Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:04:11.987Z Has data issue: false hasContentIssue false

2 - Salt Marsh Distribution, Vegetation, and Evolution

from Part I - Marsh Function

Published online by Cambridge University Press:  19 June 2021

Duncan M. FitzGerald
Affiliation:
Boston University
Zoe J. Hughes
Affiliation:
Boston University
Get access

Summary

Salt marshes are common globally in low-lying coastal environments. Their geological settings and ecosystems vary widely by latitude and climatic settings (Chapman, 1960). Allen (2000) provides a comprehensive sketch of European salt marshes, while Rogers and Woodroffe (2014) give a recent summary of the subject. Woodwell et al. (1973) suggest that there are more than 38 million hectares (380,000 km2) of salt marshes worldwide, but specific delineation of distributions is incomplete, particularly in Asia, Africa, and South America. That area is greater than the total area of coastal American states from New Jersey to South Carolina. This chapter concentrates on the east coast of North America as containing examples of well-studied environments, with a few additional examples.

Type
Chapter
Information
Salt Marshes
Function, Dynamics, and Stresses
, pp. 9 - 30
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge, UK.Google Scholar
Allen, J. R. L. 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19: 11551231.Google Scholar
Aman, J., and Grimes, K. W. 2016. Measuring impacts on invasive European Green Crabs on Maine Salt Marshes: a novel approach: Report to the Maine Outdoor Heritage Fund.Google Scholar
Argow, B. A., and FitzGerald, D. M. 2006. Winter processes on northern salt marshes: evaluating the impact of in-situ peat compaction due to ice loading, Wells, ME. Estuarine, Coastal and Shelf Science, 69: 360369.CrossRefGoogle Scholar
Argow, B. A., Hughes, Z. J., and FitzGerald, D. M. 2011. Ice raft formation, sediment load, and theoretical potential for ice-rafted sediment influx on northern coastal wetlands. Continental Shelf Research, 31: 12941395.CrossRefGoogle Scholar
Barras, J., Beville, S., Britsch, D., Hartley, S., Hawes, S., Johnston, J., Reed, D., Roy, K., Sapkota, S., and Suhaayda, J. 2004. Historical and projected coastal Louisiana land changes: 1978–2050: U.S. Geological Survey Open-File Report OFR 03-334.CrossRefGoogle Scholar
Belknap, D. F. 1999. Sea-level rise and Gulf of Maine salt marshes. Gulf of Maine NEWS, Regional Association for Research on the Gulf of Maine, Spring, 1999: 1, 810.Google Scholar
Belknap, D. F. 2003. Salt marshes. In: Middleton, G., ed., Encyclopedia of Sediments and Sedimentary Rocks. Kluwer Academic Publishers, Dordrecht, pp. 586588.Google Scholar
Belknap, D. F., Andersen, B. G., Anderson, R. S., Anderson, W. A., Borns, H. W. Jr., Jacobson, G. Jr., et al. 1987. Late Quaternary sea-level changes in Maine. In: Nummedal, D., Pilkey, O. H. Jr. and Howard, J. D., eds., Sea-Level Fluctuation and Coastal Evolution, Society of Economic Paleontologists and Mineralogists Special Publication, No. 41, pp. 7185.Google Scholar
Belknap, D. F., Gontz, A. M., and Kelley, J. T. 2005. Paleodeltas and preservation potential on a paraglacial coast – evolution of eastern Penobscot Bay, Maine. Chapter 16. In: FitzGerald, D. M. and Knight, J., eds., High Resolution Morphodynamics and Sedimentary Evolution of Estuaries. Springer, Dordrecht, pp. 335360.Google Scholar
