Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T05:33:04.884Z Has data issue: false hasContentIssue false

6 - Multiple quantum well electroabsorption modulators for RF photonic links

Published online by Cambridge University Press:  06 July 2010

William S. C. Chang
Affiliation:
Professor, University of California at San Diego
William S. C. Chang
Affiliation:
University of California, San Diego
Get access

Summary

Introduction

Performance of multiple quantum well (MQW) electroabsorption (EA) modulators can best be evaluated in terms of a basic RF photonic link. A basic RF photonic link consists of a laser transmitter with its optical intensity modulated by an RF signal, an optical fiber transmission line and a receiver. In the externally modulated link shown in Fig. 6.1, the RF source supplies the signal to the EA modulator. The CW laser radiation is coupled directly or through a pigtailed fiber to the modulator input. The fiber transmission line couples the modulated output to the receiver. The receiver detects the optical radiation and converts the intensity modulation back into RF power. Because of the low transmission loss of fibers, a major advantage of an RF photonic link is its low RF transmission loss, especially for long distances and at high RF frequencies. Many RF channels at widely different frequencies can also share the same optical carrier. More sophisticated links may employ optical or electronic amplification, distribute the modulated optical carrier in a fiber network, down or up convert the RF frequencies using opto-electronic components. However, the fundamental effect of a component such as a modulator can most clearly be understood through the basic link.

