Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T11:20:31.724Z Has data issue: false hasContentIssue false

25 - RNA interference technology in the discovery and validation of druggable targets

Published online by Cambridge University Press:  31 July 2009

Neil J. Clarke
Affiliation:
Cellular Genomics, GlaxoSmithKline R&D
John E. Bisi
Affiliation:
Cellular Genomics, GlaxoSmithKline R&D
Caretha L. Creasy
Affiliation:
Cellular Genomics, GlaxoSmithKline R&D
Michael K. Dush
Affiliation:
Cellular Genomics, GlaxoSmithKline R&D
Kris J. Fisher
Affiliation:
Cellular Genomics, GlaxoSmithKline R&D
John M. Johnson III
Affiliation:
Cellular Genomics, GlaxoSmithKline R&D
Christopher J. A. Ring
Affiliation:
Cellular Genomics, GlaxoSmithKline R&D
Mark R. Edbrooke
Affiliation:
Cellular Genomics, GlaxoSmithKline R&D
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

The role of gene suppression technologies in pharmaceutical drug development

The completion of the human genome sequence (International Human Genome Sequencing Consortium, 2001; Venter et al., 2001) has ushered in a new era for the pharmaceutical industry. With access to a comprehensive list of candidate drug targets, together with a growing understanding of their association to signalling and metabolic pathways and human disease, there would seem to be endless opportunity for novel drug development. From a clinical perspective, this most basic of genetic insights should enhance the efficacy of existing drugs, while at the same time bring new drugs to market for many new therapeutic indications. From a corporate vantage, utilising the information embedded in the human genome for improved target validation should effectively reduce the attrition of candidate drug targets and therefore translate to a “competitive advantage.”

With thousands of candidate drug targets to select from, it is necessary to invest in strategic methods in order to navigate the complex maze of genetic information. Indeed, the identification and validation of targets that map to chemically tractable gene families (the ‘druggable’ genome, or ‘pharmome’) is now recognised as a fundamental challenge to the entire pharmaceutical industry (Figure 25.1). In an effort to achieve this goal, molecular technologies that suppress the expression of a candidate drug target (either in cis- or trans-) have become fixtures in most pharmaceutical R&D programmes, and there are many examples where this has been successful.

