Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T16:10:31.648Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2015

Anthony G. O'Farrell
Affiliation:
National University of Ireland, Maynooth
Ian Short
Affiliation:
The Open University, Milton Keynes
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ageev, O. 2005. The homogeneous spectrum problem in ergodic theory. Invent. Math., 160(2), 417–446.CrossRefGoogle Scholar
[2] Ahern, P., and Gong, X. 2005. A complete classification for pairs of real analytic curves in the complex plane with tangential intersection. J. Dyn. Control Syst., 11(1), 1–71.CrossRefGoogle Scholar
[3] Ahern, P., and O'Farrell, A. G. 2009. Reversible biholomorphic germs. Comput. Methods Funct. Theory, 9(2), 473–484.CrossRefGoogle Scholar
[4] Alexander, H., and Wermer, J. 1998. Several complex variables and Banach al-gebras. Third edn. Graduate Texts in Mathematics, vol. 35. New York: Springer-Verlag.Google Scholar
[5] Allan, G. R. 2011. Introduction to Banach spaces and algebras. Oxford Graduate Texts in Mathematics, vol. 20. Oxford: Oxford University Press. Prepared for publication and with a preface by H. G., Dales.Google Scholar
[6] Anderson, R. D. 1962. On homeomorphisms as products of conjugates of a given homeomorphism and its inverse. Pages 231–234 of: Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961). Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
[7] Anzai, H. 1951. On an example of a measure preserving transformation which is not conjugate to its inverse. Proc. Japan Acad., 27, 517–522.CrossRefGoogle Scholar
[8] Arnol′d, V. I. 1984. Reversible systems. Pages 1161–1174 of: Nonlinear and turbulent processes in physics, Vol. 3 (Kiev, 1983). Chur: Harwood Academic Publ.Google Scholar
[9] Arnol′d, V. I. 1988. Geometrical methods in the theory of ordinary differential equations. Second edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 250. New York: Springer-Verlag. Translated from the Russian by J. M., Sziics.Google Scholar
[10] Arnol′d, V. I. 2006. Ordinary differential equations. Universitext. Berlin: Springer-Verlag. Translated from the Russian by Roger, Cooke, Second printing of the 1992 edition.Google Scholar
[11] Arnol′d, V. I., and Avez, A. 1968. Ergodic problems of classical mechanics. Translated from the French by A., Avez. W. A., Benjamin, Inc., New York-Amsterdam.Google Scholar
[12] Aschbacher, M. 1998. Near subgroups of finite groups. J. Group Theory, 1(2), 113–129.CrossRefGoogle Scholar
[13] Aschbacher, M. 2000. Finite group theory. Second edn. Cambridge Studies in Advanced Mathematics, vol. 10. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
[14] Aschbacher, M., Meierfrankenfeld, U., and Stellmacher, B. 2001. Counting in-volutions. Illinois J. Math., 45(3), 1051–1060.Google Scholar
[15] Baake, M., and Roberts, J. A. G. 1997. Reversing symmetry group of Gl(2, Z) and PGl(2, Z) matrices with connections to cat maps and trace maps. J. Phys. A, 30(5), 1549–1573.CrossRefGoogle Scholar
[16] Baake, M., and Roberts, J. A. G. 2001. Symmetries and reversing symmetries of toral automorphisms. Nonlinearity, 14(4), R1–R24.CrossRefGoogle Scholar
[17] Baake, M., and Roberts, J. A. G. 2003. Symmetries and reversing symmetries of area-preserving polynomial mappings in generalised standard form. Phys. A, 317(1–2), 95–112.Google Scholar
[18] Baake, M., and Roberts, J. A. G. 2005. Symmetries and reversing symmetries of polynomial automorphisms of the plane. Nonlinearity, 18(2), 791–816.CrossRefGoogle Scholar
[19] Baake, M., and Roberts, J. A. G. 2006. The structure of reversing symmetry groups. Bull. Austral. Math. Soc., 73(3), 445–459.CrossRefGoogle Scholar
[20] Baake, M., Roberts, J. A. G., and Weiss, A. 2008. Periodic orbits of linear endomorphisms on the 2-torus and its lattices. Nonlinearity, 21(10), 2427–2446.CrossRefGoogle Scholar
[21] Baake, M., Neumärker, N., and Roberts, J. A. G. 2013. Orbit structure and (reversing) symmetries of toral endomorphisms on rational lattices. Discrete Contin. Dyn. Syst., 33(2), 527–553.Google Scholar
[22] Bagiński, C. 1987. On sets of elements of the same order in the alternating group An. Publ. Math. Debrecen, 34(3–4), 313–315.Google Scholar
[23] Baker, A. 2002. Matrix groups. Springer Undergraduate Mathematics Series. London: Springer-Verlag London Ltd. An introduction to Lie group theory.CrossRefGoogle Scholar
[24] Baker, I. N. 1961/1962. Permutable power series and regular iteration. J. Austral. Math. Soc., 2, 265–294.CrossRefGoogle Scholar
[25] Baker, I. N. 1964. Fractional iteration near a fixpoint of multiplier 1. J. Austral. Math. Soc., 4, 143–148.CrossRefGoogle Scholar
[26] Baker, I. N. 1967. Non-embeddable functions with a fixpoint of multiplier 1. Math. Z., 99, 377–384.CrossRefGoogle Scholar
[27] Ballantine, C. S. 1977/78. Products of involutory matrices. I. Linear and Multi-linear Algebra, 5(1), 53–62.
