Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T08:54:16.200Z Has data issue: false hasContentIssue false

II - Riemannian Curvature

Published online by Cambridge University Press:  12 January 2010

Isaac Chavel
Affiliation:
City College, City University of New York
Get access

Summary

In this chapter, we begin to consider the invariant that truly characterizes differential geometry – curvature. The original formal definition of the curvature tensor, in §I.4, gives little hint to its profound geometric meaning; nevertheless, we indicated there the direction in which we are most interested in studying curvature – Jacobi's equation. In the Riemannian case, the torsion tensor of the Levi-Civita connection vanishes identically, so the curvature is the exclusive influence in studying the behavior of geodesics neighboring a given geodesic.

This, of course, is not the historical origin of curvature. In the beginning of differential geometry (i.e., in the beginning of the nineteenth century), it was viewed from the perspective of immediate human experience. Namely, the curvature of a curve attempted to measure the deviation of a curve in a plane or in space from being a straight line, and the various studies of curvature of a surface situated in space attempted to express how the surface deviated from being a plane in space. C. F. Gauss (1825, 1827) was the first to realize that one aspect of curvature, what we refer to as the Gauss curvature, did not depend on how the surface is situated in Euclidean space; that if the surface was bent – that is, deformed in such a manner as to preserve the measurement of lengths and angles in the surface – then while some curvatures were changed, other curvatures (namely, the Gauss curvature) were left invariant under the bending.

Type
Chapter
Information
Riemannian Geometry
A Modern Introduction
, pp. 56 - 110
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Riemannian Curvature
  • Isaac Chavel, City College, City University of New York
  • Book: Riemannian Geometry
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616822.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Riemannian Curvature
  • Isaac Chavel, City College, City University of New York
  • Book: Riemannian Geometry
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616822.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Riemannian Curvature
  • Isaac Chavel, City College, City University of New York
  • Book: Riemannian Geometry
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616822.004
Available formats
×