Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T04:13:45.942Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  24 November 2022

Bryan W. Roberts
Affiliation:
London School of Economics and Political Science
HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the 'Save PDF' action button.

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC-ND 4.0 https://creativecommons.org/cclicenses/

References

‘t Hooft, G. (1971). “Renormalizable Lagrangians for massive Yang–Mills fields”. In: Nuclear Physics: B 35.1, pp. 16788 (Cited on pages 176, 178).Google Scholar
Abraham, R. and Marsden, J. E. (1978). Foundations of Mechanics. 2nd Edition. Redwood City, CA: Addison-Wesley Publishing Company (Cited on pages 64, 69, 72).Google Scholar
Acuña, P. (2016). “Minkowski spacetime and Lorentz invariance: The cart and the horse or two sides of a single coin?” In: Studies in History and Philosophy of Modern Physics 55. http://philsci-archive.pitt.edu/14312/, pp. 112 (Cited on page 106).Google Scholar
Aharonov, Y. and Susskind, L. (1967). “Observability of the sign change of spinors under 2π rotations”. In: Physical Review 158.5, pp. 12378 (Cited on page 208).Google Scholar
Albert, D. Z. (1996). “Global existence and uniqueness of Bohmian trajectories”. In: Elementary Quantum Metaphysics. Ed. by Cushing, J. T., Fine, A., and Goldstein, S.. Boston Studies in the Philosophy of Science. Dordrecht, Boston, London: Kluwer Academic Publishers, pp. 7768 (Cited on page 60).Google Scholar
Albert, D. Z. (2000). Time and Chance. Cambridge, MA: Harvard University Press (Cited on pages 13, 24, 26, 27, 28, 31, 36, 37, 38, 42, 46, 50, 52, 53, 123).Google Scholar
Allori, V. (2015). “Maxwell’s paradox: The metaphysics of classical electrodynamics and its time-reversal invariance”. In: αnalytica 1. Postprint: http://philsciarchive.pitt.edu/12390/, pp. 119 (Cited on page 26).Google Scholar
Angelopoulos, A., et al. (1998). “First direct observation of time-reversal non-invariance in the neutral-kaon system”. In: Physics Letters B 444.1–2, pp. 4351. doi: 10.1016/S0370-2693(98)01356-2 (Cited on page 184).Google Scholar
Araki, H. (1999). Mathematical Theory of Quantum Fields. Oxford: Oxford University Press (Cited on page 202).Google Scholar
Armstrong, D. M. (1968). A Materialist Theory of the Mind. New York: Routledge (Cited on page 33).Google Scholar
Arnol’d, V. I. (1989). Mathematical Methods of Classical Mechanics. 2nd Edition. New York: Springer-Verlag (Cited on pages 70, 110, 151).Google Scholar
Arnol’d, V. I. (1990). “Contact geometry: The geometrical method of Gibbs’s thermodynamics”. In: Proceedings of the Gibbs Symposium: Yale University, May 15–17, 1989. Ed. by Caldi, D. and Mostow, G.. The American Mathematical Society, pp. 16379 (Cited on pages 146, 151).Google Scholar
Arnol’d, V. I. (1992). Ordinary Differential Equations. 3rd Edition. Translated by Roger Cooke. Berlin, Heidelberg: Springer-Verlag (Cited on page 59).Google Scholar
Arntzenius, F. (2004). “Time reversal operations, representations of the Lorentz group, and the direction of time”. Studies in History and Philosophy of Modern Physics 35.1, pp. 3143 (Cited on page 28).Google Scholar
Arntzenius, F. (2011). “The CPT theorem”. In: The Oxford Handbook of Philosophy of Time. Ed. by Callender, C.. Oxford: Oxford University Press. Chap. 21, pp. 63346 (Cited on pages 199, 200).Google Scholar
Arntzenius, F. (2012). Space, Time, and Stuff. Oxford: Oxford University Press (Cited on pages 199, 200).Google Scholar
Arntzenius, F. and Greaves, H. (2009). “Time reversal in classical electromagnetism”. In: The British Journal for the Philosophy of Science 60.3. Preprint: http://philsciarchive.pitt.edu/4601/, pp. 55784 (Cited on pages 28, 193, 199).Google Scholar
Ashtekar, A. (2015). “Response to Bryan Roberts: A new perspective on T violation”. In: Studies in History and Philosophy of Modern Physics 52. Preprint: http://philsci-archive.pitt.edu/9682/, pp. 1620 (Cited on page 184).Google Scholar
Ashtekar, A. and Schilling, T. A. (1999). “Geometrical formulation of quantum mechanics”. In: On Einstein’s Path: Essays in Honor of Engelbert Schücking. Ed. by Harvey, A.. Preprint: https://arxiv.org/abs/gr-qc/9706069. New York: Springer-Verlag, pp. 2365 (Cited on page 51).Google Scholar
BaBar Collaboration (2001). “Observation of CP violation in the B0 meson system”. In: Physical Review Letters 87.9. https://arxiv.org/abs/1207.5832, p. 091801 (Cited on page 20).Google Scholar
BaBar Collaboration (2012). “Observation of time-reversal violation in the B0 meson system”. In: Physical Review Letters 109.21. https://arxiv.org/abs/1207.5832, p. 211801 (Cited on page 20).Google Scholar
Bacciagaluppi, G. (2020). “The role of decoherence in quantum mechanics”. In: The Stanford Encyclopedia of Philosophy. Ed. by Zalta, E. N.. Fall 2020. Stanford: Metaphysics Research Lab, Stanford University (Cited on page 134).Google Scholar
Baez, J. C., Segal, I. E., and Zhou, Z. (1992). Introduction to Algebraic and Constructive Quantum Field Theory. Princeton: Princeton University Press (Cited on page 202).Google Scholar
Bain, J. (2016). CPT Invariance and the Spin-Statistics Connection. Oxford: Oxford University Press (Cited on page 199).Google Scholar
Baker, D. and Halvorson, H. (2010). “Antimatter”. In: The British Journal for the Philosophy of Science 61.1. http://philsci-archive.pitt.edu/4467/, p. 93 (Cited on page 204).CrossRefGoogle Scholar
Baker, D. J. (2010). “Symmetry and the metaphysics of physics”. In: Philosophy Compass 5.12. http://philsci-archive.pitt.edu/5435/, pp. 115766 (Cited on page 102).Google Scholar
Baker, D. J. (2011). “Broken symmetry and spacetime”. In: Philosophy of Science 78.1. http://philsci-archive.pitt.edu/8362/, pp. 12848 (Cited on page 111).Google Scholar
Baker, D. J. and Halvorson, H. (2013). “How is spontaneous symmetry breaking possible? Understanding Wigner’s theorem in light of unitary inequivalence”. In: Studies in History and Philosophy of Modern Physics 44.4. https://arxiv.org/abs/1103.3227, pp. 4649 (Cited on page 111).Google Scholar
Ballentine, L. E. (1998). Quantum Mechanics: A Modern Development. Singapore: World Scientific Publishing Company (Cited on page 26).CrossRefGoogle Scholar
Barbour, J. B. (1974). “Relative-distance Machian theories”. In: Nature 249.5455, pp. 3289 (Cited on page 58).Google Scholar
Bargmann, V. (1954). “On unitary ray representations of continuous groups”. In: Annals of Mathematics 59.1, pp. 146 (Cited on pages 29, 208, 209).Google Scholar
Bargmann, V. (1964). “Note on Wigner’s theorem on symmetry operations”. In: Journal of Mathematical Physics 5.7, pp. 8628 (Cited on page 76).Google Scholar
Barrett, T. W. (2015). “On the structure of classical mechanics”. In: The British Journal for the Philosophy of Science 66.4. http://philsci-archive.pitt.edu/9603/, pp. 80128 (Cited on pages 65, 72).Google Scholar
Barrett, T. W. (2018a). “Equivalent and inequivalent formulations of classical mechanics”. In: The British Journal for the Philosophy of Science 70.4. http://philsci-archive.pitt.edu/13092/, pp. 116799 (Cited on page 73).Google Scholar
Barrett, T. W. (2018b). “What do symmetries tell us about structure?” In: Philosophy of Science 85.4. http://philsci-archive.pitt.edu/13487/, pp. 61739 (Cited on page 52).Google Scholar
Barrett, T. W. (2019). “Equivalent and inequivalent formulations of classical mechanics”. In: the British Journal for the Philosophy of Science 70.4. http://philsci-archive.pitt.edu/13092/, pp. 116799 (Cited on pages 52, 65, 72).Google Scholar
Barrett, T. W. (2020a). “Structure and equivalence”. In: Philosophy of Science 87.5. http://philsci-archive.pitt.edu/16454/, pp. 118496 (Cited on page 52).Google Scholar
Barrett, T. W. (2020b). “How to count structure”. In: Noûs 56.2, pp. 295322, (Cited on page 52).Google Scholar
Barrett, T. W. and Halvorson, H. (2016a). “Glymour and Quine on theoretical equivalence”. In: Journal of Philosophical Logic 45.5. http://philsci-archive.pitt.edu/11341/, pp. 46783 (Cited on page 86).Google Scholar
Barrett, T. W. and Halvorson, H. (2016b). “Morita equivalence”. In: The Review of Symbolic Logic 9.3. https://arxiv.org/abs/1506.04675, pp. 55682 (Cited on page 86).Google Scholar
Bassi, A. and Ghirardi, G. (2003). “Dynamical reduction models”. In: Physics Reports 379.5-6. https://arxiv.org/abs/quant-ph/0302164, pp. 257426 (Cited on page 131).Google Scholar
Bassi, A., Lochan, K., et al. (2013). “Models of wave-function collapse, underlying theories, and experimental tests”. In: Reviews of Modern Physics 85.2. https://arxiv.org/abs/1204.4325, p. 471 (Cited on pages 131, 133).Google Scholar
Batterman, R. W. (2002). The Devil in the Details: Asymptotic Reasoning in Explanation, Reduction, and Emergence. New York: Oxford University Press (Cited on page 140).Google Scholar
Bedingham, D. J. and Maroney, O. J. (2017). “Time reversal symmetry and collapse models”. In: Foundations of Physics 47.5. https://arxiv.org/abs/1502.06830, pp. 67096 (Cited on page 133).Google Scholar
Bell, J. S. (1955). “Time reversal in field theory”. In: Proceedings of the Royal Society of London A 231, pp. 47995 (Cited on pages 193, 200).Google Scholar
Belle Collaboration (2001). “Observation of large CP violation in the neutral B meson system”. In: Physical Review Letters 87.9. https://arxiv.org/abs/hep- ex/0107061, p. 091802 (Cited on page 20).Google Scholar
Belnap, N. D. (1992). “Branching space-time”. In: Synthese 92.3, pp. 385434 (Cited on page 35).Google Scholar
Belnap, N. D. and Green, M. (1994). “Indeterminism and the thin red line”. In: Philosophical Perspectives 8, pp. 36588 (Cited on page 35).Google Scholar
Belnap, N. D., Müller, T., and Placek, T. (2021a). “Branching space-times: Theory and applications”. New York: Oxford University Press (Cited on page 35).Google Scholar
Belnap, N. D., Müller, T., and Placek, T. (2021b). “New foundations for branching space-times”. In: Studia Logica 109.2, pp. 23984 (Cited on page 35).CrossRefGoogle Scholar
Belnap, N. D., Perloff, M., and Xu, M. (2001). Facing the Future: Agents and Choices in Our Indeterminist World. Oxford: Oxford University Press (Cited on page 35).Google Scholar
Belot, G. (2000). “Geometry and motion”. In: The British Journal for the Philosophy of Science 51.4, pp. 56195 (Cited on page 64).Google Scholar
Belot, G. (2003). “Notes on symmetries”. In: Symmetries in Physics: Philosophical Reflections. Ed. by Brading, K. and Castellani, E.. Cambridge: Cambridge University Press. Chap. 24, pp. 393412 (Cited on pages 16, 86, 87, 181).CrossRefGoogle Scholar
Belot, G. (2007). “The representation of time and change in mechanics”. In: The Handbook of Philosophy of Physics. Ed. by Butterfield, J. and Earman, J.. http://philsci-archive.pitt.edu/2549/. Amsterdam: Elsevier B.V., pp. 133227 (Cited on pages 34, 86, 88).Google Scholar
Belot, G. (2013). “Symmetry and equivalence”. In: The Oxford Handbook of Philosophy of Physics. Ed. by Batterman, R.. http://philsci-archive.pitt.edu/9275/. New York: Oxford University Press. Chap. 9, pp. 31839 (Cited on pages 60, 86, 90, 102).Google Scholar
Berlioz, H. (1989). Correspondance générale d’Hector Berlioz, Vol. 5: 1855-1859.Google Scholar
Macdonald, Hugh J. and Lesure, François (Eds.) Paris: Flammarion (Cited on page 32).Google Scholar
Bernstein, B. (1960). “Proof of Carathéodory’s local theorem and its global application to thermostatics”. In: Journal of Mathematical Physics 1.3, pp. 2224 (Cited on page 148).Google Scholar
Bigi, I. I. and Sanda, A. I. (2009). CP Violation. Cambridge: Cambridge University Press (Cited on pages 18, 25, 179).Google Scholar
Biot, J.-B. (1817). Précis Élémentaire de Physique Expérimentale. Vol. 2. https://books.google.co.uk/books?id=2TE1AAAAcAAJ. Paris: Deterville (Cited on page 7).Google Scholar