Belknap, D. F., Kelley, J. T., FitzGerald, D. M., and Buynevich, I. 2004. Quaternary Sea-level Changes and Coastal Evolution in Eastern and Central Coastal Maine, Field Trip Guidebook, International Geological Correlation Program #495, Quaternary Land-Ocean Interactions: Driving Mechanisms and Coastal Responses, Conference and Field Trip, Bar Harbor, ME, October 14–17, 2004, Dept. Earth Sciences, UniMaine, Orono.Google Scholar
Belknap, D. F., Kelley, J. T., and Gontz, A. M. 2002. Evolution of the glaciated shelf and coastline of the northern Gulf of Maine, USA. Journal of Coastal Research Special Issue, 36: 3755.Google Scholar
Belknap, D. F., and Kraft, J. C. 1977. Holocene relative sea-level changes and coastal stratigraphic units on the northwest flank of the Baltimore Canyon Trough geosyncline. Journal of Sedimentary Petrology, 47: 610629.Google Scholar
Belknap, D. F., and Kraft, J. C. 1981. Preservation potential of transgressive coastal lithosomes on the U.S. Atlantic Shelf. Marine Geology, 42: 429442.Google Scholar
Belknap, D. F., and Kraft, J. C. 1985. Influence of antecedent geology on stratigraphic preservation potential and evolution of Delaware's barrier systems. Marine Geology, 63: 235262.Google Scholar
Belknap, D. F., Kraft, J. C., and Dunn, R. K. 1994. Transgressive valley-fill lithosomes: Delaware and Maine: In: Boyd, R., Zaitlin, B. A. and Dalrymple, R., eds., Incised Valley Fill Systems, SEPM Special Pub. 51: 303320.Google Scholar
Belknap, D. F., and Wilson, K. R. 2014. Invasive green crab impacts on salt marshes in Maine – sudden increase in erosion potential. Geological Society of America Abstracts with Programs, 46, no. 1, Abstract 55-9: 104.Google Scholar
Belknap, D. F., and Wilson, K. R. 2015. Effects of invasive Green Crabs on salt marshes in Maine. Geological Society of America Abstracts with Programs, 47, no. 1, Abstract 65-8: 127128.Google Scholar
Bertness, M. D. 1992. The ecology of a New England salt marsh. American Scientist, 80: 260268.Google Scholar
Bertness, M. D. 2007. Atlantic Shorelines: Natural History and Ecology. Princeton University Press.Google Scholar
Bertness, M. D., and Ellison, A. M. 1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs, 57: 129147.Google Scholar
Bloom, A. L. 1964. Peat accumulation and compaction in a Connecticut coastal marsh. Journal of Sedimentary Petrology, 34: 599603.Google Scholar
Boumans, R. M., and Day, J. W. Jr. 1993. High precision measurement of surface elevation in shallow coastal areas using a sediment-erosion table. Estuaries, 16: 375380.CrossRefGoogle Scholar
Boyd, B., and Sommerfield, C. K. 2017. Detection of fallout 241Am in U.S. Atlantic salt marsh soils. Estuarine, Coastal and Shelf Science, 196: 373378.CrossRefGoogle Scholar
Cahoon, D. R., Lynch, J. C., and Powell, A. N. 1996. Marsh vertical accretion in a Southern California estuary U.S.A. Estuarine, Coastal and Shelf Science, 43: 1932.Google Scholar
Cahoon, D. R., and Reed, D. J. 1995. Relationships among marsh surface topography, hydroperiod, and soil accretion in a deteriorating Louisiana salt marsh. Journal of Coastal Research, 11: 357369.Google Scholar
Cahoon, D. R., Reed, D. J., and Day, J. W. Jr.. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology, 128: 19.Google Scholar
Cahoon, D. R., and Turner, R. E. 1989. Accretion and canal impacts in a rapidly subsiding wetland II. Feldspar marker horizon technique. Estuaries, 12: 260268.CrossRefGoogle Scholar
Chapman, V. J. 1960. Salt Marshes and Salt Deserts of the World, Interscience Publishes, Inc, New York.Google Scholar
Chmura, G. L., Anisfled, S. C., Cahoon, D. R., and Lynch, J. C. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17: 11111133.Google Scholar
Chmura, G. L., Helmer, L. L., Beecher, C. B., and Sunderland, E. M. 2001. Historical rates of salt marsh accretion on the outer Bay of Fundy. Canadian Journal of Earth Sciences, 38: 10811092.Google Scholar