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 347 - 360
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asano, T., Hanazono, Y., Ueda, Y., Muramatsu, S.-I., Kume, A., Suemori, H., Suzuki, Y., Harii, K., Hasegawa, M., Nakatsuji, N. and Ozawa, K. (2002). Highly efficient gene transfer into primate embryonic stem cells with a simian lentivirus vector. Molecular Therapy, 6, 162–168CrossRefGoogle ScholarPubMed
Ashrafi, K., Chang, F. Y., Watts, J. L., Fraser, A. G., Kamath, R. S., Ahringer, J. and Ruvkun, G. (2003). Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature, 421, 268–272CrossRefGoogle ScholarPubMed
Blein, S., Hawrot, E. and Barlow, P. (2000). The metabotropic GABA receptor: molecular insights and their functional consequences. Cellular and Molecular Life Sciences, 57, 635–650CrossRefGoogle ScholarPubMed
Bowery, N. G. and Enna, S. J. (2000). γ-Aminobutyric acidB receptors: First of the functional metabotropic heterodimers. Journal of Pharmacology and Experimental Therapeutics, 292, 2–7Google Scholar
Brummelkamp, T. R., Bernards, R. and Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550–553CrossRefGoogle ScholarPubMed
Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J. and Rosenquist, T. A. (2003). Germline transmission of RNAi in mice. Nature Structural Biology, 2, 91–92CrossRefGoogle Scholar
Couve, A., Moss, S. J. and Pangalos, M. N. (2000). GABAB receptors: A new paradigm in G-protein signalling. Molecular and Cellular Neuroscience, 16, 296–312CrossRefGoogle Scholar
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001a). Duplexes of 21 nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498CrossRefGoogle Scholar
Elbashir, S. M., Lendeckel, W. and Tuschl, T. (2001b). RNA interference is mediated by 21– and 22– nucleotide RNAs. Genes & Development, 15, 188–200CrossRefGoogle Scholar
Elbashir, S. M., Harborth, J., Weber, K. and Tuschl, T. (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 26, 199–213CrossRefGoogle ScholarPubMed
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific gene interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811CrossRefGoogle ScholarPubMed
Gropp, M., Itsykson, P., Singer, O., Ben-Hur, T., Reinhartz, E., Galun, E. and Reubinoff, B. E. (2003). Stable genetic modification of human embryonic stem cells by lentiviral vectors. Molecular Therapy, 7, 281–287CrossRefGoogle ScholarPubMed
Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. and Weber, K. (2001). Identification of essential genes in cultured mammalian cells using small interfering RNAs. Journal of Cell Science, 114, 4557–4565Google ScholarPubMed
Hasuwa, H., Kaseda, K., Einarsdottir, T. and Okabe, M. (2002). Small interfering RNA and gene silencing in transgenic mice and rats. Federation of European Biochemical Society Letters, 532, 227–230CrossRefGoogle ScholarPubMed
Hemann, M. T., Fridman, J. S., Zilfou, J. T., Hernando, E., Paddison, P. J., Cordon-Cardo, C., Hannon, G. J. and Low, S. W. (2003). An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nature Genetics, 33, 396–400CrossRefGoogle ScholarPubMed
International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921CrossRef
Izant, J. G. and Weintraub, H. (1985). Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense RNA. Science, 229, 345–352CrossRefGoogle ScholarPubMed
Jones, K. A., Tamm, J. A., Craig, D. A., Yao, W.-J. and Panico, R. (2000). Signal transduction by GABAB receptor heterodimers. Neuropsychopharmacology, 23 (S4), S42–49CrossRefGoogle Scholar
Kamath, R. K., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in C. elegans. Genome Biology, 2, 1–10Google Scholar
Kamath, R. S., Fraser, A. G., Dong, Y., Durbin, R., Gotta, M., Kanapin, A., Bot, N., Moreno, S., Sohrmann, M., Welchman, D. P., Zipperlen, P. and Ahringer, J. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421, 231–237CrossRefGoogle ScholarPubMed
Kunath, T., Gish, G., Lickert, H., Jones, N., Pawson, T. and Rossant, J. (2003). Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nature Biotechnology, 21, 559–561CrossRefGoogle ScholarPubMed
Lewis, D. L., Hagstrom, J. E., Loomis, A. G., Wolff, J. A. and Herweijer, H. (2002). Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nature Genetics, 32, 107–108CrossRefGoogle ScholarPubMed
Lois, C., Hong, E. J., Pease, S., Brown, E. J. and Baltimore, D. (2002). Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science, 295, 868–872CrossRefGoogle ScholarPubMed
Lum, L., Yao, S., Mozer, B., Rovescalli, A., Kessler, D., Nirenberg, M. and Beachy, P. A. (2003). Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science, 299, 2039–2045CrossRefGoogle ScholarPubMed
Ma, Y., Ramezani, A., Lewis, R., Hawley, R. G. and Thomson, J. A. (2003). High level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells, 21, 111–117CrossRefGoogle ScholarPubMed