Biot, J.-B. (1819). “Mémoire sur les rotations que certaines substances impriment aux axes de polarisation des rayons lumineux”. In: Mémoires de l’Académie Royale des Sciences de l’Institut de France, Année 1817. Vol. II. https://books.google.co.uk/books?id=nLbOAAAAMAAJ. Paris: Firmin Didot, pp. 41136 (Cited on page 7).Google Scholar
Birkhoff, G. and J. von Neumann (1936). “The Logic of Quantum Mechanics”. In: The Annals of Mathematics 37.4, pp. 82343 (Cited on page 74).Google Scholar
Black, M. (1959). “The ‘direction’ of time”. In: Analysis 19.3, pp. 5463 (Cited on page 6).CrossRefGoogle Scholar
Blank, J., Exner, P., and Havlíc, M.ˇek (2008). Hilbert Space Operators in Quantum Physics. 2nd. Springer Science and Business Media B.V. (Cited on pages 71, 76, 77).Google Scholar
Bogolubov, N. N. et al. (1990). General Principles of Quantum Field Theory. Vol. 10. Mathematical Physics and Applied Physics. Trans. Gould, G. G.. Dordrecht: Kluwer Academic Publishers (Cited on page 108).Google Scholar
Boltzmann, L. (1872). “Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen”. In: Wiener Berichte 66, pp. 71232 (Cited on page 11).Google Scholar
Boltzmann, L. (1896). Vorlesungen über Gastheorie. Vol. 1. Leipzig, Germany: J.A. Barth (Cited on page 122).Google Scholar
Boltzmann, L. (1897). “Über irreversible Strahlungsvorgänge II”. In: Berliner Ber. Pp. 101618 (Cited on page 119).Google Scholar
Boltzmann, L. (1898). Vorlesungen über Gastheorie. Vol. 2. Leipzig, Germany: J.A. Barth (Cited on page 122).Google Scholar
Boyle, R. (1772). The Works of the Honourable Robert Boyle. Vol. 1. https://books.google.co.uk/books?id=LqYrAQAAMAAJ. London: J. and F. Rivington et al. (Cited on pages 10, 56).Google Scholar
Boyling, J. (1968). “Carathéodory’s principle and the existence of global integrating factors”. In: Communications in Mathematical Physics 10.1, pp. 5268 (Cited on pages 148, 150).Google Scholar
Boyling, J. (1972). “An axiomatic approach to classical thermodynamics”. In: Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 329.1576, pp. 3570 (Cited on page 148).Google Scholar
Brading, K. and Brown, H. R. (2004). “Are gauge symmetry transformations observable?” In: The British Journal for the Philosophy of Science 55.4. http://philsci-archive.pitt.edu/1436/, pp. 64565 (Cited on pages 85, 98).CrossRefGoogle Scholar
Brading, K. and Castellani, E. (2003). Symmetries in Physics: Philosophical Reflections. Cambridge: Cambridge University Press (Cited on page 181).Google Scholar
Brading, K. and Castellani, E. (2007). “Symmetries and invariances in classical physics”. In: Philosophy of Physics, Part B. Ed. by Butterfield, J. and Earman, J.. Handbook of the Philosophy of Science. http://philsci-archive.pitt.edu/2569/. Amsterdam: Elsevier B.V., pp. 133167 (Cited on page 86).Google Scholar
Bravetti, A. (2018). “Contact geometry and thermodynamics”. In: International Journal of Geometric Methods in Modern Physics 16.1, p. 1940003 (Cited on pages 146, 163).CrossRefGoogle Scholar
Bridgman, P. W. (1927). The Logic of Modern Physics. https://archive.org/details/logicofmodernphy00brid/. New York: The Macmillan Company (Cited on page 23).Google Scholar
Broad, C. (1923). Scientific Thought. London: Cambridge University Press (Cited on page 3).Google Scholar
Brown, H. R. (2000). “The arrow of time”. In: Contemporary Physics 41.5, pp. 3356 (Cited on page 129).Google Scholar
Brown, H. R. (2005). Physical Relativity: Space-Time Structure from a Dynamical Perspective. New York: Oxford University Press (Cited on pages 33, 106, 168, 170).Google Scholar
Brown, H. R. and Holland, P. (1999). “The Galilean covariance of quantum mechanics in the case of external fields”. In: American Journal of Physics 67.3, pp. 20414. doi: http://dx.doi.org/10.1119/1.19227 (Cited on page 86).Google Scholar
Brown, H. R. and Pooley, O. (2006). “Minkowski space-time: A glorious non-entity”. In: Philosophy and Foundations of Physics 1. http://philsci-archive.pitt.edu/1661/, pp. 6789 (Cited on pages 33, 106, 170).Google Scholar
Brown, H. R. and Uffink, J. (2001). “The Origins of time-asymmetry in thermodynamics: The minus first law”. In: Studies in History and Philosophy of Modern Physics 32.4. http://philsci-archive.pitt.edu/217/, pp. 52538 (Cited on pages 141, 143, 144, 145, 166).Google Scholar
Brunetti, R., Fredenhagen, K., and Verch, R. (2003). “The generally covariant locality principle – a new paradigm for local quantum field theory”. In: Communications in Mathematical Physics 237.1-2, pp. 3168 (Cited on page 47).Google Scholar
Brush, S. G. (1976a). The Kind of Motion We Call Heat: A History of the Kinetic Theory of Gases in the 19th Century. Vol. 1: Physics and the Atomists. Amsterdam: Elsevier Science B.V. (Cited on pages 12, 13).Google Scholar
Brush, S. G. (1976b). The Kind of Motion We Call Heat: A History of the Kinetic Theory of Gases in the 19th Century. Vol. 2: Statistical Physics and Irreversible Processes. Amsterdam: Elsevier Science B.V. (Cited on pages 12, 140).Google Scholar
Burgess, J. P. (2015). Rigor and Structure. Oxford: Oxford University Press (Cited on page 85).Google Scholar
Burke, W. L. (1985). Applied Differential Geometry. Cambridge: Cambridge University Press (Cited on pages 58, 147).Google Scholar
Busch, P., Grabowski, M., and Lahti, P. J. (1994). “Time observables in quantum theory”. In: Physics Letters A 191.5-6, pp. 35761. doi: 10.1016/0375-9601(94)90785-4 (Cited on page 99).Google Scholar
Busch, P., Grabowski, M., and Lahti, P. J. (1995). Operational Quantum Physics. Berlin and Heidelberg: Springer-Verlag (Cited on page 74).Google Scholar
Butterfield, J. (2006a). “Against pointillisme about geometry”. In: Time and History: Proceedings of 28th International Wittgenstein Conference. Ed. by Stadler, M. S. F.. https://arxiv.org/abs/physics/0512063. Frankfurt: Ontos Verlag, pp. 181222 (Cited on pages 24, 52, 58).Google Scholar
Butterfield, J. (2006b). “Against pointillisme about mechanics”. In: The British Journal for the Philosophy of Science 57.4. http://philsci-archive.pitt.edu/2553/, pp. 709753 (Cited on pages 24, 28, 52, 58).Google Scholar
Butterfield, J. (2006c). “On symmetry and conserved quantities in classical mechanics”. In: Physical Theory and Its Interpretation: Essays in Honor of Jeffrey Bub. Ed. by Demopoulos, W. and Pitowsky, I.. http://philsci-archive.pitt.edu/2362/. Springer Netherlands, pp. 43100 (Cited on pages 58, 86).Google Scholar
Butterfield, J. (2006d). “The rotating discs argument defeated”. In: The British Journal for the Philosophy of Science 57.1. http://philsci-archive.pitt.edu/2382/, pp. 145 (Cited on page 52).Google Scholar
Butterfield, J. (2007). “On symplectic reduction in classical mechanics”. In: The Handbook of Philosophy of Physics. Ed. by Butterfield, J. and Earman, J.. http://philsci-archive.pitt.edu/2373/. Amsterdam: Elsevier B.V., pp. 1131 (Cited on page 58).Google Scholar
Butterfield, J. (2011). “Against pointillisme: A call to arms”. In: Explanation, Prediction, and Confirmation. Ed. by Dieks, D. et al. http://philsci-archive.pitt.edu/5550/. Dordrecht Heidelberg, London, New York: Springer, pp. 34765 (Cited on pages 52, 58).Google Scholar
Butterfield, J. (2021). “On dualities and equivalences between physical theories”. In: Philosophy Beyond Spacetime, Hugget, N., Matsubara, K. and Wüthrich, C. (Eds.), Oxford: Oxford University Press, http://philsci-archive.pitt.edu/14736/ (Cited on pages 86, 102).Google Scholar
Butterfield, J. and Bouatta, N. (2015). “Renormalization for philosophers”. In: Metaphysics in Contemporary Physics. Ed. by Bigaj, T. and Wüthrich, C.. Vol. 104. Poznań Studies in the Philosophy of the Sciences and the Humanities. http://philsci-archive.pitt.edu/10763/. Amsterdam, New York: Rodopi-Brill, pp. 43785 (Cited on page 176).Google Scholar
Butterfield, J. and Gomes, H. (2020). “Functionalism as a species of reduction”. Forthcoming in: Current Debates in Philosophy of Science, Edited by Cristian, Soto, Springer, http://philsci-archive.pitt.edu/18043/ (Cited on pages 33, 34, 39).Google Scholar
Cabibbo, N. (1963). “Unitary symmetry and leptonic decays”. In: Physical Review Letters 10.12, p. 531 (Cited on page 178).Google Scholar
Callen, H. B. (1985). Thermodynamics and Introduction to Thermostatistics. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons (Cited on pages 142, 146, 154).Google Scholar
Callender, C. (1999). “Reducing thermodynamics to statistical mechanics: The case of entropy”. In: The Journal of Philosophy 96.7, pp. 34873 (Cited on page 140).Google Scholar
Callender, C. (2000). “Is time ‘handed’ in a quantum world?” In: Proceedings of the Aristotelian Society. Preprint: http://philsci-archive.pitt.edu/612/. Aristotelian Society, pp. 24769 (Cited on pages 20, 26, 27, 31, 37, 46, 57, 61, 63, 74).Google Scholar
Callender, C. (2001). “Taking thermodynamics too seriously”. In: Studies in History and Philosophy of Modern Physics 32.4. http://philsci-archive.pitt.edu/289/, pp. 53953 (Cited on page 140).Google Scholar
Callender, C. (2010). “The past hypothesis meets gravity”. In: Time, Chance and Reduction: Philosophical Aspects of Statistical Mechanics. Ed. by Ernst, G. and Hüttemann, A.. Vol. 2010. http://philsci-archive.pitt.edu/4261/. Cambridge: Cambridge University Press. Chap. 3, pp. 3458 (Cited on page 123).Google Scholar
Callender, C. (2017). What Makes Time Special? Oxford: Oxford University Press (Cited on pages 3, 33, 38).Google Scholar
Callender, C. (Forthcoming). “Quantum mechanics: Keeping it real?” In: The British Journal for the Philosophy of Science. http://philsci-archive.pitt.edu/17701/ (Cited on pages 75, 95).Google Scholar
Campbell, L. and Garnnett, W. (1882). The Life of James Clerk Maxwell. London: Macmillan and Co (Cited on page 13).Google Scholar
Carathéodory, C. (1909). “Untersuchungen über die Grundlagen der Thermodynamik”. In: Mathematische Annalen 67, pp. 35586 (Cited on pages 148, 153).Google Scholar
Carmeli, M. and Malin, S. (2000). Theory of Spinors: An Introduction. Singapore: World Scientific (Cited on pages 214, 216).Google Scholar
Carnot, S. (1824). Réflexions sur la Puissance Motrice due Feu, et Sur les Machines Propres a Développer Cette Puissance. https://books.google.co.uk/books?id=QX9iIWF3yOMC. Paris: Bachelier (Cited on pages 7, 8).Google Scholar
Cartan, É. (1913). “Les groupes projectifs qui ne laissent invariante aucune multiplicité plane”. In: Bulletin de la S.M.F. 41. http://www.numdam.org/item/?id=BSMF_1913__41__53_1, pp. 53–96 (Cited on page 214).Google Scholar
Cartan, É. (1937). Leçons sur la Théorie des Spineurs. Published in English as The Theory of Spinors (1966), Paris: Hermann. André Mercier (Cited on page 214).Google Scholar
Castellani, E. and Ismael, J. (2016). “Which Curie’s principle?” In: Philosophy of Science 83.2. Preprint: http://philsci-archive.pitt.edu/11543/, pp. 100213 (Cited on pages 26, 181).Google Scholar
Caulton, A. (2015). “The role of symmetry in the interpretation of physical theories”. In: Studies in History and Philosophy of Modern Physics 52. http://philsci-archive.pitt.edu/11571/, pp. 15362 (Cited on pages 86, 105).Google Scholar
Chalmers, A. F. (1970). “Curie’s principle”. In: The British Journal for the Philosophy of Science 21.2, pp. 13348 (Cited on page 181).Google Scholar
Chang, H. (2003). “Preservative realism and its discontents: Revisiting caloric”. In: Philosophy of Science 70. http://philsci-archive.pitt.edu/1059/, pp. 90212 (Cited on page 8).Google Scholar
Christenson, J. H. et al. (July 1964). “Evidence for the 2π decay of the K20 meson”. In: Physical Review Letters 13.4, pp. 13840. doi: 10.1103/PhysRevLett.13.138 (Cited on pages 180, 183).Google Scholar
Clausius, R. (1865). “Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie”. In: Annalen der Physik 201.7. English translation by R. B. Lindsay, in Kestin (Ed.) (1976), pp.16293, pp. 353–400 (Cited on page 155).Google Scholar
Clausius, R. (1867). Abhandlungen Über Die Mechanische Wärmetheorie. Braunschweig: F. Vieweg (Cited on page 157).Google Scholar