Clark, J. S. 1986. Late-Holocene vegetation and coastal processes at a Long Island tidal marsh. Journal of Ecology, 74: 561578.Google Scholar
Curray, J. R. 1964. Transgressions and regressions. In: Miller, R. L., ed., Papers in Marine Geology, MacMillan, New York, pp. 175203.Google Scholar
Daly, J. F., Belknap, D. F., Kelley, J. T., and Bell, T. 2007. Late Holocene sea-level change around Newfoundland. Canadian Journal of Earth Sciences, 44: 14531465.Google Scholar
Darby, F. A., and Turner, R. E.. 2008. Effects of eutrophication to salt marsh roots, rhizomes, and soils. Marine Ecology Progress Series, 363: 6370.CrossRefGoogle Scholar
Davidson-Arnott, R. G. D., van Proosdij, D. V. Ollerhead, J., and Schostak, L. 2002. Hydrodynamics and sedimentation in salt marshes: examples from a macrotidal marsh, Bay of Fundy. Geomorphology, 48: 209231.Google Scholar
Day, J. D., Britsch, L. D., Hawes, S., Shaffer, G. P., Reed, D. J., and Cahoon, D. 2000. Pattern and process of land loss in the Mississippi Delta: a spatial and temporal analysis of wetland habitat change. Estuaries, 23: 425438.Google Scholar
Day, J. D., Boesch, D. F., Clairain, E. J., Kemp, G. P., Laska, S. B., Mitsch, W. J., Orth, K., et al. 2007. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science, 315: 16791684.Google Scholar
DeLaune, R. D., Baumann, R. H., and Gosselink, J. G. 1983. Relationships among vertical accretion, coastal submergence and erosion in a Louisiana Gulf Coast marsh. Journal of Sedimentary Petrology, 53: 147157.Google Scholar
DeLaune, R. D., Nyman, J. A., and Patrick, W. H. Jr. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research, 10: 10211030.Google Scholar
DeLaune, R. D., Whitcomb, J. H., Patrick, W. H. Jr., Pardue, J. H., and Pezeshki, S. R. 1989. Accretion and canal impacts in a rapidly subsiding wetland I. 137Cs and 210Pb techniques. Estuaries, 12: 247259.Google Scholar
Dionne, M., Short, F. T., and Burdick, D. M. 1999. Fish utilization of restored, created, and reference salt-marsh habitat in the Gulf of Maine. American Fisheries Society Symposium, 22: 84404.Google Scholar
Donnelly, J. P., Bryant, S. S., Butler, J., Dowling, J., Fan, L., Hausmann, N., Newby, P., Shuman, B., Stern, J., and Webb, T. III. 2001. 700 yr sedimentary record of intense hurricane landfalls in southern New England. Geological Society of America Bulletin, 113: 714727.Google Scholar
Engelhart, S. E., and Horton, B. P. 2012. Holocene sea level database for the Atlantic coast of the United States. Quaternary Science Reviews, 54: 1225.CrossRefGoogle Scholar
Engelhart, S. E., Horton, B. P., and Kemp, A. C. 2011. Holocene sea levels along the United States’ Atlantic coast. Oceanography, 24: 7079.Google Scholar
FitzGerald, D. M., Buynevich, I., and Argow, B. 2006. Model of tidal inlet and barrier island dynamics in a regime of accelerated sea-level rise. Journal of Coastal Research, Special Issue, 39: 789795.Google Scholar
FitzGerald, D. M., Fenster, M. S., Argow, B. A., and Buynevich, I. V. 2008. Coastal impacts due to sea-level rise. Annual Review of Earth and Planetary Sciences, 36, 601647.Google Scholar
French, J. R., and Stoddart, D. R. 1992, Hydrodynamics of salt marsh creek systems: implications for marsh morphological development and material exchange. Earth Surface Processes and Landforms, 17: 235252.Google Scholar
Frey, R. W., and Basan, P. B. 1985. Coastal salt marshes. In: Davis, R. A. Jr., ed., Coastal Sedimentary Environments, Springer-Verlag, New York, pp. 225301.Google Scholar
