., Lozada-Bernard, S. M., Ravens, T. M., Moller, I., Yeager, K. M., and Baird, A. H. 2009. Does vegetation prevent wave erosion of salt marsh edges? Proceedings of the National Academy of Sciences of the USA, 106: 1010910113.Google Scholar
French, J. 2006. Tidal marsh sedimentation and resilience to environmental change: Exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. Marine Geology, 235: 119136.CrossRefGoogle Scholar
Frey, R. W., and Basan, P. B. 1978. Coastal salt marshes. In Davis, R. A. Jr., ed., Coastal Sedimentary Environments. New York: Springer, pp. 225302.Google Scholar
Ganju, N. K., Kirwan, M. L., Dickhudt, P. J., Guntenspergen, G. R., Cahoon, D. R., and Kroeger, K. D. 2015. Sediment transport-based metrics of wetland stability. Geophysical Research Letters, 42: 79928000.Google Scholar
Gardner, L. R., Michener, W. K., Kjerve, B., and Lipscomb, D. J. 1992. Disturbance effects of Hurricane Hugo on a pristine coastal landscape: North Inlet, South Carolina, USA. Netherlands Journal of Sea Reasearch, 30: 249263.Google Scholar
Gedan, K. B., Altieri, A. H., and Bertness, M. D. 2011. Uncertain future of New England salt marshes. Marine Ecology Progress Series, 434: 229237.Google Scholar
Goodbred, S. L., and Hine, A. C. 1995. Coastal storm deposition: Salt-marsh response to a severe extratropical storm, March 1993, west-central Florida. Geology, 23: 679682.Google Scholar
Hippensteel, S. P. 2008. Preservation potential of storm deposits in South Carolina back-barrier marshes. Journal of Coastal Research, 243: 594601.Google Scholar
Hippensteel, S. P., and Martin, R. E. 1999. Foraminifera as an indicator of overwash deposits, Barrier Island sediment supply, and Barrier Island evolution: Folly Island, South Carolina. Palaeogeography, Palaeoclimatology, Palaeoecology, 149: 115125.CrossRefGoogle Scholar
Howes, N. C., FitzGerald, D. M., Hughes, Z. J., Georgiou, I. Y., Kulp, M. A., Miner, M. D., Smith, J. M., Barras, J. A. 2010. Hurricane-induced failure of low salinity wetlands. Proceedings of the National Academy of Sciences of the USA, 107: 1401414019.CrossRefGoogle ScholarPubMed
Hu, K., Chen, Q., Wang, H., Hartig, E. K., and Orton, P. M. 2018. Numerical modeling of salt marsh morphological change induced by Hurricane Sandy. Coastal Engineering, 132: 6381.CrossRefGoogle Scholar
Kemp, A. C., Bernhardt, C. E., Horton, B. P., Kopp, R. E., Vane, C. H., Peltier, W. R., Hawkes, A. D., et al. 2014. Late Holocene sea- and land-level change on the U.S. southeastern Atlantic coast. Marine Geology, 357: 90100.Google Scholar
Kemp, A. C., Hawkes, A. D., Donnelly, J. P., Vane, C. H., Horton, B. P., Hill, T. D., Anisfeld, S. C. et al. 2015. Relative sea-level change in Connecticut USA ) during the last 2200 yrs. Earth and Planetary Science Letters, 428: 217229.Google Scholar
Kiage, L., Deocampo, D., Mccloskey, T. A., Bianchette, T. A., and Hursey, M. 2011. A 1900-year paleohurricane record from Wassaw Island, Georgia, USA. Journal of Quaternary Science, 26: 714722.Google Scholar
Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R., and Faghe, S. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change, 6: 253260.Google Scholar
Kolker, A. S., Goodbred, S. L., Hameed, S., and Cochran, J. K. 2009. High-resolution records of the response of coastal wetland systems to long-term and short-term sea-level variability. Estuarine, Coastal and Shelf Science, 84: 493508.Google Scholar
Kopp, R. E., Kemp, A. C., Bittermann, K., Horton, B. P., Donnelly, J. P., Gehrels, W. R., Hay, C. C., et al. 2016. Temperature-driven global sea-level variability in the Common Era. Proceedings of the National Academy of Sciences of the USA, 113: 18.Google Scholar
van de Koppel, J., van der Wal, D., Bakker, J. P., and Herman, P. M. J. 2005. Self-organization and vegetation collapse in salt marsh ecosystems. The American Naturalist, 165: E1E12.CrossRefGoogle ScholarPubMed
Lane, P., Donnelly, J. P., Woodruff, J. D., and Hawkes, A. D. 2011. A decadally-resolved paleohurricane record archived in the late Holocene sediments of a Florida sinkhole. Marine Geology, 287: 1430.Google Scholar
Leonard, L. A., Hine, A. C., and Luther, M. E. 1995. Surficial sediment transport and deposition processes in a Juncus roemerianus marsh. Journal of Coastal Research, 11: 322336.Google Scholar
Leonardi, N., Defne, Z., Ganju, N. K., and Fagherazzi, S. 2016. Salt marsh erosion rates and boundary features in a shallow bay. Journal of Geophysical Research: Earth Surface, 121: 18611875.Google Scholar