Costa de Beauregard, O. (1980). “Racah time reversal and the K20 riddle”. In: Lettere al Nuovo Cimento 28.7, pp. 2379 (Cited on page 78).Google Scholar
CPLEAR Collaboration (1998). “First direct observation of time-reversal non-invariance in the neutral-kaon system”. In: Physics Letters B 444.1-2, pp. 4351 (Cited on page 19).Google Scholar
Cronin, J. W. and Greenwood, M. S. (1982). “CP symmetry violation”. In: Physics Today 35, pp. 3844. doi: 10.1063/1.2915169 (Cited on pages 17, 18, 19, 183).Google Scholar
Curie, P. (1894). “Sur la symétrie dans les phénomènes physique, symétrie d’un champ électrique et d’un champ magnétique”. In: Journal de Physique Théorique et Appliquée 3, pp. 393415. doi: 10.1051/jphystap:018940030039300 (Cited on pages 16, 181).Google Scholar
Curiel, E. (2013). “Classical mechanics is Lagrangian; it is not Hamiltonian”. In: The British Journal for the Philosophy of Science 65.2. http://philsci-archive.pitt.edu/8625/, pp. 269321 (Cited on pages 65, 72).Google Scholar
Dasgupta, S. (2016). “Symmetry as an epistemic notion (twice over)”. In: The British Journal for the Philosophy of Science 67.3, pp. 83778 (Cited on pages 86, 102, 103).Google Scholar
Davies, P. C. W. (1977). The Physics of Time Asymmetry. Berkeley and Los Angeles: University of California Press (Cited on pages 120, 141).Google Scholar
De Haro, S. and Butterfield, J. (2018). “A schema for duality, illustrated by bosonization”. In: Foundations of Mathematics and Physics One Century after Hilbert: New Perspectives. Ed. by Kouneiher, J.. http://philsci-archive.pitt.edu/13229/. Cham, Switzerland: Springer International Publishing AG, pp. 30576 (Cited on page 103).Google Scholar
De Haro, S. and Butterfield, J. (2018). (2019). “On symmetry and duality”. In: Synthese. Open Access: https://doi.org/10.1007/s11229-019-02258-x, pp. 141 (Cited on pages 86, 102).Google Scholar
De León, M. and Rodrigues, P. R. (1989). Methods of Differential Geometry in Analytical Mechanics. Vol. 158. North-Holland Mathematical Studies. Amsterdam: Elsevier Science Publishers B.V. (Cited on page 72).Google Scholar
Dewar, N. (2019). “Sophistication about symmetries”. In: The British Journal for the Philosophy of Science 70.2. http://philsci-archive.pitt.edu/12469/, pp. 485521 (Cited on page 104).Google Scholar
Dewar, N. (2019) (Forthcoming). Structure and Equivalence. Cambridge Elements. Cambridge: Cambridge University Press (Cited on pages 38, 52, 64, 86).Google Scholar
Dickinson, G. L. (1931). J. McT. E. McTaggart. Cambridge: Cambridge University Press (Cited on page 2).Google Scholar
Dickinson, H. W. (1939). A Short History of the Steam Engine. Cambridge: Cambridge University Press (Cited on page 7).Google Scholar
Dirac, P. A. M. (1930). “A theory of electrons and protons”. In: Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character 126.801, pp. 36065 (Cited on page 55).Google Scholar
Dirac, P. A. M. (1947). The Principles of Quantum Mechanics. 3rd. Oxford: The Clarendon Press (Cited on page 201).Google Scholar
Dirac, P. A. M. (1949). “Forms of relativistic dynamics”. In: Reviews of Modern Physics 21.3, pp. 39299 (Cited on page 15).Google Scholar
Dizadji-Bahmani, F., Frigg, R., and Hartmann, S. (2010). “Who’s afraid of Nagelian reduction?” In: Erkenntnis 73.3. http://philsci-archive.pitt.edu/5323/, pp. 393412 (Cited on page 140).Google Scholar
Duhem, P. (1903). Thermodynamics and Chemistry: A Non-mathematical Treatise for Chemists and Students of Chemistry. New York: John Wiley & Sons (Cited on page 153).Google Scholar
Duncan, A. (2012). The Conceptual Framework of Quantum Field Theory. Oxford: Oxford University Press (Cited on pages 55, 176).Google Scholar
Earman, J. (1974). “An attempt to add a little direction to ‘The problem of the direction of time’“. In: Philosophy of Science 41.1, pp. 1547 (Cited on pages 6, 41, 42, 127, 168).Google Scholar
Earman, J. (1986). A Primer on Determinism. Vol. 32. The University of Western Ontario Series in Philosophy of Science. Dordrecht: D. Reidel Publishing Company (Cited on page 59).Google Scholar
Earman, J. (1989). World Enough and Space-Time: Absolute versus Relational Theories of Space and Time. Cambridge, MA: The MIT Press (Cited on pages 32, 57, 58, 64, 86, 88, 106, 170, 174).Google Scholar
Earman, J. (2002a). “Thoroughly modern McTaggart: or, what McTaggart would have said if he had read the general theory of relativity”. In: Philosopher’s Imprint 2.3. http://hdl.handle.net/2027/spo.3521354.0002.003 (Cited on page 3).Google Scholar
Earman, J. (2002b). “What time reversal is and why it matters”. In: International Studies in the Philosophy of Science 16.3, pp. 24564 (Cited on pages 14, 26, 28, 31, 48, 50, 74, 169).Google Scholar
Earman, J. (2004). “Curie’s principle and spontaneous symmetry breaking”. In: International Studies in the Philosophy of Science 18.2-3, pp. 17398 (Cited on pages 16, 181).Google Scholar
Earman, J. (2006). “The ‘past hypothesis’: Not even false”. In: Studies in History and Philosophy of Modern Physics 37.3, pp. 399430 (Cited on pages 13, 123, 124, 157).Google Scholar
Earman, J. (2008). “Superselection rules for philosophers”. In: Erkenntnis 69.3, pp. 377414 (Cited on page 95).Google Scholar
Earman, J. (2011). “Sharpening the electromagnetic arrow(s) of time”. In: The Oxford Handbook of Philosophy of Time. Ed. by Callender, C.. Oxford: Oxford University Press. Chap. 16, pp. 485527 (Cited on pages 120, 122).Google Scholar
Earman, J. and Norton, J. D. (1987). “What price spacetime substantivalism? The hole story”. In: The British Journal for the Philosophy of Science 38, pp. 51525 (Cited on page 102).Google Scholar
Eddington, A. S. (1928). The Nature of the Physical World. New York: The MacMillan Company, and Cambridge: Cambridge University Press (Cited on pages 115, 139).Google Scholar
Ehrenfest–Afanassjewa, T. (1925). “Zur Axiomatisierung des zweiten Hauptsatzes der Thermodynamik”. In: Zeitschrift für Physik 33, pp. 93345 (Cited on pages 149, 153, 159).Google Scholar
Ehrenfest-Afanassjewa, T. (1956). Die Grundlagen der Thermodynamik. Leiden: E.J. Brill (Cited on page 153).Google Scholar
Ehrenfest, P. and Ehrenfest, T.-Afanassjewa (1907). “Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem”. In: Physikalische Zeitschrift 8.9. https://www.lorentz.leidenuniv.nl/IL-publications/sources/Ehrenfest_07b.pdf, pp. 31114 (Cited on page 12).Google Scholar
Einstein, A. (1905). “Zur elektrodynamik bewegter körper”. In: Annalen der Physik 322.10. https://archive.org/details/onelectrodynamic00aein/, pp. 891921 (Cited on page 22).Google Scholar
Einstein, A. (1909). “Zum genenwärtigen Stand des Stralungsproblems”. In: Physikalische Zeitschrift 10. English translation in A. Beck and P. Havas, The Collected Papers of Albert Einstein, Vol. 2 (Princeton, NJ: Princeton University Press, 1989), pp.357-359, pp. 185–193 (Cited on page 119).Google Scholar
Einstein, A. (1910). “Opalescence theory of homogeneous liquids and liquid mixtures in the vicinity of the critical state”. In: Annalen der Physik 33. https://einsteinpapers.press.princeton.edu/vol3-trans/245, pp. 1275–98 (Cited on page 143).Google Scholar
Ekspong, G. (1980). Nobel Prize Award Ceremony Speech, 12 October 1980. www.nobelprize.org/prizes/physics/1980/ceremony-speech/, accessed 01 Apr 2020 (Cited on page 19).Google Scholar
Everett, H. III (1957). “‘Relative state’ formulation of quantum mechanics”. In: The Many Worlds Interpretation of Quantum Mechanics 29.3, pp. 45462 (Cited on page 134).Google Scholar
Farr, M. (2020). “Causation and time reversal”. In: The British Journal for the Philosophy of Science 71.1. http://philsci-archive.pitt.edu/12658/, pp. 177204 (Cited on page 188).Google Scholar
Feintzeig, B. (2015). “On broken symmetries and classical systems”. In: Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52, pp. 26773 (Cited on pages 111, 112).Google Scholar
Feintzeig, B. (2018). “Toward an understanding of parochial observables”. In: The British Journal for the Philosophy of Science 69.1, pp. 16191 (Cited on page 112).Google Scholar
Feynman, R. P. (1949). “The theory of positrons”. In: Physical Review 76 (6), pp. 74959 (Cited on page 193).Google Scholar
Feynman, R. P. (1963a). The Feynman Lectures on Physics. Vol. 1. Edited by Leighton, Robert B. and Sands, Matthew, https://www.feynmanlectures.caltech.edu/. Reading, MA: Addison-Wesley Publishing Company, Inc (Cited on page 147).Google Scholar
Feynman, R. P. (1963b). The Feynman Lectures on Physics. Vol. 3. Edited by Leighton, Robert B. and Sands, Matthew, https://www.feynmanlectures.caltech.edu/. Reading, MA: Addison-Wesley Publishing Company, Inc (Cited on page 133).Google Scholar
Feynman, R. P. (1972). “The development of the space-time view of quantum electrodynamics, Nobel lecture, December 11, 1965”. In: Nobel Lectures: Physics, 1963-1970. Ed. by Foundation, T. N.. Amsterdam: Elsevier Publishing Company, pp. 15579 (Cited on page 192).Google Scholar
Feynman, R. P. (1985). QED: The Strange Theory of Light and Matter. Princeton: Princeton University Press (Cited on page 198).Google Scholar
Fletcher, S. C. (2018). “On representational capacities, with an application to general relativity”. In: Foundations of Physics, pp. 122 (Cited on page 102).Google Scholar
Fletcher, S. C. (2012). “What counts as a Newtonian system? The view from Norton’s dome”. In: European Journal for Philosophy of Science 2.3, pp. 27597 (Cited on page 59).Google Scholar
Fraser, J. D. (2018). “Renormalization and the formulation of scientific realism”. In: Philosophy of Science 85.5. http://philsci-archive.pitt.edu/14155/, pp. 116475 (Cited on page 176).Google Scholar
Frege, G. (1884). Die Grundlagen der Arithmetik. Open Access: https://www.google.co.uk/books/edition/Die_Grundlagen_der_Arithmetik/pjzrPbOS73UC, Translated by J. L. Austin as The Foundations of Arithmetic (1980), Second Edition, Evanston, IL: Northwestern University Press. Breslau: Verlag von Wilhelm Koebner (Cited on page 101).Google Scholar
Frege, G. (1892). “Über Sinn und Bedeutung”. In: Zeitschrift für Philosophie und philosophische Kritik 100. Translated as ‘Sense and Reference’ by Max Black (1948) in The Philosophical Review 57(3):209–30., pp. 25–50 (Cited on pages 85, 102, 103).Google Scholar
French, S. (2014). The Structure of the World: Metaphysics and Representation. Oxford: Oxford University Press (Cited on page 33).Google Scholar
French, S. and Ladyman, J. (2003). “Remodelling structural realism: Quantum physics and the metaphysics of structure”. In: Synthese 136, pp. 3156 (Cited on page 33).Google Scholar
Frisch, M. (2000). “(Dis-)solving the puzzle of the arrow of radiation”. In: The British Journal for the Philosophy of Science 51.3, pp. 381410 (Cited on page 120).Google Scholar
Frisch, M. (2005). Inconsistency, Asymmetry, and Non-locality: A Philosophical Investigation of Classical Electrodynamics. New York: Oxford University Press (Cited on page 120).Google Scholar
Frisch, M. (2006). “A tale of two arrows”. In: Studies in History and Philosophy of Modern Physics 37.3, New York: Oxford University Press, pp. 54258 (Cited on page 120).Google Scholar
Galapon, E. A. (2009). “Post-Pauli’s theorem emerging perspective on time in quantum mechanics”. In: Time in Quantum Mechanics - Vol. 2. Ed. by Muga, G., Ruschhaupt, A., and del Campo, A.. Lecture Notes in Physics 789. Berlin, Heidelberg: Springer-Verlag, pp. 2563 (Cited on page 99).Google Scholar
Galileo (1632). Dialogo Sopra i Due Massimi Sistemi del Mondo. Open Access (1710) Edition: https://www.google.co.uk/books/edition/Dialogo_di_ Galileo_Galilei/yUBIfbGmyIMC. Fiorenza: Per Gio Batista Landini (Cited on page 98).Google Scholar
García-Colín, L. and Uribe, F. (1991). “Extended irreversible thermodynamics beyond the linear regime: A critical overview”. In: Journal of Non-Equilibrium Thermodynamics 16.2, pp. 89128 (Cited on page 143).Google Scholar