[28] Beardon, A. F. 1983. The geometry of discrete groups. Graduate Texts in Mathematics, vol. 91. New York: Springer-Verlag.CrossRefGoogle Scholar
[29] Bedford, T., Keane, M., and Series, C. (eds). 1991. Ergodic theory, symbolic dynamics, and hyperbolic spaces. Oxford Science Publications. New York: The Clarendon Press Oxford University Press. Papers from the Workshop on Hyperbolic Geometry and Ergodic Theory held in Trieste, April 17–28, 1989, Edited by T., Bedford, M., Keane and C., Series.
[30] Bessaga, C., and Pelczyinski, A. 1975. Selected topics in infinite-dimensional topology. Warsaw: PWN-Polish Scientific Publishers. Monografie Matematy-czne, Tom 58. [Mathematical Monographs, Vol. 58].Google Scholar
[31] Birkhoff, G. D. 1915. The restricted problem of three bodies. Rend. Circ. Mat. Palermo, 39, 265–334.CrossRefGoogle Scholar
[32] Birkhoff, G. D. 1939. Déformations analytiques etfonctions auto-équivalentes. Ann. Inst. H. Poincare, 9, 51–122.Google Scholar
[33] Bishop, E. 1965. Differentiable manifolds in complex Euclidean space. Duke Math. J., 32, 1–21.CrossRefGoogle Scholar
[34] Borevich, A. I., and Shafarevich, I. R. 1966. Number theory. Translated from the Russian by Newcomb, Greenleaf. Pure and Applied Mathematics, Vol. 20. New York: Academic Press.Google Scholar
[35] Botha, J. D. 2009. A unification of some matrix factorization results. Linear Algebra Appl., 431(10), 1719–1725.CrossRef
[36] Brauer, R. 1963. Representations of finite groups. Pages 133–175 of: Lectures on Modern Mathematics, Vol. I. New York: Wiley.Google Scholar
[37] Brendle, T. E., and Farb, B. 2004. Every mapping class group is generated by 6 involutions. J. Algebra, 278(1), 187–198.
[38] Brin, M. G. 1996. The chameleon groups of Richard J. Thompson: automorphisms and dynamics. Inst. Hautes Etudes Sci. Publ. Math., 84, 5–33 (1997).CrossRefGoogle Scholar
[39] Brin, M. G., and Squier, C. C. 1985. Groups of piecewise linear homeomor-phisms of the real line. Invent. Math., 79(3), 485–498.CrossRefGoogle Scholar
[40] Brin, M. G., and Squier, C. C. 2001. Presentations, conjugacy, roots, and centralizers in groups of piecewise linear homeomorphisms of the real line. Comm. Algebra, 29(10), 4557–4596.CrossRefGoogle Scholar
[41] Brucks, K. M., and Bruin, H. 2004. Topics from one-dimensional dynamics. London Mathematical Society Student Texts, vol. 62. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[42] Buck, R. C. 1972. On approximation theory and functional equations. J. Ap-proximation Theory, 5, 228–237. Collection of articles dedicated to J. L., Walsh on his 75th birthday, III (Proc. Internat. Conf. Approximation Theory, Related Topics and their Applications, Univ. Maryland, College Park, Md., 1970).Google Scholar
[43] Bullett, S. 1988. Dynamics of quadratic correspondences. Nonlinearity, 1(1), 27–50.CrossRefGoogle Scholar
[44] Bünger, F., Knüppel, F., and Nielsen, K. 1997. Products of symmetries in unitary groups. Linear Algebra Appl., 260, 9–42.CrossRefGoogle Scholar
[45] Calica, A. B. 1971. Reversible homeomorphisms of the real line. Pacific J. Math., 39, 79–87.CrossRefGoogle Scholar
[46] Camina, R. 2000. The Nottingham group. Pages 205–221 of: New horizons in pro-p groups. Progr. Math., vol. 184. Boston, MA: Birkhauser Boston.Google Scholar
[47] Cannon, J. W., Floyd, W. J., and Parry, W. R. 1996. Introductory notes on Richard Thompson's groups. Enseign. Math. (2), 42(3–4), 215–256.Google Scholar
[48] Carleson, L., and Gamelin, T. W. 1993. Complex dynamics. Universitext: Tracts in Mathematics. New York: Springer-Verlag.CrossRefGoogle Scholar
[49] Cartan, H. 1995. Elementary theory of analytic functions of one or several complex variables. New York: Dover Publications Inc. Translated from the French, Reprint of the 1973 edition.Google Scholar