Frey, R. W., and Howard, J. D. 1969. A profile of biogenic sedimentary structures in a Holocene barrier island-salt marsh complex, Georgia. Transactions of the Gulf Coast Association Geological Society, 19: 427444.Google Scholar
Gedan, K. B., and Silliman, B. R. 2009. Patterns of salt marsh loss within coastal regions of North America. In: Silliman, B., Grosholz, E., and Bertness, M.D., eds., Human Impacts on Salt Marshes: A Global Perspective, University of California Press, Los Angeles, CA, pp. 253265.CrossRefGoogle Scholar
Gehrels, W. R. 1994. Determining relative sea-level change from salt-marsh foraminifera and plant zones on the coast of Maine, USA. Journal of Coastal Research, 10: 9901009.Google Scholar
Gehrels, W. R. 2000. Using foraminiferal transfer functions to produce high-resolution sea-level records from salt-marsh deposits, Maine, USA. The Holocene, 10: 367376.Google Scholar
Gehrels, W. R., Belknap, D. F., and Kelley, J. T., 1996. Integrated high-precision analyses of Holocene relative sea-level changes: lessons from the coast of Maine. Geological Society of America Bulletin, 108: 10731088.Google Scholar
Gehrels, W. R., Kirby, J. R., Prokoph, A., Newnham, R. W., Achterberg, E. P., Evans, H., Black, S., and Scott, D. B. 2005. Onset of rapid sea-level rise in the western Atlantic Ocean. Quaternary Science Reviews, 24: 20832100.CrossRefGoogle Scholar
Gehrels, W. R., Milne, G. A., Kirby, J. R., Patterson, R. T., and Belknap, D. F. 2004. Late Holocene sea-level changes and isostatic crustal movements in Atlantic Canada. Quaternary International, Special Issue – International Geological Correlation Program, Project 437 “Late Quaternary Highstands,” Barbados, 120: 7989.Google Scholar
Gehrels, W. R., and van de Plassche, O. 1991. Origin of the paleovalley system underlying Hammock River Marsh, Clinton, Connecticut. Journal of Coastal Research, Special Issue, 11: 7383.Google Scholar
Goodman, J. E., Wood, M. E., and Gehrels, W. R. 2007. A 17-yr record of sediment accumulation in the salt marshes of Maine (USA). Marine Geology, 242: 109121.Google Scholar
Harrison, E. Z., and Bloom, A. L. 1977. Sedimentation rates on tidal salt marshes in Connecticut. Journal of Sedimentary Petrology, 47: 14841490.Google Scholar
Hartig, E. K., Gornitz, V., Kolker, A., Mushacke, F., and Fallon, D. 2002. Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands, 22: 7189.Google Scholar
Hayes, M. O., and Kana, T. W. 1976. Terrigenous clastic depositional environments, Technical Report No. 11-CRD Coastal Research Division, Department of Geology, University of South Carolina, Columbia.Google Scholar
Hine, A. C., Belknap, D. F., Hutton, J. G., Osking, E. B., and Evans, M. W. 1988. Recent geologic history and modern sedimentary processes along an incipient, low-energy, epicontinental-sea coastline: northwest Florida. Journal of Sedimentary Petrology, 58: 567579.Google Scholar
Hladik, C., and Alber, M. 2012. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sensing of Environment, 121: 224235.Google Scholar
Horton, B. P., Edwards, R. J., and Lloyd, J. M. 1999. Foraminiferal-based transfer function: implications for sea-level studies. Journal of Foraminiferal Research, 29, 117129.Google Scholar
Hussey, A. M. II. 1959. Age of intertidal tree stumps at Wells Beach and Kennebunk Beach, Maine. Journal of Sedimentary Petrology, 29: 464465.Google Scholar
Jacobson, H. A. 1988. Historical development of the saltmarsh at Wells, Maine. Earth Surface Processes and Landforms, 13: 475486.Google Scholar
Katz, L. C. 1980. Effects of burrowing by the fiddler crab Uca pugnax (Smith). Estuarine and Coastal Marine Science, 11: 233237.Google Scholar