Gardner, M. (1991). “The Ozma Problem and the fall of parity”. In: The Philosophy of Right and Left: Incongruent Counterparts and the Nature of Space. Ed. by Van Cleve, J. and Frederick, R. E.. Dordrecht: Kluwer Academic Publishers, pp. 7595 (Cited on page 17).Google Scholar
Garwin, R. L., Lederman, L. M., and Weinrich, M. (1957). “Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon”. In: Physical Review 104.4, pp. 141517 (Cited on pages 17, 185).Google Scholar
Gel’fand, I. M., Minlos, R. A., and Shapiro, Z. Y. (1958). Representations of the Rotation and Lorentz Groups and their Applications. Macmillan English-language publication of 1963, translated by Cummins and Boddington, originally published by Fizmatgiz (Moscow). New York: The Macmillan Company (Cited on pages 209, 213).Google Scholar
Gell-Mann, M. (1961). The Eightfold Way: A Theory of Strong Interaction Symmetry. Report CTSL-20. California Institute of Technology (Cited on page 179).Google Scholar
Gell-Mann, M. and Hartle, J. B. (1990). “Quantum mechanics in the light of quantum cosmology”. In: Complexity, Entropy, and the Physics of Information. Ed. by Zurek, W. H.. https://arxiv.org/abs/1803.04605. Boca Raton, FL: Taylor & Francis Group LLC, pp. 42558 (Cited on page 134).Google Scholar
Gell-Mann, M. and Pais, A. (1955). “Behavior of neutral particles under charge conjugation”. In: Physical Review 97.5, pp. 138789 (Cited on page 18).Google Scholar
Ghirardi, G. C., Rimini, A., and Weber, T. (1986). “Unified dynamics for microscopic and macroscopic systems”. In: Physical Review D 34.2, p. 470 (Cited on pages 131, 133).Google Scholar
Ghirardi, G. and Bassi, A. (2020). “Collapse theories”. In: The Stanford Encyclopedia of Philosophy. Ed. by Zalta, E. N.. Summer 2020. Metaphysics Research Lab, Stanford University (Cited on page 131).Google Scholar
Gibbons, G. (1992). “Typical states and density matrices”. In: Journal of Geometry and Physics 8.1–4, pp. 14762. issn: 0393-0440. doi: http://dx.doi.org/10.1016/0393-0440(92)90046-4 (Cited on page 51).Google Scholar
Gibbs, J. W. (1873). “A method of geometrical representation of the thermodynamic properties by means of surfaces”. In: Transactions of Connecticut Academy of Arts and Sciences. Section II, pg.33–54 of The Collected Works of J. Willard Gibbs (1948), Volume 1, London: Longmans Green and Co., 1948, Available Open Access at https://gallica.bnf.fr/ark:/12148/bpt6k95192s, pp. 382404 (Cited on pages 151, 152).Google Scholar
Gibbs, J. W. (1876). “On the equilibrium of heterogeneous substances: First part”. In: Transactions of the Connecticut Academy of Arts and Sciences 3.1. https://archive.org/details/Onequilibriumhe00Gibb, pp. 108248 (Cited on pages 154, 162).Google Scholar
Gibbs, J. W. (1877). “On the equilibrium of heterogeneous substances: Second part”. In: Transactions of the Connecticut Academy of Arts and Sciences 3.2. https://archive.org/details/Onequilibriumhe00GibbA, pp. 343524 (Cited on pages 154, 162).Google Scholar
Glashow, S. L. (1961). “Partial-symmetries of weak interactions”. In: Nuclear Physics 22.4, pp. 57988 (Cited on page 178).Google Scholar
Glymour, C. (1970). “Theoretical realism and theoretical equivalence”. In: PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association. Vol. 1970, pp. 27588 (Cited on page 86).Google Scholar
Glymour, C. (1980). Theory and Evidence. Princeton: Princeton University Press (Cited on page 86).Google Scholar
Gołosz, J. (2017). “Weak interactions: Asymmetry of time or asymmetry in time?” In: Journal for General Philosophy of Science 48.1, pp. 1933 (Cited on page 6).Google Scholar
Gomes, H. (2019). “Gauging the boundary in field-space”. In: Studies in History and Philosophy of Modern Physics 67. http://philsci-archive.pitt.edu/15564/, pp. 89110 (Cited on page 98).Google Scholar
Gomes, H. (2021a). “Gauge-invariance and the empirical significance of symmetries”. In: Under review, http://philsci-archive.pitt.edu/16981/ (Cited on page 98).Google Scholar
Gomes, H. (2021b). “Holism as the empirical significance of symmetries”. In: Forthcoming in European Journal of Philosophy of Science, http://philsci-archive.pitt.edu/16499/ (Cited on page 98).Google Scholar
Gomes, H. and Gryb, S. (2020). “Turbo-charging relationism: Angular momentum without rotation”, Forthcoming in Studies in History and Philosophy of Modern Physics, http://philsci-archive.pitt.edu/18353/ (Cited on page 57).Google Scholar
Gotay, M. J. (2000). “Obstructions to quantization”. In: Mechanics, from Theory to Computation: Essays in Honor of Juan-Carlos Simo. Ed. by E. of the Journal of Non-Linear Science. https://arxiv.org/abs/math-ph/9809011v1. New York: Springer-Verlag New York, Inc., pp. 171216 (Cited on page 201).Google Scholar
Greaves, H. (2008). “Spacetime symmetries and the CPT theorem”. https://rucore.libraries.rutgers.edu/rutgers-lib/24390/. PhD thesis. Rutgers, The State University of New Jersey (Cited on pages 193, 199).Google Scholar
Greaves, H. (2010). “Towards a geometrical understanding of the CPT theorem”. In: The British Journal for the Philosophy of Science 61.1. Preprint: http://philsci- archive.pitt.edu/4566/, pp. 2750. doi: 10.1093/bjps/axp004 (Cited on pages 193, 194, 199, 200, 206, 212).Google Scholar
Greaves, H. and Thomas, T. (2014). “On the CPT theorem”. In: Studies in History and Philosophy of Modern Physics 45, pp. 4665 (Cited on page 200).Google Scholar
Greaves, H. and Wallace, D. (2014). “Empirical consequences of symmetries”. In: The British Journal for the Philosophy of Science 65.1. http://philsci-archive.pitt.edu/8906/, pp. 5989 (Cited on page 98).Google Scholar
Griffiths, R. B. (1984). “Consistent histories and the interpretation of quantum mechanics”. In: Journal of Statistical Physics 36.1, pp. 21972 (Cited on page 134).Google Scholar
Groenewold, H. J. (1946). “On the principles of elementary quantum mechanics”. In: Physica 12.7, pp. 156 (Cited on page 201).Google Scholar
Grünbaum, A. (1963). Philosophical Problems of Space and Time. New York: Alfred A. Knopf (Cited on page 168).Google Scholar
Grünbaum, A. (1973). Philosophical Problems of Space and Time. Second. Vol. 12. Boston Studies in the Philosophy of Science. Dordrecht/Boston: D. Reidel (Cited on pages 33, 169).Google Scholar
Gryb, S. and Thébault, K. P. (2016). “Time remains”. In: The British Journal for the Philosophy of Science 67.3. http://philsci-archive.pitt.edu/10930/, pp. 663705 (Cited on page 33).Google Scholar
Guillemin, V. and Sternberg, S. (1984). Symplectic Techniques in Physics. Cambridge: Cambridge University Press (Cited on page 70).Google Scholar
Gyenis, B. (2013). “Well Posedness and Physical Possibility”. http://d-scholarship.pitt.edu/19818/. PhD thesis. University of Pittsburgh (Cited on page 59).Google Scholar
Haag, R. (1996). Local Quantum Physics: Fields, Particles, Algebras. 2nd Ed. Berlin/Heidelberg: Springer-Verlag (Cited on page 215).Google Scholar
Hagar, A. (2012). “Decoherence: the view from the history and philosophy of science”. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370.1975, pp. 4594609 (Cited on page 134).Google Scholar
Hall, B. C. (2003). Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Graduate Texts in Mathematics 222. New York: Springer-Verlag (Cited on page 55).Google Scholar
Halvorson, H. (2012). “What scientific theories could not be”. In: Philosophy of Science 79.2. http://philsci-archive.pitt.edu/8940/, pp. 183206 (Cited on pages 38, 52, 86).Google Scholar
Halvorson, H. (2013). “The semantic view, if plausible, is syntactic”. In: Philosophy of Science 80.3. http://philsci-archive.pitt.edu/9625/, pp. 4758 (Cited on pages 52, 86).Google Scholar
Halvorson, H. (2019). The Logic in Philosophy of Science. Cambridge: Cambridge University Press (Cited on pages 38, 52, 84, 86).Google Scholar
Hartle, J. B. and Hawking, S. W. (1983). “Wave function of the universe”. In: Physical Review D 28.12, p. 2960 (Cited on page 128).CrossRefGoogle Scholar
Haslach, H. W. Jr. (2011). Maximum Dissipation Non-equilibrium Thermodynamics and its Geometric Structure. New York Dordrecht Heidelberg London: Springer Science+Business Media, LLC (Cited on page 143).Google Scholar
Hawking, S. W. (1994). “The no boundary condition and the arrow of time”. In: Physical Origins of Time Asymmetry. Ed. by Halliwell, J. J., Pérez-Mercader, J., and Zurek, W. H.. Cambridge: Cambridge University Press (Cited on pages 136, 140).Google Scholar
Healey, R. (2007). Gauging What’s Real: The Conceptual Foundations of Contemporary Gauge Theories. New York: Oxford University Press (Cited on page 98).Google Scholar
Hegerfeldt, G. C. and Kraus, K. (1968). “Critical remark on the observability of the sign change of spinors under 2π rotations”. In: Physical Review 170.5, pp. 118586 (Cited on page 208).Google Scholar
Hegerfeldt, G. C., Kraus, K., and Wigner, E. P. (1968). “Proof of the fermion superselection rule without the assumption of time-reversal invariance”. In: Journal of Mathematical Physics 9.12, pp. 202931 (Cited on pages 95, 96, 97).Google Scholar
Hegerfeldt, G. C. and Muga, J. G. (2010). “Symmetries and time operators”. In: Journal of Physics A: Mathematical and Theoretical 43. arXiv:1008.4731, p. 505303 (Cited on page 99).Google Scholar
Henderson, L. (2014). “Can the second law be compatible with time reversal invariant dynamics?” In: Studies in History and Philosophy of Modern Physics 47. http://philsci-archive.pitt.edu/10698/, pp. 908 (Cited on page 155).Google Scholar
Hermann, R. (1973). Geometry, Physics, and Systems. New York: Marcel Dekker, Inc (Cited on pages 146, 151, 162, 163).Google Scholar
Hochschild, G. P. (1965). The Structure of Lie Groups. San Francisco, London, Amsterdam: Holden-Day, Inc (Cited on page 209).Google Scholar
Hofer-Szabó, G., Rédei, M., and Szabó, L. (2013). The Principle of the Common Cause. Cambridge: Cambridge University Press (Cited on page 137).Google Scholar
Horwich, P. (1989). Asymmetries in Time: Problems in the Philosophy of Science. Cambridge MA: The MIT Press (Cited on page 20).Google Scholar
Huang, K. (1982). Quarks, Leptons & Gauge Fields. Singapore: World Scientific publishing Co Pte Ltd (Cited on pages 176, 179).Google Scholar
Ingthorsson, R. D. (2016). McTaggart’s Paradox. New York and London: Routledge (Cited on page 2).Google Scholar
Ismael, J. (1997). “Curie’s principle”. In: Synthese 110.2, pp. 167190 (Cited on page 181).Google Scholar
Jacobs, C. (Forthcoming). “The coalescence approach to inequivalent representation: Pre-QM∞ parallels”. In: The British Journal for the Philosophy of Science. http://philsci-archive.pitt.edu/18998/ (Cited on page 111).Google Scholar
Jauch, J. M. (1968). Foundations of Quantum Mechanics. Addison-Wesley Series in Advanced Physics. Reading, MA, Menlo Park, CA, London, Don Mills, ON: Addison-Wesley Publishing Company, Inc (Cited on pages 31, 54, 74, 76, 80).Google Scholar
Jauch, J. M. (1972). “On a new foundation of equilibrium thermodynamics”. In: Foundations of Physics 2.4, pp. 32732 (Cited on page 149).Google Scholar
Jauch, J. M. and Rohrlich, F. (1976). The Theory of Photons and Electrons: The relativistic Quantum Field Theory of Charged Particles with Spin One-Half. Second. Berlin, Heidelberg, New York: Springer-Verlag (Cited on page 78).Google Scholar
Joos, E. et al. (2013). Decoherence and the Appearance of a Classical World in Quantum Theory. 2nd ed. Berlin-Heidelberg: Springer-Verlag (Cited on page 134).Google Scholar
Jost, R. (1957). “Eine Bemerkung zum CTP Theorem”. In: Helvetica Physica Acta 30, pp. 40916 (Cited on page 97).Google Scholar
Jost, R. (1965). The General Theory of Quantized Fields. Vol. IV. Lectures in applied mathematics: Proceedings of the Summer Seminar, Boulder, Colorado, 1960. Providence, RI: American Mathematical Society (Cited on pages 97, 215).Google Scholar
Kabir, P. K. (1968). “Tests of T and TCP invariance in K0 decay”. In: Nature 220, pp. 131013 (Cited on page 183).Google Scholar
Kabir, P. K. (1970). “What is not invariant under time reversal?” In: Physical Review D 2.3, pp. 5402 (Cited on page 183).Google Scholar