[50] Carter, R. W. 1972. Conjugacy classes in the Weyl group. Compositio Math., 25, 1–59.Google Scholar
[51] Cassels, J. W. S. 1978. Rational quadratic forms. London Mathematical Society Monographs, vol. 13. London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers].Google Scholar
[52] Chen, K-t. 1968. Normal forms of local diffeomorphisms on the real line. Duke Math. J., 35, 549–555.CrossRefGoogle Scholar
[53] Cohn, H. 1978. A classical invitation to algebraic numbers and class fields. New York: Springer-Verlag. With two appendices by Olga Taussky: “Artin's 1932 Gottingen lectures on class field theory” and “Connections between algebraic number theory and integral matrices”, Universitext.CrossRefGoogle Scholar
[54] Cohn, H. 1980. Advanced number theory. New York: Dover Publications Inc. Reprint of it A second course in number theory, 1962, Dover Books on Advanced Mathematics.Google Scholar
[55] Cohn, P. M. 2003. Basic algebra. London: Springer-Verlag London Ltd. Groups, rings and fields.
[56] Constantin, A., and Kolev, B. 1994. The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere. Enseign. Math. (2), 40(3–4), 193204.Google Scholar
[57] Conway, J. H. 1997. The sensual (quadratic) form. Carus Mathematical Monographs, vol. 26. Washington, DC: Mathematical Association of America. With the assistance of Francis Y. C., Fung.Google Scholar
[58] Conway, J. H., and Sloane, N. J. A. 1999. Sphere packings, lattices and groups. Third edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290. New York: Springer-Verlag. With additional contributions by E. Bannai, R. E.Borcherds, J.Leech, S.P., Norton, A. M., Odlyzko, R. A., Parker, L., Queen and B. B., Venkov.CrossRefGoogle Scholar
[59] Coxeter, H. S. M. 1947. The product of three reflections. Quart. Appl. Math., 5, 217–222.Google Scholar
[60] Coxeter, H. S. M. 1969. Introduction to geometry. Second edn. New York: John Wiley & Sons Inc.Google Scholar
[61] Coxeter, H. S. M. 1974. Regular complex polytopes. London: Cambridge University Press.Google Scholar
[62] Curtis, C. W. 1984. Linear algebra. Fourth edn. Undergraduate Texts in Mathematics. New York: Springer-Verlag. An introductory approach.CrossRefGoogle Scholar
[63] de Melo, W., and van Strien, S. 1993. One-dimensional dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25. Berlin: Springer-Verlag.CrossRefGoogle Scholar
[64] de Paepe, P. J. 1986. Approximation on disks. Proc. Amer. Math. Soc., 97(2), 299–302.CrossRefGoogle Scholar
[65] De Paepe, P. J. 2001. Eva Kallin's lemma on polynomial convexity. Bull. London Math. Soc., 33(1), 1–10.CrossRefGoogle Scholar
[66] Devaney, R. L. 1976. Reversible diffeomorphisms and flows. Trans. Amer. Math. Soc., 218, 89–113.CrossRefGoogle Scholar
[67] Dieudonné, J. 1951. On the automorphisms of the classical groups. With a sup-plement by Loo-Keng Hua. Mem. Amer. Math. Soc., 1951(2), vi+122.Google Scholar
[68] Dijkstra, J. J., and van Mill, J. 2006. On the group of homeomorphisms of the real line that map the pseudoboundary onto itself. Canad. J. Math., 58(3), 529–547.CrossRefGoogle Scholar
[69] Diliberto, S. P., and Straus, E. G. 1951. On the approximation of a function of several variables by the sum of functions of fewer variables. Pacific J. Math., 1, 195–210.CrossRefGoogle Scholar
[70] Djoković, D. Ž. 1967. Product of two involutions. Arch. Math. (Basel), 18, 582–584.CrossRefGoogle Scholar
[71] Djoković, D. Ž. 1986. Pairs of involutions in the general linear group. J. Algebra, 100(1), 214–223.Google Scholar
[72] Djoković, D. Ž., and Malzan, J. G. 1982. Products of reflections in U(p, q). Mem. Amer. Math. Soc., 37(259), vi+82.Google Scholar
[73] Écalle, J. 1975. Théorie itérative: introduction a latheorie des invariants holomorphes. J. Math. Pures Appl. (9), 54, 183–258.