Leonardi, N., and Fagherazzi, S. 2014. How waves shape salt marshes. Geology, 42: 887890.Google Scholar
Leonardi, N., Ganju, N. K., and Fagherazzi, S. 2016. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences of the USA, 113: 6468.Google Scholar
Loder, N. M., Irish, J. L., Cialone, M. A., and Wamsley, T. V. 2009. Sensitivity of hurricane surge to morphological parameters of coastal wetlands. Estuarine, Coastal and Shelf Science, 84: 625636.Google Scholar
Long, A. J., Waller, M. P., and Stupples, P. 2006. Driving mechanisms of coastal change: Peat compaction and the destruction of late Holocene coastal wetlands. Marine Geology, 2251–4: 6384.Google Scholar
Ludlum, D. M. 1963. Early American Hurricanes. Boston, MA: American Meterological Society.Google Scholar
Marsooli, R., Orton, P. M., Georgas, N., and Blumberg, A. F. 2016. Three-dimensional hydrodynamic modeling of coastal flood mitigation by wetlands. Coastal Engineering, 111: 8394.Google Scholar
McowenC. J.WeatherdonL. V.BochoveJ.-W. V.  SullivanE., BlythS.ZocklerC.Stanwell-Smith, D., et al. 2017. A global map of saltmarshes. Biodiversity Data Journal510.3897/BDJ.5.e11764.Google Scholar
McKee, K. L., and Cherry, J. A. 2009. Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River delta. Wetlands, 29: 215.Google Scholar
McLoughlin, S. M., Wiberg, P. L., Safak, I., and McGlathery, K. J. 2015. Rates and forcing of marsh edge erosion in a shallow coastal bay. Estuaries and Coasts, 38: 620638.Google Scholar
Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L. 2012. The impact of climate change on global tropical cyclone damage. Nature Climate Change, 2: 205209.Google Scholar
Millennium Ecosystem Assessment 2005. Ecosystems and human well-being: Wetlands and water synthesis. Millennium Ecosystem Assessment. Washington, DC.Google Scholar
Miller, K. G., Sugarman, P. J., Browning, J. V., Horton, B. P., Stanley, A., Kahn, A., Uptegrove, J., and Aucott, M. 2009. Sea-level rise in New Jersey over the past 5000 years: Implications to anthropogenic changes. Global and Planetary Change, 66: 1018.Google Scholar
Möller, I. 2012. Bio-physical linkages in coastal wetlands – implications for coastal protection. Crossing Borders in Coastal Research: Jubilee Conference Proceedings. https://doi.org/10.3990/2.170CrossRefGoogle Scholar
Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B. K., Wolters, G., et al. 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience, 7: 727731.Google Scholar
Morgan, P. A., Burdick, D. M., and Short, F. T. 2009. The functions and values of fringing salt marshes in northern New England, USA. Estuaries and Coasts, 32: 483495.Google Scholar
Morton, R. A., and Barras, J. A. 2011. Hurricane impacts on coastal wetlands: A half-century record of storm-generated features from Southern Louisiana. Journal of Coastal Research, 27: 2743.Google Scholar
Muller, J., Collins, J. M., Gibson, S. and Paxton, L. 2017. Recent advances in the emerging field of paleotempestology. In: Hurricanes and Climate Change. Springer, Cham, pp. 133.Google Scholar
Nikitina, D. L., Kemp, A. C., Horton, B. P., Vane, C. H., van de Plassche, O., and Engelhart, S. E. 2014. Storm erosion during the past 2000 years along the north shore of Delaware Bay, USA. Geomorphology, 208: 160172.Google Scholar
Oliva, F., Viau, A. E., Peros, M. C., and Bouchard, M. 2018. Paleotempestology database for the western North Atlantic basin. Holocene, 28: 16641671.CrossRefGoogle Scholar
Orton, P., Talke, S., Jay, D., Yin, L., Blumberg, A., Georgas, N., Zhao, H., Roberts, H. J., and MacManus, K. 2015. Channel shallowing as mitigation of coastal flooding. Journal of Marine Science and Engineering, 3: 654673.Google Scholar
Pielke, R. Jr, Gratz, J., and Landsea, C. 2008. Normalized hurricane damage in the United States: 1900–2005. Natural Hazards Review, 29–42. https://ascelibrary.org/doi/10.1061/%28ASCE%291527-6988%282008%299%3A1%2829%29Google Scholar
van de Plassche, O., Erkens, G., van Vliet, F., Brandsma, J., van der Borg, K., and de Jong, A. F. M. 2006. Salt-marsh erosion associated with hurricane landfall in southern New England in the fifteenth and seventeenth centuries. Geology, 34: 829832.Google Scholar
van de Plassche, O., van der Borg, K., and de Jong, A. F. M. 1999. Sea level – climate correlation during the past 1400 yr. Geology, 26: 319322.Google Scholar
van de Plassche, O., Wright, A. J., van der Borg, K., and de Jong, A. F. M. 2004. On the erosive trail of a 14th and 15th century hurricane in Connecticut (USA) salt marshes. Radiocarbon, 46: 11111150.Google Scholar