Kane, T. and Scher, M. (1969). “A dynamical explanation of the falling cat phenomenon”. In: International Journal of Solids and Structures 5.7, pp. 66370 (Cited on page 14).Google Scholar
Kay, B. S. (1979). “A uniqueness result in the Segal–Weinless approach to linear Bose fields”. In: Journal of Mathematical Physics 20.8, pp. 171213 (Cited on page 201).Google Scholar
Kay, B. S. and Wald, R. M. (1991). “Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon”. In: Physics Reports 207.2, pp. 49136 (Cited on pages 201, 202).Google Scholar
Khriplovich, I. B. and Lamoreaux, S. K. (1997). CP Violation Without Strangeness: Electric Dipole Moments of Particles, Atoms, and Molecules. Berlin, Heidelberg: Springer-Verlag (Cited on page 21).Google Scholar
Kibble, T. (1979). “Geometrization of quantum mechanics”. In: Communications in Mathematical Physics 65.2, pp. 189201 (Cited on page 51).Google Scholar
Kinney, D. (2021). “Curie’s principle and causal graphs”. In: Studies in History and Philosophy of Science Part A 87, pp. 227 (Cited on page 181).Google Scholar
Klein, J. (1962). “Espaces variationnels et mécanique”. In: Annales de l’institut Fourier 12. https://doi.org/10.5802/aif.120, pp. 1124 (Cited on page 72).Google Scholar
Klein, M. J. (1973). “The development of Boltzmann’s statistical ideas”. In: The Boltzmann Equation. Ed. by Cohen, E. and Thirring, W.. Wien: Springer, pp. 53106 (Cited on page 11).Google Scholar
Knox, E. (2013). “Effective spacetime geometry”. In: Studies in History and Philosophy of Modern Physics 44.3, pp. 34656 (Cited on page 33).Google Scholar
Knox, E. (2019). “Physical relativity from a functionalist perspective”. In: Studies in History and Philosophy of Modern Physics 67. http://philsci-archive.pitt.edu/13405/, pp. 118124 (Cited on pages 33, 106).Google Scholar
Kobayashi, M. and Maskawa, T. (1973). “CP-violation in the renormalizable theory of weak interaction”. In: Progress of Theoretical Physics 49.2, pp. 6527 (Cited on pages 179, 180).Google Scholar
Kosso, P. (2000). “The empirical status of symmetries in physics”. In: The British Journal for the Philosophy of Science 51.1, pp. 8198 (Cited on pages 85, 98).Google Scholar
Kronz, F. M. and Lupher, T. A. (2005). “Unitarily inequivalent representations in algebraic quantum theory”. In: International Journal of Theoretical Physics 44.8, pp. 123958 (Cited on page 111).Google Scholar
Kuhn, T. S. (1987). Black-Body Theory and the Quantum Discontinuity, 1894–912. Chicago: University of Chicago Press (Cited on page 159).Google Scholar
Ladyman, J. (1998). “What is structural realism?” In: Studies in History and Philosophy of Science 29.3, pp. 40924 (Cited on page 33).Google Scholar
Ladyman, J. and Ross, D. (2007). Every Thing Must Go: Metaphysics Naturalized. New York: Oxford University Press (Cited on page 33).Google Scholar
Landau, L. D. and Lifshitz, E. M. (1981). Mechanics. Third. Vol. 1. Course of Theoretical Physics. Translated from Russian by Sykes, J.B. and Bell, J.S.. Oxford: Butterworth-Heinenann, p. 56 (Cited on page 31).Google Scholar
Landsman, K. (1998). Mathematical Topics between Classical and Quantum Mechanics. New York: Springer-Verlag New York, Inc (Cited on pages 44, 66, 201, 205).Google Scholar
Landsman, K. (2017). Foundations of Quantum Theory: From Classical Concepts to Operator Algebras. Published Open Access: https://link.springer.com/book/10.1007/978-3-319-51777-3. Cham, Switzerland: Springer International Publishing AG (Cited on pages 31, 55, 74, 76).Google Scholar
Landsman, K. (2021). Foundations of General Relativity: From Geodesics to Black Holes, Nijmegen: Radboud University Press, Open Access: https://library.oapen.org/handle/20.500.12657/52690 (Cited on page 34).Google Scholar
Laudan, L. (1981). “A confutation of convergent realism”. In: Philosophy of Science 48.1, pp. 1949 (Cited on page 8).Google Scholar
Lavenda, B. H. (2010). A New Perspective on Thermodynamics. New York Dordrecht Heidelberg London: Springer Science+Business Media, LLC (Cited on page 143).Google Scholar
Lavis, D. A. (2018). “The problem of equilibrium processes in thermodynamics”. In: Studies in History and Philosophy of Modern Physics 62. http://philsci-archive.pitt.edu/13193/, pp. 13644 (Cited on page 153).Google Scholar
Lee, T. D. and Yang, C.-N. (1956). “Question of parity conservation in weak interactions”. In: Physical Review 104.1, pp. 2548 (Cited on page 16).Google Scholar
Lees, J. P. et al. (2012). “Observation of time-reversal violation in the B0 meson system”. In: Physical Review Letters 109 (21), p. 211801. doi: 10.1103/PhysRevLett.109.211801 (Cited on page 184).Google Scholar
Lehmkuhl, D. (2011). “Mass–energy–momentum: Only there because of space-time?” In: The British Journal for the Philosophy of Science 62.3. http://philsci- archive.pitt.edu/5137/, pp. 45388 (Cited on page 106).Google Scholar
Leibniz, G. W. (1715). “Initia rerum mathematicarum metaphysica”. In: Leibnizens Mathematische Schriften. Ed. by Gerhardt, C.. Published in 1863. Open access: ht3tps://books.google.co.uk/books?id=7iI1AAAAIAAJ. Druck und Verlag von H. W. Schmidt, pp. 1728 (Cited on page 33).Google Scholar
Leibniz, G. W. and Clarke, S. (2000). Correspondence. Edited by Ariew, Roger. Open Access Version: https://archive.org/details/leibnizclarkecor00clar. Indianapolis, IN: Hackett Publishing Company, Inc (Cited on pages 33, 84, 86, 101).Google Scholar
Lewis, D. K. (1966). “An argument for the identity theory”. In: The Journal of Philosophy 63.1, pp. 1725 (Cited on page 33).Google Scholar
Lewis, D. K. (1972). “Psychophysical and theoretical identifications”. In: Australasian Journal of Philosophy 50.3, pp. 24958 (Cited on page 33).Google Scholar
Lewis, D. K. (1979). “Counterfactual dependence and time’s arrow”. In: Noûs 13, pp. 45576 (Cited on pages 2, 136, 137).Google Scholar
Lewis, D. K. (1986). On the Plurality of Worlds. New York, Oxford: Basil Blackwell Inc (Cited on page 52).Google Scholar
Lie, S. (1893). Theorie der Transformationsgruppen. With the participation of Friedrich Engel. Open Access: https://archive.org/details/theotransformation03liesrich. Leipzig: Druck un Verlag von B. G. Teubner (Cited on page 29).Google Scholar
Lieb, E. H. and Yngvason, J. (1998). “A guide to entropy and the second law of thermodynamics”. In: Notices of the American Mathematical Society 45. https://arxiv.org/abs/math-ph/9805005, pp. 57181 (Cited on page 148).Google Scholar
Lieb, E. H. and Yngvason, J. (1999). “The physics and mathematics of the second law of thermodynamics”. In: Physics Reports 310.1. https://arxiv.org/abs/cond- mat/9708200, pp. 196 (Cited on pages 148, 149).Google Scholar
Lieb, E. H. and Yngvason, J. (2000). “A fresh look at entropy and the second law of thermodynamics”. In: 53. https://arxiv.org/abs/math-ph/0003028, pp. 327 (Cited on page 148).Google Scholar
Lieb, E. H. and Yngvason, J. (2013). “The entropy concept for non-equilibrium states”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469.2158. https://arxiv.org/abs/1305.3912, p. 20130408 (Cited on page 148).Google Scholar
Loschmidt, J. (1876). “Über den Zustand des Wärmegleichgewichtes eines Systems von Körpern mit Rücksicht auf die Schwerkraft”. In: Sitzungsber. Kais. Akad. Wiss. Wien, Mathemat. Naturwiss. Classe II, Abt. 73, pp. 12842 (Cited on page 12).Google Scholar
Lüders, G. (1954). “On the equivalence of invariance under time reversal and under particle-antiparticle conjugation for relativistic field theories”. In: Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser 28, pp. 117 (Cited on page 193).Google Scholar
Majorana, E. (1932). “Atomi orientati in campo magnetico variabile”. In: Il Nuovo Cimento 9.2, pp. 4350 (Cited on page 29).Google Scholar
Malament, D. B. (1996). “In defense of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles”. In: Perspectives on Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic. Ed. by Clifton, R.. Springer Science + Business Media B.V., pp. 110 (Cited on page 56).Google Scholar
Malament, D. B. (2004). “On the time reversal invariance of classical electromagnetic theory”. In: Studies in History and Philosophy of Modern Physics 35. Preprint: http://philsci-archive.pitt.edu/1475/, pp. 295315 (Cited on pages 27, 28, 41, 42, 70).Google Scholar
Malament, D. B. (2008). “Norton’s slippery slope”. In: Philosophy of Science Assoc. 20th Biennial Meeting (Vancouver): PSA 2006 Symposia (Cited on page 59).Google Scholar
Malament, D. B. (2012). Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. Chicago: University of Chicago Press (Cited on page 168).Google Scholar
Marle, G.-M. (1976). “Symplectic manifolds, dynamical groups, and Hamiltonian mechanics”. In: Differential Geometry and Relativity. Springer, pp. 24969 (Cited on page 64).Google Scholar
Marsland, R. III, Brown, H. R., and Valente, G. (2015). “Time and irreversibility in axiomatic thermodynamics”. In: American Journal of Physics 83.7, pp. 62834 (Cited on pages 143, 144, 149).Google Scholar
Martens, N. and Read, J. (2020). “Sophistry about symmetries?” In: Synthese. http://philsci-archive.pitt.edu/17184/ (Cited on page 104).Google Scholar
Maudlin, T. (2002a). “Remarks on the passing of time”. In: Proceedings of the Aristotelian Society. Vol. 102, pp. 25974 (Cited on pages 3, 168, 188).Google Scholar
Maudlin, T. (2002b). “Thoroughly muddled McTaggart: Or, how to abuse gauge freedom to generate metaphysical monstrosities”. In: Philosopher’s Imprint 2.4. http://hdl.handle.net/2027/spo.3521354.0002.004 (Cited on page 3).Google Scholar
Maudlin, T. (2007). The Metaphysics Within Physics. New York: Oxford University Press (Cited on pages 3, 20, 38, 39, 124, 168, 170, 188).Google Scholar
Maudlin, T. (2012). Philosophy of Physics: Space and Time. Vol. 5. Princeton Foundations of Contemporary Philosophy. Princeton: Princeton University Press (Cited on page 106).Google Scholar
McLaughlin, B. and Bennett, K. (2018). “Supervenience”. In: The Stanford Encyclopedia of Philosophy. Ed. by Zalta, E. N.. Winter 2018. https://plato.stanford.edu/archives/win2018/entries/supervenience/. Metaphysics Research Lab, Stanford University (Cited on page 37).Google Scholar
McTaggart, J. E. (1908). “The unreality of time”. In: Mind 17.4, pp. 45774 (Cited on pages 4, 6, 115).Google Scholar
Mellor, D. H. (1998). Real Time II. London and New York: Routledge (Cited on page 2).Google Scholar
Messiah, A. (1999). Quantum Mechanics, Two Volumes Bound as One. New York: Dover (Cited on page 130).Google Scholar
Minkowski, H. (1908). “Space and time”. In: The Principle of Relativity. Ed. by Lorentz, H. A. et al. Published in 1952; translated by Perrett, W. and Jeffery, G. B. from an Address to the 80th Assembly of German Natural Scientists and Physicians, Cologne, 21 September 1908. Open Access: https://archive.org/details/principleofrelat00lore_0. New York: Dover Publications Inc., pp. 7391 (Cited on pages 4, 106).Google Scholar
Møller-Nielsen, T. (2017). “Invariance, interpretation, and motivation”. In: Philosophy of Science 84.5. http://philsci-archive.pitt.edu/12332/, pp. 125364 (Cited on pages 86, 102).Google Scholar
Montgomery, R. (1993). “The gauge theory of falling cats”. In: Dynamics and Control of Mechanical Systems: The Falling Cat and Related Problems. Ed. by Enos, M. J.. Fields Institute Communications. Rhode Island: American Mathematical Society, p. 193 (Cited on page 14).Google Scholar
Mrugała, R. (1978). “Geometrical formulation of equilibrium phenomenological thermodynamics”. In: Reports on Mathematical Physics 14.3, pp. 41927 (Cited on page 146).Google Scholar
Mrugała, R. (2000). “Geometrical methods in thermodynamics”. In: Thermodynamics of Energy Conversion and Transport. New York: Springer-Verlag. Chap. 10, pp. 25785 (Cited on page 163).Google Scholar
Myrvold, W. C. (2011). “Statistical mechanics and thermodynamics: A Maxwellian view”. In: Studies in History and Philosophy of Modern Physics 42.4. http://philsci-archive.pitt.edu/8638/, pp. 23743 (Cited on page 152).Google Scholar