McCaffrey, A. P., Meuse, L., Pham, T. T., Conklin, D. S., Hannon, G. J. and Kay, M. A. (2002). RNA interference in adult mice. Nature, 418, 38–39CrossRefGoogle ScholarPubMed
McManus, M. T., Haines, B. B., Chen, J. and Sharp, P. A. (2002a). siRNA-mediated silencing in T-cells. Journal of Immunology, 169, 5754–5760CrossRefGoogle Scholar
McManus, M. T., Petersen, C. P., Haines, B. B., Chen, J. and Sharp, P. (2002b). Gene silencing using micro-RNA designed hairpins. RNA, 8, 842–850CrossRefGoogle Scholar
Novina, C. D., Murray, M. F., Dykxhoorn, D. M., Beresford, J., Reiss, S. K., Lee, S. K., Collman, R. G., Lieberman, J., Shankar, P. and Sharp, P. A. (2002). siRNA-directed inhibition of HIV infection. Nature Medicine, 8, 681–686CrossRefGoogle Scholar
Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. and Conklin, D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Development, 16, 948–958CrossRefGoogle ScholarPubMed
Pfeifer, A., Ikawa, M., Dayn, Y. and Verma, I. (2002). Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proceedings of the National Academy of Sciences USA, 99, 2140–2145CrossRefGoogle ScholarPubMed
Rohrer, D. K. and Kobilka, B. K., (1998). G protein-coupled receptors: Functional and mechanistic insights through altered gene expression. Physiological Reviews, 78, 35–52CrossRefGoogle ScholarPubMed
Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., Sievers, C., Yang, L., Kopinja, J., Zhang, M., McManus, M. T., Gertler, F. B., Scott, M. L. and Parijs, L., (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics, 33, 401–406CrossRefGoogle ScholarPubMed
Shinagawa, T. and Ishii, S. (2003). Generation of ski-knockdown mice by expressing a long double strand RNA from an RNA polymerase II promoter. Genes & Development, 17, 1340–1345CrossRefGoogle ScholarPubMed
Somma, M. P., Fasulo, B., Cenci, G., Cundari, E. and Gatti, M. (2002) Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Molecular Biology of the Cell, 13, 2448–2460CrossRefGoogle ScholarPubMed
Sørensen, D. R., Leirdal, M. and Sioud, M. (2003). Gene silencing by systemic delivery of synthetic siRNAs in adult mice. Journal of Molecular Biology, 327, 761–766CrossRefGoogle ScholarPubMed
Spankuch-Schmitt, B., Bereiter-Hahn, J., Kaufmann, M. and Strebhardt, K. (2002). Effect of RNA silencing of polo-like kinase-1 (PLK-1) on apoptosis and spindle formation in human cancer cells. Journal of the National Cancer Institute, 94, 1863–1876CrossRefGoogle Scholar
Stein, P., Svoboda, P. and Schultz, R. M. (2003). Transgenic RNAi in mouse oocytes: A simple and fast approach to study gene function. Developmental Biology, 256, 187–193CrossRefGoogle ScholarPubMed
Svoboda, P., Stein, P., Hayashi, H. and Schultz, R. M. (2000). Selective reduction of dominant maternal mRNAs in mouse oocytes by RNA interference. Development, 127, 4147–4156Google Scholar
Timmons, L. and Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854CrossRefGoogle ScholarPubMed
Timmons, L., Court, D. L. and Fire, A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene, 263, 103–112CrossRefGoogle ScholarPubMed
Oekelen, D., Luyten, W. H. M. L. and Leysen, J. (2003). Ten years of antisense inhibition of brain G-protein coupled receptor function. Brain Research Reviews, 42, 123–142CrossRefGoogle ScholarPubMed
Venter, J. C. et al. (2001). The sequence of the human genome. Science, 291, 1304–1351CrossRefGoogle ScholarPubMed
Walther, W. and Stein, U. (2000). Viral vectors for gene transfer: A review of their use in the treatment of human diseases. Drugs, 60, 249–271CrossRefGoogle ScholarPubMed
White, J., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., Barnes, A., Emson, P., Foord, S. M. and Marshall, F. (1998). Heterodimerization is required for the formation of a functional GABAB receptor. Nature, 396, 679–682CrossRefGoogle Scholar
Wianny, F. and Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biology, 2, 70–75CrossRefGoogle ScholarPubMed
Wieland, T. and Jakobs, K. H. (1994). Measurement of receptor stimulated-guanosine 5′-O-(γ thio) triphosphate binding by G proteins. Methods in Enzymology, 237, 3–13CrossRefGoogle Scholar
Xia, H., Mao, Q., Paulson, H. L. and Davidson, B. L. (2002). siRNA-mediated gene silencing in vitro and in vivo. Nature Biotechnology, 20, 1006–1010CrossRefGoogle ScholarPubMed
Zambrowicz, B. P. and Sands, A. T. (2003). Knockouts model the 100 best-selling drugs – will they model the next 100?Nature Reviews Drug Discovery, 2, 38–51CrossRefGoogle ScholarPubMed
Zamenick, P. C. and Stephenson, M. L. (1978). Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proceedings of the National Academy of Sciences USA, 75, 280–284Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×