Postma, H. 1961. Transport and accumulation of suspended matter in the Dutch Wadden Sea. Netherlands Journal of Sea Reasearch, 1: 148190.Google Scholar
Priestas, A., Mariotti, G., Leonardi, N., and Fagherazzi, S. 2015. Coupled wave energy and erosion dynamics along a salt marsh boundary, Hog Island Bay, Virginia, USA. Journal of Marine Science and Engineering, 3: 10411065.Google Scholar
Redfield, A. 1972. Development of a New England Salt Marsh. Ecological Monographs, 42: 201237.CrossRefGoogle Scholar
Redfield, A. C. 1965. Ontogeny of a salt marsh estuary. Science, 147: 5055.Google Scholar
Resio, D. T., and Westerink, J. J. 2008. Modeling the physics of storm surges. Physics Today, 61: 3338.Google Scholar
Schuerch, M., Vafeidis, A., Slawig, T., and Temmerman, S. 2013. Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. Journal of Geophysical Research: Earth Surface, 118: 8496.Google Scholar
Schwimmer, R. A., and Pizzuto, J. E. 2000. A model for the evolution of marsh shorelines. Journal of Sedimentary Research, 70: 10261035.Google Scholar
Shennan, I., and Horton, B. 2002. Holocene land- and sea-level changes in Great Britain. Journal of Quaternary Science, 175–6: 511526.Google Scholar
Shepard, C. C., Crain, C. M., and Beck, M. W. 2011. The protective role of coastal marshes: A systematic review and meta-analysis. PLOS ONE, 6: e27374. https://doi.org/10.1371/journal.pone.0027374Google Scholar
Snedden, G. A., Cretini, K., and Patton, B. 2014. Inundation and salinity impacts to above- and belowground productivity in Spartina patens and Spartina alterniflora in the Mississippi River deltaic plain: Implications for using river diversions as restoration tools. Ecological Engineering, 81: 133139.Google Scholar
Stark, J., Van Oyen, T., Meire, P., and Temmerman, S. 2015. Observations of tidal and storm surge attenuation in a large tidal marsh. Limnology and Oceanography, 60: 13711381.Google Scholar
Stumpf, R. P. 1983. The process of sedimentation on the surface of a salt marsh. Estuarine, Coastal and Shelf Science, 17: 495508.Google Scholar
Tate, A. S., and Battaglia, L. L. 2013. Community disassembly and reassembly following experimental storm surge and wrack application. Journal of Vegetation Science, 24: 4657.Google Scholar
Temmerman, S., Bouma, T. J., Govers, G., Wang, Z. B., De Vries, M. B., and Herman, P. M. J. 2005. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface, 110: 118.Google Scholar
Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., and De Vriend, H. J. 2013. Ecosystem-based coastal defence in the face of global change. Nature, 504: 7983.Google Scholar
Turner, R. E., Baustian, J. J., Swenson, E. M., and Spicer, J. S. 2006. Wetland sedimentation from hurricanes Katrina and Rita. Science, 314: 449452.Google Scholar
Tweel, A. W., and Turner, R. E. 2012. Landscape-scale analysis of wetland sediment deposition from four tropical cyclone events. PLOS ONE, 7(11). https://doi.org/10.1371/journal.pone.0050528Google Scholar
Walsh, K. J. E., McBride, J. L., Klotzbach, P. J., Balachndran, S., Camargo, S. J., Holland, G. J., … Sugi, M. 2016. Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change, 7: 6589.Google Scholar
Walters, D. C., and Kirwan, M. L. 2016. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise. Ecology and Evolution, 6: 29482956.Google Scholar
Walters, D., Moore, L. J., Vinent, O. D., Fagherazzi, S., and Mariotti, G. 2014. Interactions between barrier islands and marshes affect island system response to sea level rise: Insights from a coupled model. Journal of Geophysical Research: Earth Surface, 119: 20132031.Google Scholar
Wamsley, T. V., Cialone, M. A., Smith, J. M., Ebersole, B. A., and Grzegorzewski, A. S. 2009. Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana. Natural Hazards, 51: 207224.Google Scholar
Watson, E. B., Wigand, C., Davey, E. W., Andrews, H. M., Bishop, J., and Raposa, K. B. 2017. Wetland Loss Patterns and Inundation-Productivity Relationships Prognosticate Widespread Salt Marsh Loss for Southern New England. Estuaries and Coasts, 40: 662681.Google Scholar
Williams, H. F. L. 2012. Magnitude of Hurricane Ike storm surge sedimentation: Implications for coastal marsh aggradation. Earth Surface Processes and Landforms, 37: 901906.Google Scholar
Wilson, K. R., Kelley, J. T., Croitoru, A., Dionne, M., Belknap, D. F., and Steneck, R. 2009. Stratigraphic and ecophysical characterizations of salt pools: Dynamic landforms of the webhannet salt marsh, wells, ME, USA. Estuaries and Coasts, 32: 855870.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×