Myrvold, W. C. (2019). “How could relativity be anything other than physical?” In: Studies in History and Philosophy of Modern Physics 67. http://philsci-archive.pitt.edu/13157/, pp. 13743 (Cited on pages 33, 106).Google Scholar
Myrvold, W. C. (2020a). “‘—It would be possible to do a lengthy dialectical number on this;’“ in: Studies in History and Philosophy of Modern Physics 71. http://philsci-archive.pitt.edu/16675/, pp. 20919 (Cited on page 8).Google Scholar
Myrvold, W. C. (2020b). “Explaining thermodynamics: What remains to be done?” In: Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Ed. by Allori, V.. http://philsci-archive.pitt.edu/16217/. Singapore: World Scientific Co. Pte. Ltd., pp. 11343 (Cited on pages 144, 152).Google Scholar
Myrvold, W. C. (2020c). “The Science of ^^cs”. In: Foundations of Physics 50.10. http://philsci-archive.pitt.edu/17609/, pp. 121951 (Cited on pages 145, 146, 148).Google Scholar
Myrvold, W. C. (Forthcoming). “Philosophical issues in thermal physics”. In: Oxford Research Encyclopedia of Physics. Oxford: Oxford University Press (Cited on pages 144, 152).Google Scholar
Naimark, M. A. (1964). Linear Representations of the Lorentz Group. Translated by Ann Swinfen and O.J. Marstrand, translation edited by H.K. Farahat, from the original Russian published in 1958 by Fizmatgiz, Moscow. Oxford, London, Edinburgh, New York, Paris, Frankfurt: Pergamon Press (Cited on pages 209, 211).Google Scholar
Neeb, K.-H. (1993). Invariant Subsemigroups of Lie Groups. Vol. 499. Memoirs of the American Mathematical Society. Providence, RI: American Mathematical Society (Cited on page 172).Google Scholar
Nester, J. M. (1988). “Invariant derivation of the Euler–Lagrange equation”. In: Journal of Physics A: Mathematical and General 21.21, pp. L1013–L1017 (Cited on page 72).Google Scholar
Newton, I. (1999). The Principia: Mathematical Principles of Natural Philosophy. Cohen, I. Bernard and Whitman, Anne (trans.) Berkeley and Los Angeles: University of California Press (Cited on pages 33, 57).Google Scholar
Ney, A. and Albert, D. Z. (2013). The Wave Function: Essays on the Metaphysics of Quantum Mechanics. New York: Oxford University Press (Cited on page 60).Google Scholar
Nietzsche, F. W. (1974). The Gay Science. Vol. 985. Translated by Walter Kaufmann. Originally published in 1882 as, Die Fröliche Wissenschaft. Available open access via https://archive.org/details/TheCompleteWorksOfFriedrichNietzscheVolX. New York: Random House Vintage Books (Cited on page 2).Google Scholar
North, J. (2003). “Understanding the time-asymmetry of radiation”. In: Philosophy of Science 70.5. http://philsci-archive.pitt.edu/4958/, pp. 108697 (Cited on page 120).Google Scholar
North, J. (2008). “Two views on time reversal”. In: Philosophy of Science 75.2. Preprint: http://philsci-archive.pitt.edu/4960/, pp. 20123 (Cited on pages 28, 39, 61).Google Scholar
North, J. (2009). “The ‘structure’ of physics: A case study”. In: The Journal of Philosophy 106.2. http://philsci-archive.pitt.edu/4961/, pp. 5788 (Cited on page 65).Google Scholar
North, J. (2011). “Time in thermodynamics”. In: The Oxford Handbook of Philosophy of Time. Preprint: http://philsci-archive.pitt.edu/8947/. Oxford: Oxford University Press, pp. 312350 (Cited on page 140).Google Scholar
Norton, J. D. (2009). “Is there an independent principle of causality in physics?” In: The British Journal for the Philosophy of Science 60.3. http://philsci-archive.pitt.edu/3832/, pp. 47586 (Cited on page 120).Google Scholar
Norton, J. D. (2003). “Causation as folk science”. In: Philosopher’s Imprint 3.4. Open Access Article: http://hdl.handle.net/2027/spo.3521354.0003.004 (Cited on page 136).Google Scholar
Norton, J. D. (2008a). “The dome: An unexpectedly simple failure of determinism”. In: Philosophy of Science 75.5, pp. 78698 (Cited on page 59).Google Scholar
Norton, J. D. (2008b). “Why constructive relativity fails”. In: The British Journal for the Philosophy of Science 59.4. http://philsci-archive.pitt.edu/3655/, pp. 82134 (Cited on pages 33, 106).Google Scholar
Norton, J. D. (2014). “Infinite idealizations”. In: European Philosophy of Science - Philosophy of Science in Europe and the Viennese Heritage. Ed. by Galavotti, M. C., Nemeth, E., and Stadler, F.. Vol. 17. http://philsci-archive.pitt.edu/9028/, pp. 197210 (Cited on page 153).Google Scholar
Norton, J. D. (2016a). “Curie’s truism”. In: Philosophy of Science 83.5. Preprint: http://philsci-archive.pitt.edu/10926/, pp. 10141026 (Cited on page 181).Google Scholar
Norton, J. D. (2016b). “The impossible process: Thermodynamic reversibility”. In: Studies in History and Philosophy of Modern Physics 55. http://philsci-archive.pitt.edu/12341/, pp. 4361 (Cited on page 153).Google Scholar
Norton, J. D. (2019). “The hole argument”. In: The Stanford Encyclopedia of Philosophy. Ed. by Zalta, E. N.. Summer 2019. URL: https://plato.stanford.edu/entries/spacetime-holearg/. Metaphysics Research Lab, Stanford University (Cited on page 32).Google Scholar
Olver, P. J. (1993). Applications of Lie Groups to Differential Equations. 2nd Edition. New York: Springer-Verlag Inc (Cited on pages 30, 34, 35, 47, 54, 59).Google Scholar
Onsager, L. (1931a). “Reciprocal relations in irreversible processes, I”. In: Physical Review 37.4, pp. 40526 (Cited on page 143).Google Scholar
Onsager, L. (1931b). “Reciprocal relations in irreversible processes, II”. In: Physical Review 38.12, pp. 226579 (Cited on page 143).Google Scholar
Onsager, L. (1949). “Statistical hydrodynamics”. In: Il Nuovo Cimento 6.2, pp. 27987 (Cited on page 163).Google Scholar
Painlevé, P. (1904). “Sur le théorème des aires et les systèmes conservatifs”. In: Comptes Rendue Hebdomadaires des Séances de l’Académie des Sciences 139, pp. 117074 (Cited on pages 13, 14).Google Scholar
Pais, A. (1990). “CP Violation: The first 25 years”. In: CP Violation in Particle Physics and Astrophysics: Anniversary of CP Violation Discovery, May 22-26, 1989, in Blois France. Ed. by Van Gif-sur-Yvette, J. T. T. Cedex, France: Editions Frontières, p. 3 (Cited on page 19).Google Scholar
Pashby, T. (2014). “Time and the foundations of quantum mechanics”. http://philsci-archive.pitt.edu/10666/. PhD thesis. University of Pittsburgh (Cited on page 99).Google Scholar
Pearle, P. (Mar. 1989). “Combining stochastic dynamical state-vector reduction with spontaneous localization”. In: Physical Review A 39.5, pp. 227789. doi: 10.1103/PhysRevA.39.2277 (Cited on page 131).Google Scholar
Penrose, O. and Percival, I. C. (1962). “The direction of time”. In: Proceedings of the Physical Society (1958-1967) 79.3, pp. 605616 (Cited on page 137).Google Scholar
Penrose, R. (1979). “Singularities and time-asymmetry”. In: General Relativity: An Einstein Centenary Survey. Ed. by Hawking, S. W. and Israel, W.. Cambridge: Cambridge University Press, pp. 581638 (Cited on pages 121, 122, 123, 125, 127, 128).Google Scholar
Penrose, R. (1994). “On the second law of thermodynamics”. In: Journal of Statistical Physics 77.1, pp. 21721 (Cited on page 123).Google Scholar
Penrose, R. and Rindler, W. (1984). Spinors and Space-Time. Vol. 2: Spinor and Twistor Methods in Space-Time Geometry. Cambridge: Cambridge University Press (Cited on pages 214, 216).Google Scholar
Peterson, D. (2015). “Prospects for a new account of time reversal”. In: Studies in History and Philosophy of Modern Physics 49. Preprint: http://philsci-archive.pitt.edu/11302/, pp. 4256 (Cited on pages 28, 39).Google Scholar
Planck, M. (1897a). “Über irreversible Strahlungsvorgänge”. In: Annalen der physik 1. Published in 1900 after the 1897 lecture, pp. 69122 (Cited on page 119).Google Scholar
Planck, M. (1897b). Vorlesungen über thermodynamik. https://www.google.co.uk/books/edition/Vorlesungen_%C3%BCber_Thermodynamik/o07PAAAAMAAJ Leipzig: Verlag von Veit & Comp (Cited on pages 159, 160).Google Scholar
Pooley, O. (2013). “Substantivalist and relationalist approaches to spacetime”. In: The Oxford Handbook of Philosophy of Physics. Ed. by Batterman, R.. New York: Oxford University Press. Chap. 15, pp. 52287 (Cited on page 33).Google Scholar
Popper, K. R. (1958). “Irreversible processes in physical theory”. In: Nature 181.4606, pp. 4023 (Cited on page 120).Google Scholar
Price, H. (1989). “A point on the arrow of time”. In: Nature 340.6230, pp. 1812 (Cited on page 129).Google Scholar
Price, H. (1991). “The asymmetry of radiation: Reinterpreting the Wheeler–Feynman argument”. In: Foundations of Physics 21.8, pp. 95975 (Cited on page 122).Google Scholar
Price, H. (1996). Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time. New York: Oxford University Press (Cited on pages 13, 20, 117, 118, 120, 121, 122, 123, 124, 127, 129, 137, 140, 171, 185, 190).Google Scholar
Price, H. (2004). “Is there a puzzle about the low-entropy past?” In: Contemporary Debates in the Philosophy of Science. Ed. by Hitchcock, C.. Malden, MA: Blackwell Publishers Ltd, pp. 21939 (Cited on pages 13, 123).Google Scholar
Price, H. (2006). “Recent work on the arrow of radiation”. In: Studies in History and Philosophy of Modern Physics 37.3. http://philsci-archive.pitt.edu/2216/, pp. 498527 (Cited on page 120).Google Scholar
Price, H. (2011). “The flow of time”. In: The Oxford Handbook of Philosophy of Time. Ed. by Callender, C.. http://philsci-archive.pitt.edu/4829/. Oxford: Oxford University Press. Chap. 9, pp. 276311 (Cited on pages 117, 185, 186, 188).Google Scholar
Psillos, S. (1999). Scientific Realism: How Science Tracks Truth. London: Routledge (Cited on page 9).Google Scholar
Putnam, H. (1960). “Minds and machines”. In: Dimensions of Mind: A Symposium. Ed. by Hook, S.. London: Collier-Macmillan, pp. 13864 (Cited on page 33).Google Scholar
Putnam, H. (1962). “The analytic and the synthetic”. In: Scientific Explanation, Space, and Time. Ed. by Feigl, H. and Maxwell, G.. Vol. 3. https://hdl.handle.net/11299/184628. Minneapolis: University of Minnesota Press, pp. 35897 (Cited on page 58).Google Scholar
Quevedo, H. (2007). “Geometrothermodynamics”. In: Journal of Mathematical Physics 48.1. https://arxiv.org/abs/physics/0604164, p. 013506 (Cited on page 152).Google Scholar
Quevedo, H. et al. (2011). “Phase transitions in geometrothermodynamics”. In: General Relativity and Gravitation 43.4. https://arxiv.org/abs/1010.5599, pp. 115365 (Cited on page 152).Google Scholar
Quine, W. V. O. (1940). Mathematical Logic. Cambridge, MA: Harvard University Press (Cited on page 103).Google Scholar
Racah, G. (1937). “Sulla nascita di coppie per urti di particelle elettrizzate”. In: Il Nuovo Cimento 14.3, pp. 93113 (Cited on page 78).Google Scholar
Rachidi, F., Rubinstein, M., and Paolone, M. (2017). Electromagnetic Time Reversal: Application to EMC and power systems. Hoboken, NJ, West Sussex, UK: John Wiley, and Sons, Ltd (Cited on pages 26, 28).Google Scholar
Ramakrishnan, A. (1967). “Graphical representation of CPT”. In: Journal of Mathematical Analysis and Applications 17.1, pp. 14750 (Cited on page 198).Google Scholar
Ramsey, N. F. (1956). “Thermodynamics and statistical mechanics at negative absolute temperatures”. In: Physical Review 103.1, p. 20 (Cited on page 163).Google Scholar
Read, J. and Møller, T.-Nielsen (2020). “Motivating dualities”. In: Synthese 197.1. http://philsci-archive.pitt.edu/14663/, pp. 26391 (Cited on pages 86, 102).Google Scholar
Recami, E. (2019). The Majorana Case: Letters, Documents, Testimonies. Singapore: World Scientific Publishing Co. Pte. Ltd (Cited on page 29).Google Scholar
Rédei, M. (1996). “Why John von Neumann did not like the Hilbert space formalism of quantum mechanics (and what he liked instead)”. In: Studies In History and Philosophy of Modern Physics 27.4, pp. 493510 (Cited on page 74).Google Scholar
Rédei, M. (1998). Quantum Logic in Algebraic Approach. Dordrecht: Kluwer Academic Publishers (Cited on page 74).Google Scholar