In Fig. 6.1, the optical carrier is obtained from CW laser and modulated by an external modulator, based on semiconductors or ferroelectrics such as LiNbO3 or polymers.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D. Ackerman, C. Cox III and N. Rizza, Editors, Selected Papers on Analog Fiber-Optic Links, SPIE Milestone Series, V. MS-149, 1998
C. H. Cox III, Analog Optical Links: Theory and Practice, Cambridge University Press, to be published
Miller, D. A. B., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H., and Burrus, C. A., “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett., 53, 2173, 1984CrossRefGoogle Scholar
Rolland, C., Mak, G., Prosyk, K. L., Maritan, C. M., and Puertz, N., “High speed and low loss, bulk electroabsorption waveguide modulators at 1.3 μm,” IEEE Photon. Technol. Lett., 3, 894, 1991CrossRefGoogle Scholar
R. B. Welstand, “High linearity modulation and detection of semiconductor electroabsorption waveguides,” Ph. D. Thesis, University of California San Diego, 1997
Miller, D. A. B., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H., and Burns, C. A., “Electric field dependence of optical absorption near the bandgap of quantum well structures,” Phys. Rev. B, 32, 1043, 1985CrossRefGoogle Scholar
Miller, D. A. B., Weiner, J. S., and Chemla, D. S., “Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules,” IEEE, J. Quantum Electron., QE-22, 816, 1986CrossRefGoogle Scholar
Burns, W. K., Howerton, M. M., Moeller, R. P., Greenblatt, A. S., and McElhanon, R. W., “Broad-band reflection traveling wave LiNbO3 modulator,” IEEE Photon. Technol. Lett., 10, 805, 1998CrossRefGoogle Scholar
K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, W. S. C. Chang, D. T. Nicols, L. J. Lembo, and J. C. Brock,” Low loss 1.3 μm MQW electroadbsorption modulators for high-linearity analog optical links,” IEEEPhoton. Technol. Lett., 10, 1998
Metzler, G. and Schwander, T., “RF small-signal equivalent circuit of MQW InGaAs/InAlAs electroabsorption modulator,” Electron. Lett., 33, 1822, 1997CrossRefGoogle Scholar
Loi, K. K., Mei, X. B., Hodiak, J. H., Tu, C. W., and Chang, W. S. C., “38 GHz bandwidth 1.3 μm MQW elecroabsorption modulators for RF photonic links,” Electron. Lett., 10, 1018, 1998CrossRefGoogle Scholar
Mei, X. B., Loi, K. K., Wieder, H. H., Chang, W. S. C., and Tu, C. W., “Strain-compensated InAsP/GaInP multiple quantum wells for 1.3 μm waveguide modulators,” Appl. Phys. Lett., 68, 90, 1996CrossRefGoogle Scholar
Ido, T., Tanaka, S., Suzuki, M., and Inoue, H, “MQW electroabsorption optical modulator for 40 Gbt/s modulation,” Electron. Lett., 31, 2124, 1995CrossRefGoogle Scholar
K. K. Loi, “Multiple-quantum-well waveguide modulators at 1.3 μm wavelength for analog fiber-optic links,” Ph. D. thesis, University of California San Diego, 1998
G. L. Li, P. K. L. Yu, S. A. Pappert, and C. K. Sun, “The effects of photocurrent on microwave properties of electroabsorption modulators,” IEEE MTT-SInternational Microwave Symposium Digest, Paper WE2B-2, Anaheim, CA, June 1999
Liao, H. H., Mei, X. B., Loi, K. K., Tu, C. W., Yu, P. K. L., Asbeck, P. M., and Chang, W. S. C., “Design of millimeter wave optical modulators with monolithically integrated narrow band impedance matching circuits,” Proc. SPIE, 3006, 318, 1997Google Scholar
H. H. Liao, “Novel microwave structures for ultra high frequency operation of MQW electroabsorption waveguide modulators,” Ph. D. Thesis, University of California San Diego, 1997
Chemla, D. S., Miller, D. A. B., Smith, P. W., Gossard, A. G., and Wiegmann, W., “Room temperature excitonic non linear absorption and refraction in Ga| As/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron., QE-20, 265, 1984CrossRefGoogle Scholar
An-Nien Cheng, “Quaternary InGaAlAs/InAlAs quantum wells for 1.3 μm electroabsorption modulators,” Ph. D. Thesis, University of California San Diego, 1994
Wood, T. H., Pastalan, J. Z., Burrus, C. A., Johnson, B. C., Miller, B. I., Demiguel, J. L., Koren, U., and Young, M. G., “Electric field screening by photogenerated holes in MQWs: A new mechanism for absorption saturation,” Appl. Phys. Lett., 57, 1081, 1990CrossRefGoogle Scholar
Fox, A. M., Miller, D. A. B., Livescu, G., Cunningham, J. E., and Jan, W. Y., “Quantum well carrier sweep out: Relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron., 27, 2281, 1991CrossRefGoogle Scholar
Courtesy of Dr. P. K. Tien, AT&T Research Laboratory, unpublished
Mathews, J. W. and Blakeslee, A. E., “Defects in epitaxial multilayers,” J. Crys. Growth, 27, 118, 1974Google Scholar
People, R. and Bean, J. C., “Calculations of critical thickness versus lattice mismatch for GeSi strained-layer heterostructures,” Appl. Phys. Lett. 47, 322, 1985CrossRefGoogle Scholar
L. Shen, “InGaAs/InAlAs quantum wells for 1.3 μm electroabsorption modulators on GaAs substrates,” Ph. D. Thesis, University of California San Diego, 1997
Shen, L., Wieder, H. H., and Chang, W. S. C., “Electroabsorption at 1.3 μm on GaAs substrates using a step-graded low temperature grown InAlAs buffer,” IEEE Photon. Technol. Lett., 8, 352, 1996CrossRefGoogle Scholar