Kaye, C. A., and Barghoorn, E. S. 1964. Late Quaternary sea-level change and crustal rise at Boston, Massachusetts, with notes on the autocompaction of peat. Geological Society of America Bulletin, 75: 6368.Google Scholar
Kearney, M. S., Grace, R. E., and Stevenson, J. C. 1988. Marsh loss in Nanticoke Estuary, Chesapeake Bay. Geographical Review, 78: 205220.CrossRefGoogle Scholar
Kearney, M. S., Rogers, A. S., Townshend, J. R. G., Rizzo, E., Stutzer, D., Stevenson, J. C., and Sundborg, K., 2002. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos, 83: 173, 177–178.Google Scholar
Kearney, M. S., and Stevenson, J. C. 1991. Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. Journal of Coastal Research, 7: 403415.Google Scholar
Kelley, J. T., Almquist-Jacobson, H., Jacobson, G. H. Jr., Gehrels, W. R., and Schneider, Z. 1992. The geologic and vegetative development of tidal marshes at Wells, Maine, USA. Research Report to the Wells National Estuarine Research Reserve and the National Oceanic and Atmospheric Administration.Google Scholar
Kelley, J. T., Belknap, D. F., and Claesson, S. 2010. Drowned coastal deposits with associated archaeological remains from a sea-level “slowstand,” Northwestern Gulf of Maine, USA. Geology, 38: 695698Google Scholar
Kelley, J. T., Belknap, D. F., Kelley, A. R., and Claesson, S. H. 2013. A model for drowned terrestrial habitats with associated archeological remains in the northwestern Gulf of Maine, USA. Marine Geology, 338: 116.Google Scholar
Kelley, J. T., Belknap, D. F., Jacobson, G. L. Jr., and Jacobson, H. A. 1988. The morphology and origin of salt marshes along the glaciated coastline of Maine, USA. Journal of Coastal Research, 4: 649665.Google Scholar
Kelley, J. T., and Hay, B. W. B. 1986. Bunganuc Bluffs, Day 3, Stop 6. In: Kelley, J. T. and Kelley, A. R., eds. Coastal Processes and Quaternary Stratigraphy Northern and Central Coastal Maine, Society of Economic Paleontologists and Mineralogists Eastern Section Field Trip Guidebook, pp. 66–74.Google Scholar
Kennish, M. J. 2001. Salt marsh systems in the U.S.: a review of anthropogenic impacts. Journal of Coastal Research, 17: 731748.Google Scholar
Kirwan, M. L., Murray, A. B., Donnelly, J. P., and Corbett, D. R. 2011. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates. Geology, 39: 507510.Google Scholar
Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R., and Fagherazzi, S. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change, 6: 253260.Google Scholar
Kraft, J. C. 1971. Sedimentary facies patterns and geologic history of a Holocene marine transgression. Geological Society of America Bulletin, 82: 21312158.Google Scholar
Kraft, J. C., Allen, E. A., Belknap, D. F., John, C. J., and Maurmeyer, E. M. 1976. Delaware's Changing Shorelines. Technical Report #1, Delaware Coastal Zone Management Program, Dover.Google Scholar
Kraft, J. C., Allen, E. A., Belknap, D. F., John, C. J. and Maurmeyer, E. M. 1979. Processes and morphologic evolution of an estuarine and coastal barrier system, In: Leatherman, S. P., ed., Barrier Islands, Academic Press, New York, pp. 149183.Google Scholar
Leatherman, S. P. 1979. Migration of Assateague Island, Maryland, by inlet and overwash processes. Geology, 7: 104107.Google Scholar
Leonard, L. A., and Luther, M. E. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography, 40: 14741484.Google Scholar
Letzsch, S. W., and Frey, R. W. 1980. Deposition and erosion in a Holocene salt marsh, Sapelo Island, Georgia. Journal of Sedimentary Petrology, 50: 529542.Google Scholar