[74] Eisenbud, D., Hirsch, U., and Neumann, W. 1981. Transverse foliations of Seifert bundles and self-homeomorphism of the circle. Comment. Math. Helv., 56(4), 638–660.CrossRefGoogle Scholar
[75] Ellers, E. W. 1977. Bireflectionality in classical groups. Canad. J. Math., 29(6), 1157–1162.CrossRefGoogle Scholar
[76] Ellers, E. W. 1983. Cyclic decomposition of unitary spaces. J. Geom., 21(2), 101–107.CrossRefGoogle Scholar
[77] Ellers, E. W. 1993. The reflection length of a transformation in the unitary group over a finite field. Linear and Multilinear Algebra, 35(1), 11–35.CrossRefGoogle Scholar
[78] Ellers, E. W. 1999. Bireflectionality of orthogonal and symplectic groups of characteristic 2. Arch. Math. (Basel), 73(6), 414–418.CrossRefGoogle Scholar
[79] Ellers, E. W. 2004. Conjugacy classes of involutions in the Lorentz group Q(V) and in SO(V). Linear Algebra Appl., 383, 77–83.CrossRefGoogle Scholar
[80] Ellers, E. W., and Malzan, J. 1990. Products of reflections in the kernel of the spinorial norm. Geom. Dedicata, 36(2–3), 279–285.CrossRefGoogle Scholar
[81] Ellers, E. W., and Nolte, W. 1982. Bireflectionality of orthogonal and symplectic groups. Arch. Math. (Basel), 39(2), 113–118.CrossRefGoogle Scholar
[82] Ellers, E. W., and Villa, O. 2004. The special orthogonal group is trireflectional. Arch. Math. (Basel), 82(2), 122–127.CrossRefGoogle Scholar
[83] Engel, K-J., and Nagel, R. 2000. One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics, vol. 194. New York: Springer-Verlag. With contributions by S., Brendle, M., Campiti, T., Hahn, G., Metafune, G., Nickel, D., Pallara, C., Perazzoli, A., Rhandi, S., Romanelli and R., Schnaubelt.Google Scholar
[84] Falcolini, C. 2002. Collisions and singularities in the n-body problem. Lecture Notes in Physics, vol. 590. Berlin: Springer-Verlag. Edited by D., Benest and C., Froeschlé.Google Scholar
[85] Fein, B. 1970. A note on the Brauer-Speiser theorem. Proc. Amer. Math. Soc., 25, 620–621.CrossRefGoogle Scholar
[86] Feit, W. 1967. Characters of finite groups. W.A., Benjamin, Inc., New York-Amsterdam.Google Scholar
[87] Feit, W., and Thompson, J. G. 1963. Solvability of groups of odd order. Pacific J. Math., 13, 775–1029.Google Scholar
[88] Feit, W., and Zuckerman, G. J. 1982. Reality properties of conjugacy classes in spin groups and symplectic groups. Pages 239–253 of: Algebraists' homage: papers in ring theory and related topics (New Haven, Conn., 1981). Contemp. Math., vol. 13. Providence, R.I.: Amer. Math. Soc.Google Scholar
[89] Fine, N. J., and Schweigert, G. E. 1955. On the group of homeomorphisms of an arc. Ann. of Math. (2), 62, 237–253.CrossRefGoogle Scholar
[90] Foguel, T., Kinyon, M. K., and Phillips, J. D. 2006. On twisted subgroups and Bol loops of odd order. Rocky Mountain J. Math., 36(1), 183–212.CrossRefGoogle Scholar
[91] Foreman, M., Rudolph, D. J., and Weiss, B. 2011. The conjugacy problem in ergodic theory. Ann. of Math. (2), 173(3), 1529–1586.CrossRefGoogle Scholar
[92] Forstnerič, F. 1992. A smooth holomorphically convex disc in C2 that is not locally polynomially convex. Proc. Amer. Math. Soc., 116(2), 411–415.Google Scholar
[93] Gal′t, A. A. 2010. Strongly real elements in finite simple orthogonal groups. Sibirsk. Mat. Zh., 51(2), 241–248.Google Scholar
[94] Gamkrelidze, R. V. (ed). 1990. Several complex variables. I. Encyclopaedia of Mathematical Sciences, vol. 7. Berlin: Springer-Verlag. Introduction to complex analysis, A translation of Sovremennye problemy matematiki. Fundamentalnye napravleniya, Tom 7, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. In-form., Moscow, 1985 [MR0850489 (87f:32003)], Translation by P. M., Gauthier, Translation edited by A. G., Vitushkin.