S. M. Lord, “Growth of high indium content InGaAs on GaAs substrates for optical applications,” Ph. D. Thesis, Stanford University, 1993
Chui, H. C. and Harris, J. S. Jr., “Growth studies on the In0.5Ga0.5As/Al GaAs quantum wells grown on GaAs with a linearly graded InGaAs buffer,” J. Vac. Soc. Technol. B, 12, 1019, 1994CrossRefGoogle Scholar
Tanner, B. K. and Brown, D. K., “Advanced x-ray scattering techniques for the characterization of semiconductor material,” J. Cryst. Growth, 126, 1, 1993CrossRefGoogle Scholar
Fewster, P. F., “X-ray diffraction from low dimensional structures,” Semicond, Sci. Technol. 8, 1915, 1993CrossRefGoogle Scholar
Feenstra, R. M., “Cross-sectional scanning tunneling microscopy of III–V semiconductor structures,” Semicond. Sci. Technol. 9, 2157, 1994CrossRefGoogle Scholar
J. A. Stroscio and W. J. Kaiser, Scanning Tunneling Microscopy, Academic Press, Boston, Chapters 5 and 6, 1993
D. C. Joy, A. D. Romig, and J. I. Goldstein, Principles of Analytical Electron Microscopy, Plenum Press, New York, 1986
Leapman, R. D. and Newbury, D. E., “Trace element analysis at nanometer spatial resolution by parallel-detection electron energy loss spectroscopy,” Anal. Chem., 65, 2409, 1993CrossRefGoogle ScholarPubMed
Hovel, H., “Scanning photoluminescence of semiconductors,” Semicond. Sci. Technol., 7, A1, 1992CrossRefGoogle Scholar
C. J. Miner, Rapid Non-destructive Scanning of Compound Semiconductor Wafers and Epitaxial Layers, Semiconductor Characterization, Present Status and Future Needs, ed. W. M. Bullis, D. C. Seiler, and A. C. Diebold, AIP Press, 1996, p. 605
Merwe, J. H. van der, “Misfit dislocation generation in epitaxial layers,” Crit. Rev. Solid State Mater. Sci., 17, 187, 1991, CRC PressCrossRefGoogle Scholar
Nandedkar, A. and Narayan, J., “Atomic structure of dislocations in silicon, germanium and diamond,” Philos. Mag., A62, 873, 1990CrossRefGoogle Scholar
Xiaobing Mei, “InAsP/GaInP strain-compensated multiple quantum wells and their optical modulator applications,” Ph. D. Thesis, University of California, San Diego, 1997
Bastard, G., “Theoretical investigation of superlattice band structure in the envelope function approximation,” Phys. Rev., B25, 7584, 1982CrossRefGoogle Scholar
Miller, D. A. B., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H., and Burrus, C. A., Phys. Rev., B32, 1043, 1985CrossRef
Juang, F. Y., Singh, J., Bhatacharya, P. K., Bajema, K., and Merlin, R., “Field dependent linewidths and photoluminescence energies in GaAs-AlGaAs multi-quantum well modulator,” Appl. Phys. Lett., 48. 1246, 1986CrossRefGoogle Scholar
Hong, S. and Singh, J., “Excitonic energies and inhomogeneous line broadening effects in InAsAs-InGaAs modulator structures,” J. Appl. Phys., 42, 1994, 1987CrossRefGoogle Scholar
Miller, D. A. B., Chemla, D. S., Eilenberger, D. J., Smith, P. W., Gossard, A. C., Wiegmann, W., Wood, T. H., and Burrus, C. A., “Large room-temperature optical nonlinearity in GaAs/Ga 11-x As x multiple quantum well structures,” Appl. Phys. Lett., 41, 679, 1982CrossRefGoogle Scholar
Cheng, A.-N., Wieder, H. H., and Chang, W. S. C., “Electroabsorption in lattice- matched InGaAlAs-InAlAs quantum wells at 1.3 μm,” IEEE Photon. Technol. Lett., 7, 1159, 1995CrossRefGoogle Scholar
He, T., Ehrhart, P., and Mauffels, P., “Optical band gap and Urbach tail in Y-doped BaCeO3,” J. Appl. Phys., 79, 3129, 1996CrossRefGoogle Scholar
J. H. Hodiak, “Design of fiber-coupled surface-normal Fabry Perot electroabsorption modulators for analog applications,” Ph. D. Thesis, University of California San Diego, 1999
Okuno, Y., Uomi, K., Aoki, M., and Tsuchia, T., “Direct wafer bonding of III–V compound semiconductors for free-material and free-orientation integration,” IEEE J. Quantum Electron. 33, 959, 1997CrossRefGoogle Scholar
Loi, K. K., Sakamoto, I., Mei, X. B., Tu, C. W., and Chang, W. S. C., “High efficiency 1.3 μm InAsP/GaInP MQW electroabsorption waveguide modulators for microwave fiber optic links,” IEEE Photon. Technol. Lett., 8, 626, 1996CrossRefGoogle Scholar
Loi, K. K., Hodiak, J. H., Tu, C. W. and Chang, W. S. C., “Linearization of 1.3 μm MQW electroabsorption modulators using an all-optical frequency-insensitive technique,” IEEE Photon. Technol. Lett., 10, 964, 1998CrossRefGoogle Scholar
Liao, H. H., Mei, X. B., Asbeck, P. M., Tu, C. W., and Chang, W. S. C., “Microwave structures for traveling wave MQW electroabsorption modulators for wide band 1.3 μm photonic links,” Proc. SPIE, 3006, 291, 1997CrossRefGoogle Scholar
H. H. Liao, “Novel microwave structures for ultra high frequency operation of MQW electroabsorption waveguide modulators,” Ph. D. Thesis, University of California San Diego, 1997
G. L. Li, S. A. Pappert, C. K. Sun, W. S. C. Chang, and P. K. L. Yu, “50 GHz traveling-wave InGaAsP/InP electroabsorption modulator: measurement and analysis,” IEEETrans. Microwave Theory Tech., special issue, Microwave and Millimeter Wave Photonics, 2001

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×