Meredith, W. H., Saveikis, D. E., and Stachecki, C. J. 1985. Guidelines for “Open Marsh Water Management” in Delaware’s salt marshes – objectives, system designs, and installation. Wetlands, 5: 119133.Google Scholar
Moller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B., Wolters, G., et al. Wave attenuation over coastal salt marshes under storm surge conditions. 2014. Nature Geoscience, 7: 727731.Google Scholar
Morris, J. T., Porter, D., Neet, M., Noble, P. A., Schmidt, L., Lapine, L. A., and Jensen, J. R. 2005. Integrating LIDAR elevation data, multispectral imagery and neural network modeling for marsh characterization. International Journal of Remote Sensing, 26: 52215234.Google Scholar
Mudd, S. M. 2011. The life and death of salt marshes in response to anthropogenic disturbance of sediment supply. Geology, 39: 511512.CrossRefGoogle Scholar
Mudge, B. F. 1858. The salt marsh formations of Lynn. Proceedings of Essex Institute, 2: 117119.Google Scholar
National Park Service – Cape Cod National Seashore, 2017. Crab-driven vegetation losses: www.nps.gov/caco/learn/nature/crab-driven-vegetation-losses.htmGoogle Scholar
Neuendorf, K. K. E, Mehl, J. P. Jr., and Jackson, J. A. 2005. Glossary of Geology 5th Edn., American Geological Institute, Alexandria, VA.Google Scholar
Niering, W. A., and Warren, R. S. 1980. Vegetation patterns and processes in New England salt marshes. Bioscience, 30: 301307.Google Scholar
Nikitina, D. L., Kemp, A. C., Horton, B. P., Vane, C. H., van de Plassche, O., and Engelhardt, S. E. 2014. Storm erosion during the past 2000 years along the north shore of Delaware Bay, USA. Geomorphology, 208: 160172.Google Scholar
Orson, R., Panageotou, W., Leatherman, S. P. 1985. Response of tidal salt marshes of the U.S. Atlantic and Gulf coasts to rising sea levels. Journal of Coastal Research, 1: 29–7.Google Scholar
Orson, R. A., Warren, R. S., and Niering, W. A. 1987. Development of a tidal marsh in a New England river valley. Estuaries, 10: 2027.Google Scholar
Orson, R. A., Warren, R. S., Niering, W. A., and Van Patten, P., eds. 1998. Research in New England Marsh-Estuarine Ecosystems, Directions and Priorities into the Next Millennium: Summary of a Sea Grant Workshop, May 15–17, 1997, 61 pp., Connecticut College, New London, CT. Connecticut Sea Grant College Program, Groton, CT: 5-11.Google Scholar
Parkinson, R. W., Craft, C., DeLaune, R. D., Donoghue, J. F., Kearney, M., Meeder, J. F., Morris, J., and Turner, R. E. 2017. Marsh vulnerability to sea-level rise. Nature Climate Change, 7: 756.Google Scholar
Rampino, M. R., and Sanders, J. E. 1980. Holocene transgression in south-central Long Island, New York. Journal of Sedimentary Petrology, 50: 10631080.Google Scholar
Redfield, A. C. 1965. Ontogeny of a salt marsh estuary. Science, 147: 5055.Google Scholar
Redfield, A. C. 1972. Development of a New England salt marsh. Ecological Monographs, 42: 201237.Google Scholar
Redfield, A. C., and Rubin, M. 1962. The age of salt marsh peat and its relation to recent changes in sea level at Barnstable, Massachusetts. Proceedings of the National Academy of Sciences, 48: 17281735.Google Scholar
Reed, D. J. 1989. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebone Bay, Louisiana: the role of winter storms. Estuaries, 12: 222227.Google Scholar
Reed, D. J. 1990. The impact of sea-level rise on coastal salt marshes. Progress in Physical Geography, 14: 465481.CrossRefGoogle Scholar
Reed, D. J. 1995. The response of coastal marshes to sea-level rise: survival or submergence? Earth Surface Processes and Landforms, 20: 3948.Google Scholar
