Published online by Cambridge University Press: 17 April 2025
I introduce an important way to think about and construct a DCM: by implementing a yaw–pitch–roll sequence of rotations on a model aircraft. This does away with the widespread but rather involved method of describing the relative orientation of two axis sets by drawing them with a common origin. For this, we must distinguish the idea of a rotation in a sequence being about either a ‘space-fixed’ axis or a ‘carried-along’ axis. Users of these terms tend to fall into two groups, ‘active’ and ‘passive’. I state the ‘fundamental theorem of rotation sequences’, which does away with any need for the reader to stand in one group or the other. I also discuss the extraction of Euler angles from a DCM, and examine infinitesimal rotations. I discuss two methods of interpolating from an initial to a final orientation; one of these is used widely in computer graphics, but both methods must be discussed for the computer-graphics method to be understood. I end with a calculation of the position and attitude of a robot arm.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.