[95] Gauss, C. F. 1986. Disquisitiones arithmeticae. New York: Springer-Verlag. Translated and with a preface by Arthur A., Clarke, Revised by William C., Wa-terhouse, Cornelius Greither and A. W., Grootendorst and with a preface by Waterhouse.CrossRefGoogle Scholar
[96] Ghys, É. 2001. Groups acting on the circle. Enseign. Math. (2), 47(3–4), 329–407.Google Scholar
[97] Ghys, É., and Sergiescu, V. 1980. Stabilite et conjugaison differentiable pour certains feuilletages. Topology, 19(2), 179–197.CrossRefGoogle Scholar
[98] Giblin, J., and Markovic, V. 2006. Classification of continuously transitive circle groups. Geom. Topol., 10, 1319–1346.CrossRefGoogle Scholar
[99] Gill, N., and Short, I. 2010. Reversible maps and composites of involutions in groups of piecewise linear homeomorphisms of the real line. Aequationes Math., 79(1–2), 23–37.CrossRefGoogle Scholar
[100] Gill, N., and Singh, A. 2011a. Real and strongly real classes in PGLn(q) and quasi-simple covers of PSLn(q). J. Group Theory, 14, 461–489.Google Scholar
[101] Gill, N., and Singh, A. 2011b. Real and strongly real classes in SLn (q). J. Group Theory, 14, 437–459.Google Scholar
[102] Gill, N., O'Farrell, A. G., and Short, I. 2009. Reversibility in the group of homeomorphisms of the circle. Bull. Lond. Math. Soc., 41(5), 885–897.CrossRefGoogle Scholar
[103] Gómez, A., and Meiss, J. D. 2003. Reversible polynomial automorphisms of the plane: the involutory case. Phys. Lett. A, 312(1–2), 49–58.CrossRefGoogle Scholar
[104] Gómez, A., and Meiss, J. D. 2004. Reversors and symmetries for polynomial automorphisms of the complex plane. Nonlinearity, 17(3), 975–1000.CrossRefGoogle Scholar
[105] Gongopadhyay, K. 2011. Conjugacy classes in Möbius groups. Geom. Dedicata, 151, 245–258.CrossRefGoogle Scholar
[106] Gongopadhyay, K., and Parker, J. R. 2012. Reversible complex hyperbolic isometries. Preprint.
[107] Goodson, G., and Lemannczyk, M. 1996. Transformations conjugate to their inverses have even essential values. Proc. Amer. Math. Soc., 124(9), 2703–2710.CrossRefGoogle Scholar
[108] Goodson, G. R. 1996. The structure of ergodic transformations conjugate to their inverses. Pages 369–385 of: Ergodic theory of Zd actions (Warwick, 1993–1994). London Math. Soc. Lecture Note Ser., vol. 228. Cambridge: Cambridge Univ. Press.Google Scholar
[109] Goodson, G. R. 1997. The inverse-similarity problem for real orthogonal matrices. Amer. Math. Monthly, 104(3), 223–230.CrossRefGoogle Scholar
[110] Goodson, G. R. 1999. Inverse conjugacies and reversing symmetry groups. Amer. Math. Monthly, 106(1), 19–26.CrossRefGoogle Scholar
[111] Goodson, G. R. 2000a. Conjugacies between ergodic transformations and their inverses. Colloq. Math., 84/85(, part 1), 185–193. Dedicated to the memory of Anzelm Iwanik.CrossRefGoogle Scholar
[112] Goodson, G. R. 2000b. The converse of the inverse-conjugacy theorem for unitary operators and ergodic dynamical systems. Proc. Amer. Math. Soc., 128(5), 1381–1388.CrossRefGoogle Scholar
[113] Goodson, G. R. 2002. Ergodic dynamical systems conjugate to their composition squares. Acta Math. Univ. Comenian. (N.S.), 71(2), 201–210.Google Scholar
[114] Goodson, G. R. 2010. Groups having elements conjugate to their squares and connections with dynamical systems. Applied Mathematics, 1, 416–424.CrossRefGoogle Scholar
[115] Goodson, G. R., del Junco, A., Lemańczyk, M., and Rudolph, D. J. 1996. Ergodic transformations conjugate to their inverses by involutions. Ergodic Theory Dynam. Systems, 16(1), 97–124.CrossRefGoogle Scholar
[116] Goodson, Geoffrey R. 2007. Spectral properties of ergodic dynamical systems conjugate to their composition squares. Colloq. Math., 107(1), 99–118.CrossRefGoogle Scholar
[117] Gorenstein, D. 1968. Finite groups. New York: Harper & Row Publishers.Google Scholar
[118] Gow, R. 1975. Real-valued characters of solvable groups. Bull. London Math. Soc., 7, 132.CrossRefGoogle Scholar
[119] Gow, R. 1976. Real-valued characters and the Schur index. J. Algebra, 40(1), 258–270.CrossRefGoogle Scholar
[120] Gow, R. 1979. Real-valued and 2-rational group characters. J. Algebra, 61(2), 388–413.CrossRefGoogle Scholar
[121] Gow, R. 1981. Products of two involutions in classical groups of characteristic 2. J. Algebra, 71(2), 583–591.CrossRefGoogle Scholar
[122] Gow, R. 1988. Commutators in the symplectic group. Arch. Math. (Basel), 50(3), 204–209.CrossRefGoogle Scholar
[123] Graham, D., Keane, S., and O'Farrell, A. G. 2001. Simeadracht amchulaithe chorais dinimiciuil. in: R.N., Shorten, T., Ward and T., Lysaght (eds), Proceedings of the Irish Systems and Signals Conference, 27–31. Translation available online from AOF.Google Scholar
[124] Guba, V., and Sapir, M. 1997. Diagram groups. Mem. Amer. Math. Soc., 130(620), viii+117.