Reed, D. J. 2002. Sea-level rise and coastal marsh sustainability: geological and ecological factors in the Mississippi delta. Geomorphology, 48: 233243.Google Scholar
Roberts, M. F. 1979. The Tidemarsh Guide, E. P. Dutton, New York.Google Scholar
Rogers, K., and Woodroffe, C. D. 2014. Tidal flats and salt marshes. In: Masselink, G., and Gehrels, R., eds., Global Environments and Global Change, John Wiley and Sons, Ltd., Chichester, UK, pp. 227250.Google Scholar
Roman, C. T., Peck, J. A., Allen, J. R., King, J. W., and Appleby, P. G. 1997. Accretion of a New England (U.S.A.) salt marsh in response to inlet migration, storms and sea-level rise. Estuarine, Coastal and Shelf Science, 45: 717727.CrossRefGoogle Scholar
SDNHM (San Diego Natural History Museum). 2006. www.sdplantatlas.org/NameChanges.aspx, Genus Scirpus is now Schoenoplectus.Google Scholar
Schwimmer, R. A. 2001. Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA. Journal of Coastal Research, 17: 672683.Google Scholar
Scott, D. B., and Greenberg, D. A. 1983. Relative sea-level rise and tidal development in the Fundy tidal system. Canadian Journal of Earth Sciences, 20: 15541564.Google Scholar
Scott, D. B., and Medioli, F. S. 1978. Vertical zonations of marsh foraminifera as accurate indicators of former sea levels. Nature, 272: 528531.Google Scholar
Sepanik, J. M., and McBride, R. A. 2015. Increasing rate of salt-marsh loss in a barrier-island system: Parramore and Cedar Islands, Virginia, from 1957 to 2012, Section 1.6: pp. 392–401 of: McBride, R. A. Fenster, M. S., Seminack, C. T., Richardson, T. M., Sepanik, J. M., Hanley, J. T., Bundick, J. A. and Tedder, E., Holocene barrier-island geology and morphodynamics of the Maryland and Virginia open-ocean coasts: Fenwick, Assateague, Chincoteague, Wallops, Cedar and Parramore Islands, in Brezinski, D. K., Halka, J. P., and Ortt, R. A., Jr., eds., Tripping from the Fall Line: Field Excursions for the GSA Annual Meeting, Baltimore, 2015: Geological Society of America Field Guide 40, Boulder, CO: 309–424.Google Scholar
Shaler, N. S. 1885. Preliminary report on sea-coast swamps of the Eastern United States: U.S. Geological Survey 6th Annual Report, 1885: pp. 353–398.Google Scholar
Shepard, F. P., 1960, Gulf coast barriers. In: Shepard, F. P., Phleger, F. B., and von Andel, T. H., eds., Recent Sediments, Northwest Gulf of Mexico, American Association of Petroleum Geologists, Tulsa, Oklahoma, pp. 5681.Google Scholar
Silliman, B. R., Grosholz, E. D., and Bertness, M. D., (eds.). 2009. Human Impacts on Salt Marshes: a global perspective. University of California Press, Berkeley, CA.Google Scholar
Silliman, B. R., Van der Kopple, J., Bertness, M. D., Stanton, I. E., and Mendelssohn, I. A. 2005. Drought, snails, and large-scale dieoff of southern U.S. salt marshes: Ecology, 310: 18031806.Google Scholar
Smith, D. C., and Bridges, A. E., 1982. Salt marsh dikes (dykes) as a factor in eastern Maine agriculture. Maine Historical Society Quarterly, 21: 219226.Google Scholar
Smith, D. C., Konrad, V., Koularis, H., Borns, H. W. Jr., and Hawes, E. 1989. Salt marshes as a factor in the agriculture of northeastern North America. Agricultural History, 63: 270294.Google Scholar
Snow, J. O. 1980. Secrets of a Salt Marsh. Guy Gannett Pub. Co, Portland, ME.Google Scholar
Stea, R. R., Fader, G. B. J., Scott, D. B., and Wu, P. 2001. Glaciation and relative sea-level change in Maritime Canada. In: Weddle, T. K., and Retelle, M. J., eds., Deglacial History and Relative Sea-Level Changes Northern New England and Adjacent Canada, Geological Society of America Special Paper 351: 3549.Google Scholar
