Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T21:00:21.650Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

1 - Prime numbers

Roland van der Veen
Affiliation:
Leiden University
Jan van de Craats
Affiliation:
University of Amsterdam
Get access

Summary

How are the prime numbers distributed among the other numbers? How many primes are there? What is the number of primes of one hundred digits? Of one thousand digits? These questions were the starting point of a seminal paper by Bernhard Riemann (1826–1866) written in 1859. As an aside in his article Riemann formulated his now famous hypothesis that so far nobody has come close to proving.

In this first chapter you will get to know the primes, two distinct functions that count primes, and various approximations of these functions. The natural logarithm plays an important role. At the end of the chapter the Riemann hypothesis itself will make its first appearance.

Primes as elementary building blocks

Counting is more than twenty thousand years old. Long before written language was invented, people already were tallying with notches on pieces of bone1. Counting and arithmetic are arguably the oldest concepts in mathematics and yet numbers still exhibit mysterious patterns that we do not fully understand. For example, if you ask how numbers can be constructed by multiplication alone, you quickly hit upon one of the biggest riddles of mathematics.

Using a single number as a building block, you can never construct all numbers by multiplication only. Take 2 for example. All you can get is 2 itself, 2 × 2 = 4, 2 × 2 × 2 = 8, 16, 32, … and the other powers of 2. If you add 3 as a building block, then you can also construct 3, 2 × 3 = 6, 9, 12, …. However, the number 5 is still out of reach. By adding 5 to the list it is possible to construct all marked numbers in table 1.1.

Adding 7, the first number not yet constructed, as a building block, more numbers come within reach, but 11 and 13 still elude us. Will this process finally come to an end, or are we forced to add ever more building blocks to construct all numbers by multiplication?

The ancient Greeks already knew the answer to this question: there is no end to the list of building blocks.

Type
Chapter
Information
Publisher: Mathematical Association of America
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×