Book contents
- Frontmatter
- PREFACE
- Contents
- CHAPTER I Definitions and Fundamental Properties
- CHAPTER II Polynomial Rings
- CHAPTER III Ideals and Homomorphisms
- CHAPTER IV Some Imbedding Theorems
- CHAPTER V Prime Ideals in Commutative Rings
- CHAPTER VI Direct and Subdirect Sums
- CHAPTER VII Boolean Rings and Some Generalizations
- CHAPTER VIII Rings of Matrices
- CHAPTER IX Further Theory of Ideals in Commutative Rings
- Bibliography
- Index
CHAPTER IX - Further Theory of Ideals in Commutative Rings
- Frontmatter
- PREFACE
- Contents
- CHAPTER I Definitions and Fundamental Properties
- CHAPTER II Polynomial Rings
- CHAPTER III Ideals and Homomorphisms
- CHAPTER IV Some Imbedding Theorems
- CHAPTER V Prime Ideals in Commutative Rings
- CHAPTER VI Direct and Subdirect Sums
- CHAPTER VII Boolean Rings and Some Generalizations
- CHAPTER VIII Rings of Matrices
- CHAPTER IX Further Theory of Ideals in Commutative Rings
- Bibliography
- Index
Summary
Primary ideals. Throughout this chapter we shall consider commutative rings only.
It was pointed out in Chapter V that in some important respects the prime ideals in an arbitrary commutative ring play a role similar to that of the primes in the ring I of integers. We now study a more general class of ideals which will be seen to bear roughly the same relation to the powers of a prime integer that the prime ideals do to the primes themselves.
An ideal q in the commutative ring R is said to be primary if ab ≡ 0(q), a ≢ 0(q), imply that bi ≡ 0(q) for some positive integer i. As a simple illustration, it is clear that in the ring I every ideal (pn), where p is a prime and n a positive integer, is primary. Furthermore, R is always a primary ideal, and (0) is primary if and only if every divisor of zero in R is nilpotent. Any prime ideal is also primary, and thus the concept of primary ideal may be considered as a natural generalization of that of prime ideal.
- Type
- Chapter
- Information
- Rings and Ideals , pp. 180 - 209Publisher: Mathematical Association of AmericaPrint publication year: 1948