Rédei, M. (2014). “A categorial approach to relativistic locality”. In: Studies in History and Philosophy of Modern Physics 48, pp. 13746 (Cited on page 47).Google Scholar
Redhead, M. (2003). “The interpretation of gauge symmetry”. In: Symmetries in Physics: Philosophical Reflections. Ed. by Brading, K. and Castellani, E.. Cambridge: Cambridge University Press. Chap. 7, pp. 12439 (Cited on page 86).Google Scholar
Reichenbach, H. (1928). Philosophie der Raum-Zeit-Lehre. Published in English as The Philosophy of Space and Time (1958), translated by Maria Reichenbach and John Freund, New York: Dover Publications, Inc. Berlin and Leipzig: Walter de Gruyter (Cited on pages 33, 168).Google Scholar
Reichenbach, H. (1956). The Direction of Time. Edited by Reichenbach, Maria. Berkeley: University of California Press (Cited on pages 123, 136, 140, 141, 168).Google Scholar
Richard, J. (1903). Sur la Philosophie des Mathématiques. https://books.google.co.uk/books?id=Xueu89TPsc8C. Paris: Gauthier-Villars (Cited on page 13).Google Scholar
Ritz, W. and Einstein, A. (1909). “Zum gegenwärtigen Stand des Strahlungsproblems”. In: Physikalische Zeitschrift 10, pp. 3234 (Cited on page 120).Google Scholar
Ritz, W. (1908). “Über die Grundlagen der Elektrodynamik un die Theorie der schwarzen Strahlung”. In: Physikalische Zeitschrift 9, pp. 9037 (Cited on page 119).Google Scholar
Rivat, S. (2019). “Renormalization scrutinized”. In: Studies in History and Philosophy of Modern Physics 68. http://philsci-archive.pitt.edu/16072/, pp. 2339 (Cited on page 176).Google Scholar
Rivat, S. (2021). “Drawing scales apart: The origins of Wilson’s conception of effective field theories”, Studies in History and Philosophy of Science 90:32138, http://philsci-archive.pitt.edu/19810/ (Cited on page 176).Google Scholar
Rivat, S. and Grinbaum, A. (2020). “Philosophical foundations of effective field theories”. In: The European Physical Journal A 56.3. http://philsci-archive.pitt.edu/16419/, pp. 110 (Cited on page 176).Google Scholar
Roberts, B. W. (2011). “Group structural realism”. In: The British Journal for the Philosophy of Science 62.1, pp. 4769. doi: 10.1093/bjps/axq009 (Cited on page 33).Google Scholar
Roberts, B. W. (2012). “Time, symmetry and structure: A study in the foundations of quantum theory”. Dissertation: http://d-scholarship.pitt.edu/12533/. PhD thesis. University of Pittsburgh (Cited on pages 28, 39).Google Scholar
Roberts, B. W. (2013a). “The simple failure of Curie’s principle”. In: Philosophy of Science 80.4. Preprint: http://philsci-archive.pitt.edu/9862/, pp. 57992 (Cited on pages 16, 181, 183).Google Scholar
Roberts, B. W. (2013b). “When we do (and do not) have a classical arrow of time”. In: Philosophy of Science 80.5, pp. 111224 (Cited on pages 65, 149).Google Scholar
Roberts, B. W. (2014). “A general perspective on time observables”. In: Studies In History and Philosophy of Modern Physics 47, pp. 504 (Cited on page 99).Google Scholar
Roberts, B. W. (2015a). “Curie’s hazard: From electromagnetism to symmetry violation”. In: Erkenntnis 81.5. Preprint: http://philsci-archive.pitt.edu/10971/, pp. 101129 (Cited on page 181).Google Scholar
Roberts, B. W. (2015b). “Three merry roads to T-violation”. In: Studies in History and Philosophy of Modern Physics 52. Preprint: http://philsci-archive.pitt.edu/9632/, pp. 815 (Cited on pages 181, 183).Google Scholar
Roberts, B. W. (2017). “Three myths about time reversal in quantum theory”. In: Philosophy of Science 84. Preprint: http://philsci-archive.pitt.edu/12305/, pp. 120 (Cited on pages 27, 28, 39, 74, 75, 80).Google Scholar
Roberts, B. W. (2018). “Observables, disassembled”. In: Studies in History and Philosophy of Modern Physics 63. http://philsci-archive.pitt.edu/14449/, pp. 15062 (Cited on page 99).Google Scholar
Roberts, B. W. (2020). “Regarding ‘Leibniz equivalence”‘. In: Foundations of Physics 50. Open Acccess, https://doi.org/10.1007/s10701-020-00325-9, pp. 25069 (Cited on pages 52, 102).Google Scholar
Roberts, B. W. (2021). “Time reversal”. In: The Routledge Companion to the Philosophy of Physics. Ed. by Knox, E. and Wilson, A.. http://philsci-archive.pitt.edu/15033/. Routledge. Chap. 43 (Cited on page 28).Google Scholar
Robertson, K. (2021). “In search of the holy grail: How to reduce the second law of thermodynamics”. In: The British Journal for the Philosophy of Science. Forthcoming, http://philsci-archive.pitt.edu/17516/ (Cited on page 140).Google Scholar
Robinson, D. J. S. (1996). A Course in the Theory of Groups. 2nd Ed. New York: Springer-Verlag New York, Inc (Cited on page 44).Google Scholar
Rockafellar, R. T. (1970). Convex Analysis. Princeton: Princeton University Press (Cited on page 165).Google Scholar
Rovelli, C. (2016). “An argument against the realistic interpretation of the wave function”. In: Foundations of Physics 46.10. https://arxiv.org/abs/1508.05533, pp. 122937 (Cited on pages 131, 132, 135).Google Scholar
Rovelli, C. (2017). “Is time’s arrow perspectival?” In: The Philosophy of Cosmology. Ed. by Chamcham, K. et al. http://philsci-archive.pitt.edu/11443/. Cambridge: Cambridge University Press. Chap. 14, pp. 28596 (Cited on pages 125, 185).Google Scholar
Ruetsche, L. (2004). “Intrinsically mixed states: An appreciation”. In: Studies in History and Philosophy of Modern Physics 35.2, pp. 22139 (Cited on page 95).Google Scholar
Ruetsche, L. (2006). “Johnny’s so long at the ferromagnet”. In: Philosophy of Science 73.5, pp. 47386 (Cited on page 111).Google Scholar
Ruetsche, L. (2011). Interpreting Quantum Theories. New York: Oxford University Press (Cited on page 111).Google Scholar
Ruetsche, L. (2018). “Renormalization group realism: The ascent of pessimism”. In: Philosophy of Science 85.5, pp. 117689 (Cited on page 176).Google Scholar
Russell, B. (1912). “On the notion of cause”. In: Proceedings of the Aristotelian Society. Vol. 13, pp. 126 (Cited on page 136).Google Scholar
Rynasiewicz, R. (1995a). “By their properties, causes and effects: Newton’s scholium on time, space, place and motion—I. The text”. In: Studies In History and Philosophy of Science Part A 26.1, pp. 13353 (Cited on page 57).Google Scholar
Rynasiewicz, R. (1995b). “By their properties, causes and Effects: Newton’s Scholium on time, space, place and motion—II. The context”. In: Studies In History and Philosophy of Science Part A 26.2, pp. 295321 (Cited on page 57).Google Scholar
Rynasiewicz, R. (2014). “Newton’s views on space, time, and motion”. In: The Stanford Encyclopedia of Philosophy. Ed. by Zalta, E. N.. Summer 2014. https://plato.stanford.edu/archives/sum2014/entries/newton-stm/. Metaphysics Research Lab, Stanford University (Cited on page 57).Google Scholar
Sachs, R. G. (1987). The Physics of Time Reversal. Chicago: University of Chicago Press (Cited on pages 25, 26, 38, 39, 80).Google Scholar
Sakharov, A. D. (1967). “Violation of CP-invariance, C-asymmetry, and baryon asymmetry of the universe”. In: In The Intermissions… Collected Works on Research into the Essentials of Theoretical Physics in Russian Federal Nuclear Center, Arzamas-16. Translation published in 1998, from Letters to the Journal of Experimental and Theoretical Physics, Vol. 5, NQ 1, pp. 325, 1967. World Scientific, pp. 84–7 (Cited on pages 129, 190).Google Scholar
Sakurai, J. J. (1994). Modern Quantum Mechanics. Revised. Reading, MA: Addison Wesley (Cited on page 26).Google Scholar
Salam, A. (1968). “Weak and electromagnetic interactions”. In: Elementary Particle Theory, Proceedings of the Nobel Symposium Held 1968 at Lerum, Sweden. Ed. by Svartholm, N.. New York: John Wiley and Sons, Inc., pp. 36777 (Cited on page 178).Google Scholar
Salmon, W. C. (1978). “Why ask, ‘Why?’? An inquiry concerning scientific explanation”. In: Proceedings and Addresses of the American Philosophical Association 51.6, pp. 683705 (Cited on page 137).Google Scholar
Salmon, W. C. (1984). Scientific Explanation and the Causal Structure of the World. Princeton, NJ: Princeton University Press (Cited on page 137).Google Scholar
Saunders, D. J. (1989). The Geometry of Jet Bundles. Vol. 142. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press (Cited on page 59).Google Scholar
Segal, I. (1959). “The mathematical meaning of operationalism in quantum mechanics”. In: Studies in Logic and the Foundations of Mathematics. Ed. by P. Henkin, S. L. and Tarski, A.. Vol. 27. Amsterdam: North-Holland, pp. 34152 (Cited on page 112).Google Scholar
Segal, I. and Mackey, G. (1963). Mathematical Problems of Relativistic Physics. Volume II of Lectures in Applied Mathematics: Proceedings of the Summer Seminar, Boulder, Colorado, 1960. Providence, RI: American Mathematical Society (Cited on page 201).Google Scholar
Sellars, W. (1962). “Philosophy and the scientific image of man”. In: Frontiers of Science and Philosophy. Ed. by Colodny, R.. Vol. 2. Pittsburgh, PA: University of Pittsburgh Press, pp. 3578 (Cited on page 3).Google Scholar
Sewell, G. L. (2002). Quantum Mechanics and Its Emergent Macrophysics. Princeton: Princeton University Press (Cited on pages 111, 112).Google Scholar
Sklar, L. (1974). Space, Time, and Spacetime. Berkeley, Los Angeles, London: University of California Press (Cited on pages 6, 32).Google Scholar
Sklar, L. (1993). Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge: Cambridge University Press (Cited on pages 124, 140, 141).Google Scholar
Slater, J. C. (1975). Solid-state and Molecular Theory: A Scientific Biography. Chichester: J. Wiley (Cited on page 84).Google Scholar
Spirtes, P., Glymour, C., and Scheines, R. (2001). Causation, Prediction, and Search. Cambridge, MA: The MIT Press (Cited on page 137).Google Scholar
Stein, H. (1977). “Some philosophical prehistory of general relativity”. In: Foundations of Space-Time Theories. Ed. by Earman, J., Glymour, C., and Stachel, J.. Vol. VIII. Minnesota Studies in the Philosophy of Science. Minneapolis: University of Minnesota Press, pp. 349 (Cited on page 106).Google Scholar
Streater, R. (1988). “Why axiomatize quantum field theory?” In: Philosophical Foundations of Quantum Field Theory. Ed. by Brown, H. R. and Harré, R.. Oxford: Oxford University Press. Chap. 8, pp. 13748 (Cited on page 177).Google Scholar
Struyve, W. (2020). “Time-reversal invariance and ontology”. http://philsci-archive.pitt.edu/17682/ (Cited on page 46).Google Scholar
Stueckelberg, E. (1942). “La mécanique du point matériel en théorie de relativité et en théorie des quanta”. In: Helvetica Physica Acta 15 (1), pp. 2337 (Cited on pages 192, 193).Google Scholar
Swanson, N. (2018). “Review of Jonathan Bain’s CPT Invariance and the Spin-Statistics Connection”. In: Philosophy of Science 85.3. http://philsci-archive.pitt.edu/14422/, pp. 5309 (Cited on page 199).Google Scholar
Swanson, N. (2019). “Deciphering the algebraic CPT theorem”. In: Studies in History and Philosophy of Modern Physics 68. http://philsci-archive.pitt.edu/16138/, pp. 10625 (Cited on pages 195, 199, 200, 205).Google Scholar
T2K Collaboration (2020). “Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations”. In: Nature 580. https://arxiv.org/abs/1910.03887, pp. 33944 (Cited on pages 20, 184).Google Scholar
Teh, N. J. (2016). “Galileo’s gauge: Understanding the empirical significance of gauge symmetry”. In: Philosophy of Science 83.1. http://philsci-archive.pitt.edu/11858/, pp. 93118 (Cited on page 98).Google Scholar
Thomson, J. (1907). “On the electrical origin of the radiation from hot bodies”. In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 14.80, pp. 21731 (Cited on page 119).Google Scholar
Tribus, M. (1961). Thermostatics and Thermodynamics: An Introduction to Energy, Information and States of Matter, with Engineering Applications. Princeton: D. Van Nostrand Company, Inc (Cited on page 153).Google Scholar
Truesdell, C. (1984). Rational Thermodynamics. New York: Springer-Verlag (Cited on page 143).Google Scholar
