Book contents
- Frontmatter
- Contents
- Preface
- Summary of notation
- Figure acknowledgements
- 1 General introduction
- 2 The separation of nuclear and electronic motion
- 3 The electronic Hamiltonian
- 4 Interactions arising from nuclear magnetic and electric moments
- 5 Angular momentum theory and spherical tensor algebra
- 6 Electronic and vibrational states
- 7 Derivation of the effective Hamiltonian
- 8 Molecular beam magnetic and electric resonance
- 9 Microwave and far-infrared magnetic resonance
- 10 Pure rotational spectroscopy
- 11 Double resonance spectroscopy
- General appendices
- Author index
- Subject index
- References
6 - Electronic and vibrational states
Published online by Cambridge University Press: 17 December 2010
- Frontmatter
- Contents
- Preface
- Summary of notation
- Figure acknowledgements
- 1 General introduction
- 2 The separation of nuclear and electronic motion
- 3 The electronic Hamiltonian
- 4 Interactions arising from nuclear magnetic and electric moments
- 5 Angular momentum theory and spherical tensor algebra
- 6 Electronic and vibrational states
- 7 Derivation of the effective Hamiltonian
- 8 Molecular beam magnetic and electric resonance
- 9 Microwave and far-infrared magnetic resonance
- 10 Pure rotational spectroscopy
- 11 Double resonance spectroscopy
- General appendices
- Author index
- Subject index
- References
Summary
Introduction
In chapter 3 we derived a Hamiltonian to describe the electronic motion in a diatomic molecule, starting from first principles. In our case, the first principles were the Dirac equation for a single particle, and the Breit equation for two interacting particles. We pointed out that even at this level our treatment was a compromise because it did not include quantum electrodynamics explicitly. Nevertheless we concluded the chapter with a rather complete and complicated Hamiltonian, and added yet more complications in chapter 4 with the inclusion of nuclear spin effects. In the next chapter, chapter 7, we will show how terms in the ‘true’ Hamiltonian may be reduced to ‘effective’ Hamiltonians designed to handle the particular cases which arise in spectroscopy. We will make extensive use of angular momentum theory, described in chapter 5, to describe the electronic and nuclear dynamics in diatomic molecules, and the interactions with applied magnetic and electric fields. The experimental study of these dynamical effects is dealt with at length in chapters 8 to 11. We will be classifying these studies according to molecular electronic states, and demonstrating how the high-resolution spectroscopic methods described probe the structural details of these electronic states. That, indeed, is one of the main purposes of spectroscopy.
Before we proceed to these details we must describe some aspects of the theory of the electronic and vibrational states of diatomic molecules.
- Type
- Chapter
- Information
- Rotational Spectroscopy of Diatomic Molecules , pp. 177 - 301Publisher: Cambridge University PressPrint publication year: 2003