Stevenson, J. C., Ward, L. G., and Kearney, M. S. 1986. Vertical accretion in marshes with varying rates of sea level rise. In: Wolfe, D. A., ed., Estuarine Variability, Academic Press, New York, pp. 241259.Google Scholar
Stumpf, R. P. 1983. The process of sedimentation on the surface of a salt marsh. Estuarine, Coastal and Shelf Science, 17: 495508.Google Scholar
Swift, D. J. P. 1968. Coastal erosion and transgressive stratigraphy. Journal of Geology, 77: 444456.Google Scholar
Swift, D. J. P. 1975. Barrier island genesis: evidence from the central Atlantic shelf, eastern U.S.A. Sedimentary Geology, 14: 143.Google Scholar
Swisher, M. L. 1982. The rates and causes of shore erosion around a coastal lagoon, Rehoboth Bay, Delaware: M.S. thesis, Dept. Geology, University of Delaware, Newark.Google Scholar
Syvitski, J. P. M., and Saito, Y. 2007. Morphodynamics of deltas under the influence of humans. Global and Planetary Change, 57: 261282.Google Scholar
Tiner, R. W. 2009. Field Guide to Tidal Wetland Plants of the Northeastern United States and Neighboring Canada. University of Massachusetts Press, Amherst, MA.Google Scholar
Turner, R. E., Baustain, J. J., Swenson, E. M., and Spicer, J. S. 2006. Wetland sedimentation from Hurricanes Katrina and Rita. Science, 314: 449452.Google Scholar
Turner, R. E., Howes, B. L., Teal, J. M., Milan, C. S., Swenson, E. M., and Goehringer-Toner, D. 2009. Salt marshes and eutrophication: an unsustainable outcome. Limnology and Oceanography, 54: 16341642.Google Scholar
van de Plascche, O. 1986. Sea-level Research: a Manual for the Collection and Evaluation of Data. Geo Books, Norwich, England.Google Scholar
van de Plassche, O. 1991. Late Holocene sea-level fluctuations on the shore of Connecticut inferred from transgressive and regressive overlap boundaries in salt-marsh deposits: Origin of the paleovalley system underlying Hammock River Marsh, Clinton, Connecticut. Journal of Coastal Research, Special Issue 11: 159179.Google Scholar
Wang, C., Meneti, M., Stoll, M.-P., Feola, A., Belluco, E., and Marani, M. 2009. Separation of ground and low vegetations signatures in LiDAR measurements of salt-marsh environments. IEEE Transactions on Geoscience and Remote Sensing, 47: 20142023.Google Scholar
Ward, L. G., Zaprowski, B. J., Trainer, K. D., and Davis, P. T. 2008. Stratigraphy, pollen history and geochronology of tidal marshes in a Gulf of Maine estuarine system: climatic and relative sea level impacts. Marine Geology, 256: 117.Google Scholar
Wilson, K. R., Kelley, J. T., Croitoru, A., Dionne, M., Belknap, D. F., and Steneck, R. S. 2009. Stratigraphic and ecophysical characterizations of salt pools: dynamic features of the Webhannet Estuary salt marsh, Wells, Maine, USA. Estuaries and Coasts, 32: 855870.Google Scholar
Wilson, K. R., Kelley, J. T., Tanner, B. R., and Belknap, D. F. 2010. Probing the origins and stratigraphic signature of salt pools from north-temperate marshes in Maine, U.S.A. Journal of Coastal Research, 26: 10071026.Google Scholar
Wood, M. E., Kelley, J. T., and Belknap, D. F. 1989. Pattern of sediment accumulation in the tidal marshes of Maine. Estuaries, 12: 237246.Google Scholar
Woodwell, G. M., Rich, P. H., and Hall, C. A. S. 1973. Carbon in estuaries. In: Woodwell, G. M., and Pecan, E., eds., Carbon and the Biosphere, U.S. Atomic Energy Commission, Springfield, VA, USA, pp. 221–240.Google Scholar
Yelverton, G. F., and Hackney, C. T. 1986. Flux of dissolved organic carbon and pore water through the substrate of a Spartina alterniflora marsh in North Carolina. Estuarine, Coastal, and Shelf Science, 22: 255267.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×