Uffink, J. (2001). “Bluff your way in the second law of thermodynamics”. In: Studies In History and Philosophy of Modern Physics 32.3. http://philsci-archive.pitt.edu/313/, pp. 30594 (Cited on pages 9, 11, 13, 26, 86, 140, 141, 143, 146, 148, 149, 152, 154, 155, 156, 157, 159, 160, 161, 162, 166).Google Scholar
Uffink, J. (2007). “Compendium of the foundations of classical statistical physics”. In: Philosophy of Physics Part B. Ed. by Butterfield, J. and Earman, J.. http://philsci-archive.pitt.edu/2691/ Elsevier, . pp. 9231074 (Cited on pages 11, 141, 143).Google Scholar
Uhlenbeck, G. and Ford, G. (1963). Lectures in Statistical Mechanics. Lectures in Applied Mathematics: Proceedings of the Summer Seminar, Boulder, Colorado, 1960, Mark Kac (Ed.) Providence, RI: American Mathematical Society (Cited on page 143).Google Scholar
Uhlhorn, U. (1963). “Representation of symmetry transformations in quantum mechanics”. In: Arkiv för Fysik 23, pp. 30740 (Cited on page 76).Google Scholar
Valente, G. (2017). “On the paradox of reversible processes in thermodynamics”. In: Synthese 196.5, pp. 176181 (Cited on page 153).Google Scholar
Valente, G. (2021). “Taking up statistical thermodynamics: Equilibrium fluctuations and irreversibility”. In: Studies in History and Philosophy of Science Part A 85, pp. 176184 (Cited on pages 140, 144, 155).Google Scholar
Van Hove, L. C. P. (1951). “Sur certaines représentations unitaires d’un groupe infini de transformations”. Académie royale de Belgique, Classe des Sciences: Mémoires, Collction in-80, Volume 25(6), https://cds.cern.ch/record/108178/. PhD thesis. Vrije Universiteit Brussel (Cited on page 201).Google Scholar
Varadarajan, V. S. (2007). Geometry of Quantum Theory. 2nd. New York: Springer Science and Business Media, LLC (Cited on pages 44, 46, 205, 211, 213, 215, 216).Google Scholar
Von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. 1955 English translation by Robert T Beyer for Princeton University Press: https://archive.org/details/mathematicalfoun0613vonn. Berlin: Springer (Cited on pages 38, 73).Google Scholar
Von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics. Translated by Robert T. Beyer from the 1932 German edition. Princeton: Princeton University Press (Cited on page 131).Google Scholar
Von Plato, J. (1994). Creating Modern Probability: Its Mathematics, Physics and Philosophy in Historical Perspective. Cambridge Studies in Probability, Induction, and Decision Theory. Cambridge: Cambridge University Press (Cited on page 11).Google Scholar
Wald, R. M. (1980). “Quantum gravity and time reversibility”. In: Physical Review D 21 (10), pp. 274255 (Cited on page 15).Google Scholar
Wald, R. M. (1984). General Relativity. Chicago: University of Chicago Press (Cited on pages 42, 51, 169, 214, 216).Google Scholar
Wald, R. M. (1994). Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press (Cited on pages 107, 201).Google Scholar
Wallace, D. (2006). “In defence of naiveté: The conceptual status of Lagrangian quantum field theory”. In: Synthese 151.1. http://philsci-archive.pitt.edu/519/, pp. 3380 (Cited on page 177).Google Scholar
Wallace, D. (2009). “QFT, antimatter, and symmetry”, Studies in History and Philosophy of Modern Physics 40(3):20922, http://arxiv.org/abs/0903.3018 (Cited on page 204).Google Scholar
Wallace, D. (2010). “Gravity, entropy, and cosmology: In search of clarity”. In: The British Journal for the Philosophy of Science 61.3. https://archive.org/details/lifeofjamesclerk00camprich/, pp. 51340 (Cited on page 13).Google Scholar
Wallace, D. (2012). The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford: Oxford University Press (Cited on pages 35, 134, 135).Google Scholar
Wallace, D. (2013). “The arrow of time in physics”. In: A Companion to the Philosophy of Time. Ed. by Dyke, H. and Bardon, A.. http://philsci-archive.pitt.edu/9192/, pp. 26281 (Cited on pages 123, 124, 126).Google Scholar
Wallace, D. (2014). “Thermodynamics as control theory”. In: Entropy 16.2. http://philsci-archive.pitt.edu/9904/, pp. 699725 (Cited on page 152).Google Scholar
Wallace, D. (2017). “The nature of the past hypothesis”. In: The Philosophy of Cosmology. Ed. by Chamcham, K. et al. Cambridge: Cambridge University Press, pp. 48699 (Cited on page 13).Google Scholar
Wallace, D. (Forthcoming). “Observability, redundancy and modality for dynamical symmetry transformations”. In: The Philosophy and Physics of Noether’s Theorems. Ed. by Reed, J. and Teh, N. J.. http://philsci-archive.pitt.edu/18813/. Cambridge: Cambridge University Press (Cited on pages 58, 59, 86).Google Scholar
Walter, M. L. (1990). Science and Cultural Crisis: An Intellectual Biography of Percy Williams Bridgman. Stanford: Stanford University Press (Cited on page 22).Google Scholar
Watanabe, S. (1951). “Reversibility of quantum electrodynamics”. In: Physical Review 84.5, pp. 100825 (Cited on page 193).Google Scholar
Weatherall, J. O. (2016). “Are Newtonian gravitation and geometrized Newtonian gravitation theoretically equivalent?” In: Erkenntnis 81.5. http://philsci- archive.pitt.edu/11727/, pp. 107391 (Cited on page 52).Google Scholar
Weatherall, J. O. (2018). “Regarding the ‘Hole Argument”‘. In: The British Journal for the Philosophy of Science 69.2. http://philsci-archive.pitt.edu/11578/, pp. 32950 (Cited on page 102).Google Scholar
Weinberg, S. (1958). “Time-reversal invariance and θ20 decay”. In: Physical Review 110.3, pp. 7824 (Cited on pages 17, 18, 181).Google Scholar
Weinberg, S. (1967). “A model of leptons”. In: Physical Review Letters 19.21, p. 1264 (Cited on page 178).Google Scholar
Weinhold, F. (1975). “Metric geometry of equilibrium thermodynamics”. In: The Journal of Chemical Physics 63.6, pp. 247983 (Cited on page 163).Google Scholar
Werndl, C. and Frigg, R. (2015). “Rethinking Boltzmannian equilibrium”. In: Philosophy of Science 82.5. http://philsci-archive.pitt.edu/10756/, pp. 122435 (Cited on page 140).Google Scholar
Weyl, H. (1946). The Classic Groups. Princeton: Princeton University Press (Cited on page 214).Google Scholar
Wheeler, J. A. and Feynman, R. P. (1945). “Interaction with the absorber as the mechanism of radiation”. In: Reviews of Modern Physics 17.2-3, p. 157 (Cited on pages 122, 193).Google Scholar
White, G. A. (2016). A Pedagogical Introduction to Electroweak Baryogenesis. San Rafael, CA: Morgan & Claypool Publishers (Cited on page 129).Google Scholar
Wick, G. C., Wightman, A. S., and Wigner, E. P. (1952). “The Intrinsic parity of elementary particles”. In: Physical Review 88 (1), pp. 1015 (Cited on pages 15, 95, 96, 97).Google Scholar
Wightman, A. S. (1979). “Convexity and the notion of equilibrium state in thermodynamics and statistical mechanics”. In: Convexity in the Theory of Lattice Gases. Ed. by Israel, B. A. Robert, B. Princeton: Princeton University Press, pp. ixlxxxv (Cited on pages 152, 164, 166).Google Scholar
Wightman, A. S. (1995). “Superselection rules; Old and new”. In: Il Nuovo Cimento 110 B.5-6, pp. 751–69 (Cited on page 95).Google Scholar
Wigner, E. P. (1931). Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. New York: Academic Press (1959) (Cited on pages 14, 15, 26, 74, 95).Google Scholar
Wigner, E. P. (1932). “Über die Operation der Zeitumkehr in der Quantenmechanik”. In: Nachrichten der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse, pp. 54659 (Cited on page 15).Google Scholar
Wigner, E. P. (1939). “On unitary representations of the inhomogeneous Lorentz group”. In: Annales of Mathematics 40, p. 149 (Cited on pages 4, 29, 179).Google Scholar
Wigner, E. P. (1957). “Relativistic invariance and quantum phenomena”. In: Reviews of Modern Physics 29.3, pp. 25568 (Cited on page 217).Google Scholar
Wigner, E. P. (1981). Interview of Eugene Wigner by Lillian Hoddeson, Gordon Baym, and Frederick Seitz on January 24 1981. Niels Bohr Library and Archives, American Institute of Physics, College Park, MD, http://www.aip.org/history-programs/niels-bohr-library/oral-histories/4965 (Cited on page 84).Google Scholar
Williams, P. (2020). “Scientific realism made effective”. In: The British Journal for the Philosophy of Science 70.1. http://philsci-archive.pitt.edu/13052/, pp. 20937 (Cited on page 176).Google Scholar
Wills, J. (2022). “Identity and Indistinguishability in Thermal Physics”. PhD thesis. London School of Economics and Political Science (Cited on pages 142, 146, 164, 166).Google Scholar
Wills, J. (Forthcoming). “Classical particle indistinguishability, precisely”. In: The British Journal for the Philosophy of Science. http://philsci-archive.pitt.edu/18071/ (Cited on page 125).Google Scholar
Wilson, K. G. (1971). “Renormalization group and critical phenomena, Parts I and II”. In: Physical Review B 4, pp. 3174205 (Cited on page 176).Google Scholar
Wilson, M. (2009). “Determinism and the mystery of the missing physics”. In: The British Journal for the Philosophy of Science 60, pp. 17393 (Cited on page 59).Google Scholar
Wilson, M. (2013). “What is ‘classical mechanics’, anyway?” In: The Oxford Handbook of Philosophy of Physics. Ed. by Batterman, R.. New York: Oxford University Press. Chap. 2, pp. 43106 (Cited on page 58).Google Scholar
Winnie, J. A. (1977). “The causal theory of space-time”. In: Minnesota Studies in the Philosophy of Science 8.25, pp. 134205 (Cited on page 33).Google Scholar
Witten, E. (2018). “Symmetry and emergence”. In: Nature Physics 14.2. https://arxiv.org/abs/1710.01791, pp. 11619 (Cited on page 190).Google Scholar
Wittgenstein, L. (1958). Philosophical Investigations. Second Edition. Translated by Anscombe, G.E.M.. Oxford: Basil Blackwell Ltd (Cited on page 6).Google Scholar
Woodhouse, N. M. J. (1991). Geometric Quantization. New York: Oxford University Press (Cited on pages 72, 201).Google Scholar
Worrall, J. (1989). “Structural realism: The best of two worlds?” In: Dialectica 43, pp. 13965 (Cited on page 33).Google Scholar
Wu, C. S., Ambler, E., et al. (1957). “Experimental test of parity conservation in beta decay”. In: Physical Review 104.4, pp. 14135 (Cited on page 17).Google Scholar
Wu, X.-B., Wang, F., et al. (Feb. 2015). “An ultraluminous quasar with a twelvebillion-solar-mass black hole at redshift 6.30”. In: Nature 518.7540, pp. 51215. http://dx.doi.org/10.1038/nature14241 (Cited on page 185).Google Scholar
Yang, C.-N. and Mills, R. L. (1954). “Conservation of isotopic spin and isotopic gauge invariance”. In: Physical Review 96.1, p. 191 (Cited on page 19).Google Scholar
Zeh, H.-D. (1970). “On the interpretation of measurement in quantum theory”. In: Foundations of Physics 1.1, pp. 6976 (Cited on page 134).Google Scholar
Zeh, H.-D. (2007). The Physical Basis of the Direction of Time. 5th Edition. Berlin Heidelberg: Springer-Verlag (Cited on pages 120, 123, 126, 134, 140).Google Scholar
Zurek, W. H. (1981). “Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?” In: Physical Review D 24.6, p. 1516 (Cited on page 134).Google Scholar
Zurek, W. H. (1991). “From quantum to classical”. In: Physics Today 44.10, pp. 3644 (Cited on page 134).Google Scholar
Zwanzig, R. (1960). “Ensemble method in the theory of irreversibility”. In: The Journal of Chemical Physics 33.5, pp. 133841 (Cited on page 126).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Bryan W. Roberts, London School of Economics and Political Science
  • Book: Reversing the Arrow of Time
  • Online publication: 24 November 2022
  • Chapter DOI: https://doi.org/10.1017/9781009122139.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Bryan W. Roberts, London School of Economics and Political Science
  • Book: Reversing the Arrow of Time
  • Online publication: 24 November 2022
  • Chapter DOI: https://doi.org/10.1017/9781009122139.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Bryan W. Roberts, London School of Economics and Political Science
  • Book: Reversing the Arrow of Time
  • Online publication: 24 November 2022
  • Chapter DOI: https://doi.org/10.1017/9781009122139.011
Available formats
×