[125] Gustafson, W. H. 1991. On products of involutions. Pages 237–255 of: Paul Halmos. New York: Springer.Google Scholar
[126] Gustafson, W. H., Halmos, P. R., and Radjavi, H. 1976. Products of involutions. Linear Algebra andAppl., 13(1/2), 157–162. Collection of articles dedicated to Olga Taussky Todd.Google Scholar
[127] Halmos, P. R., and von Neumann, J. 1942. Operator methods in classical me-chanics. II. Ann. of Math. (2), 43, 332–350.CrossRefGoogle Scholar
[128] Hamkins, J. D. 1998. Every group has a terminating transfinite automorphism tower. Proc. Amer. Math. Soc., 126(11), 3223–3226.CrossRefGoogle Scholar
[129] Higman, G. 1974. Finitely presented infinite simple groups. Department of Pure Mathematics, Department of Mathematics, I.A.S. Australian National University, Canberra. Notes on Pure Mathematics, No. 8 (1974).Google Scholar
[130] Hillar, C. J., and Rhea, D. L. 2007. Automorphisms of finite abelian groups. Amer. Math. Monthly, 114(10), 917–923.CrossRefGoogle Scholar
[131] Hirsch, M. W., and Smale, S. 1974. Differential equations, dynamical systems, and linear algebra. Academic Press [A subsidiary of Harcourt Brace Jo-vanovich, Publishers], New York-London. Pure and Applied Mathematics, Vol. 60.Google Scholar
[132] Hjorth, G. 2000. Classification and orbit equivalence relations. Mathematical Surveys and Monographs, vol. 75. Providence, RI: American Mathematical Society.Google Scholar
[133] Hladnik, M., Omladic, M., and Radjavi, H. 2001. Products of roots of the identity. Proc. Amer. Math. Soc., 129(2), 459–465.CrossRefGoogle Scholar
[134] Hoffman, F., and Paige, E. C. 1970/1971. Products of two involutions in the general linear group. Indiana Univ. Math. J., 20, 1017–1020.CrossRefGoogle Scholar
[135] Huang, X. 1998. On an n-manifold in Cn near an elliptic complex tangent. J. Amer. Math. Soc., 11(3), 669–692.CrossRefGoogle Scholar
[136] Huang, X. J., and Krantz, S. G. 1995. On a problem of Moser. Duke Math. J., 78(1), 213–228.CrossRefGoogle Scholar
[137] Il′yashenko, Yu. S. 1993. Nonlinear Stokes phenomena. Pages 1–55 of: Nonlinear Stokes phenomena. Adv. Soviet Math., vol. 14. Providence, RI: Amer. Math. Soc.CrossRefGoogle Scholar
[138] Isaacs, I. M. 1976. Character theory of finite groups. New York: Academic Press [Harcourt Brace Jovanovich Publishers]. Pure and Applied Mathematics, No. 69.Google Scholar
[139] Ishibashi, H. 1995. Involutary expressions for elements in GLn(Z) and SLn(Z). Linear Algebra Appl., 219, 165–177.CrossRefGoogle Scholar
[140] James, G., and Liebeck, M. 2001. Representations and characters of groups. Second edn. New York: Cambridge University Press.CrossRefGoogle Scholar
[141] Jarczyk, W. 2002. Reversible interval homeomorphisms. J. Math. Anal. Appl., 272(2), 473–479.CrossRefGoogle Scholar
[142] Jordan, C. R., Jordan, D. A., and Jordan, J. H. 2002. Reversible complex Henon maps. Experiment. Math., 11(3), 339–347.CrossRefGoogle Scholar
[143] Kasner, E. 1915. Conformal classification of analytic arcs or elements: Poincaré's local problem of conformal geometry. Trans. Amer. Math. Soc., 16(3), 333–349.Google Scholar
[144] Kasner, E. 1916. Infinite Groups Generated by Conformal Transformations of Period Two (Involutions and Symmetries). Amer. J. Math., 38(2), 177–184.CrossRefGoogle Scholar
[145] Katok, A., and Hasselblatt, B. 1995. Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge: Cambridge University Press. With a supplementary chapter by Katok and Leonardo Mendoza.CrossRefGoogle Scholar
[146] Kaur, D., and Kulsherstha, A.Strongly real special 2-groups. To appear.
[147] Kenig, C. E., and Webster, S. M. 1982. The local hull of holomorphy of a surface in the space of two complex variables. Invent. Math., 67(1), 1–21.CrossRefGoogle Scholar
[148] Khavinson, S. Ya. 1995. The annihilator of linear superpositions. Algebra i Analiz, 7(3), 1–42.Google Scholar
[149] Knüppel, F. 1988. Products of involutions in orthogonal groups. Pages 231–247 of: Combinatorics '86 (Trento, 1986). Ann. Discrete Math., vol. 37. Amsterdam: North-Holland.Google Scholar
[150] Knüppel, F., and Nielsen, K. 1987a. On products of two involutions in the orthogonal group of a vector space. Linear Algebra Appl., 94, 209–216.CrossRefGoogle Scholar
[151] Knüppel, F., and Nielsen, K. 1987b. Products of involutions in O+(V). Linear Algebra Appl., 94, 217–222.CrossRefGoogle Scholar
[152] Knüppel, F., and Nielsen, K. 1991. SL(V) is 4-reflectional. Geom. Dedicata, 38(3), 301–308.CrossRefGoogle Scholar
[153] Knüppel, F., and Thomsen, G. 1998. Involutions and commutators in orthogonal groups. J. Austral. Math. Soc. Ser. A, 65(1), 1–36.CrossRefGoogle Scholar
[154] Kolesnikov, S. G., and Nuzhin, Ja. N. 2005. On strong reality of finite simple groups. Acta Appl. Math., 85(1–3), 195–203.CrossRefGoogle Scholar
[155] Kopell, N. 1970. Commuting diffeomorphisms. Pages 165–184 of: Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968). Providence, R.I.: Amer. Math. Soc.Google Scholar
[156] Korkmaz, M. 2005. On stable torsion length of a Dehn twist. Math. Res. Lett., 12(2–3), 335–339.CrossRefGoogle Scholar
[157] Kuczma, M., Choczewski, B., and Ger, R. 1990. Iterative functional equations. Encyclopedia of Mathematics and its Applications, vol. 32. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
[158] Laffey, T. J. 1997. Lectures on integer matrices. Unpublished lecture notes.Google Scholar
[159] Lamb, J. S. W. 1992. Reversing symmetries in dynamical systems. J. Phys. A, 25(4), 925–937.CrossRefGoogle Scholar
[160] Lamb, J. S. W. 1995. Resonant driving and k-symmetry. Phys. Lett. A, 199(1–2), 55–60.CrossRefGoogle Scholar
[161] Lamb, J. S. W. 1996. Area-preserving dynamics that is not reversible. Phys. A, 228(1–4), 344–365.CrossRefGoogle Scholar
[162] Lamb, J. S. W., and Quispel, G. R. W. 1994. Reversing k-symmetries in dynamical systems. Phys. D, 73(4), 277–304.CrossRefGoogle Scholar
[163] Lamb, J. S. W., and Quispel, G. R. W. 1995. Cyclic reversing k-symmetry groups. Nonlinearity, 8(6), 1005–1026.CrossRefGoogle Scholar
[164] Lamb, J. S. W., and Roberts, J. A. G. 1998. Time-reversal symmetry in dynamical systems: a survey. Phys. D, 112(1–2), 1–39. Time-reversal symmetry in dynamical systems (Coventry, 1996).Google Scholar
[165] Lamb, J. S. W., Roberts, J. A. G., and Capel, H. W. 1993. Conditions for local (reversing) symmetries in dynamical systems. Phys. A, 197(3), 379–422.CrossRefGoogle Scholar
[166] Lávička, R., O'Farrell, A. G., and Short, I. 2007. Reversible maps in the group of quaternionic Möbius transformations. Math. Proc. Cambridge Philos. Soc., 143(1), 57–69.CrossRefGoogle Scholar
[167] Lewis Jr., D. C. 1961. Reversible transformations. Pacific J. Math., 11, 1077–1087.CrossRefGoogle Scholar
[168] Liebeck, M. W., O'Brien, E. A., Shalev, A., and Tiep, P. H. 2010. The Ore conjecture. J. Eur. Math. Soc. (JEMS), 12(4), 939–1008.Google Scholar
[169] Liu, K. M. 1988a. Decomposition of matrices into three involutions. Linear Algebra Appl., 111, 1–24.CrossRefGoogle Scholar
[170] Liu, K. M. 1988b. Decomposition of matrices into three involutions. Linear Algebra Appl., 111, 1–24.CrossRefGoogle Scholar
[171] Liverpool, L. S. O. 1974/75. Fractional iteration near a fix point of multiplier 1. J. London Math. Soc. (2), 9, 599–609.Google Scholar
[172] Lubin, J. 1994. Non-Archimedean dynamical systems. Compositio Math., 94(3), 321–346.Google Scholar
[173] MacKay, R. S. 1993. Renormalisation in area-preserving maps. Advanced Series in Nonlinear Dynamics, vol. 6. River Edge, NJ: World Scientific Publishing Co. Inc.CrossRefGoogle Scholar
[174] Malgrange, B. 1982. Travaux d'Écalle et de Martinet-Ramis sur les systemes dynamiques. Pages 59–73 of: Bourbaki Seminar, Vol. 1981/1982. Astérisque, vol. 92. Paris: Soc. Math. France.Google Scholar
[175] Markley, N. G. 1970. Homeomorphisms of the circle without periodic points. Proc. London Math. Soc. (3), 20, 688–698.Google Scholar
[176] Marshall, D. E., and O'Farrell, A. G. 1979. Uniform approximation by real functions. Fund. Math., 54, 203–11.Google Scholar
[177] Marshall, D. E., and O'Farrell, A. G. 1983. Approximation by a sum of two algebras. The lightning bolt principle. J. Funct. Anal., 52(3), 353–368.CrossRefGoogle Scholar
[178] Mazurov, V. D., and Khukhro, E. I. (eds). 2014. The Kourovka notebook. Eighteenth edn. Novosibirsk: Russian Academy of Sciences Siberian Division Institute of Mathematics. Unsolved problems in group theory, Including archive of solved problems.
[179] McCarthy, P. J., and Stephenson, W. 1985. The classification of the conjugacy classes of the full group of homeomorphisms of an open interval and the general solution of certain functional equations. Proc. London Math. Soc. (3), 51(1), 95–112.Google Scholar
[180] McCleary, S. H. 1978. Groups of homeomorphisms with manageable automorphism groups. Comm. Algebra, 6(5), 497–528.Google Scholar
[181] Medvedev, V. A. 1992. Refutation of a theorem of Diliberto and Straus. Mat. Zametki, 51(4), 78–80, 142.Google Scholar
[182] Meyerson, M. D. 1981. Every power series is a Taylor series. Amer. Math. Monthly, 88(1), 51–52.CrossRefGoogle Scholar
[183] MillerIII, C. F. III, C. F. 1971. On group-theoretic decision problems and their classification. Princeton, N.J.: Princeton University Press. Annals of Mathematics Studies, No. 68.Google Scholar
[184] Moser, J. K., and Webster, S. M. 1983. Normal forms for real surfaces in C2 near complex tangents and hyperbolic surface transformations. Acta Math., 150(3–4), 255–296.CrossRefGoogle Scholar
[185] Muckenhoupt, B. 1961. Automorphisms of formal power series under substitution. Trans. Amer. Math. Soc., 99, 373–383.CrossRefGoogle Scholar
[186] Nakai, I. 1998. The classification of curvilinear angles in the complex plane and the groups of ± holomorphic diffeomorphisms. Ann. Fac. Sci. Toulouse Math. (6), 7(2), 313–334.CrossRefGoogle Scholar
[187] Navas, A. 2007. Grupos de difeomorfismos del círculo. Ensaios Matemáticos [Mathematical Surveys], vol. 13. Rio de Janeiro: Sociedade Brasileira de Matematica.Google Scholar
[188] O'Farrell, A. G. 2004. Conjugacy, involutions, and reversibility for real homeomorphisms. Irish Math. Soc. Bull., 54, 41–52.Google Scholar
[189] O'Farrell, A. G. 2008. Composition of involutive power series, and reversible series. Comput. Methods Funct. Theory, 8(1–2), 173–193.Google Scholar
[190] O'Farrell, A. G., and Roginskaya, M. 2010. Conjugacy of real diffeomorphisms. Asurvey. Algebra i Analiz, 22(1), 3–56.Google Scholar
[191] O'Farrell, A. G., and Sanabria-Garcia, M.A. 2002. De Paepe's disc has nontrivial polynomial hull. Bull. LMS, 34, 490–494.Google Scholar
[192] O'Farrell, A. G., and Short, I. 2009. Reversibility in the diffeomorphism group of the real line. Publ. Mat., 53(2), 401–415.Google Scholar
[193] O'Farrell, A. G., and Zaitsev, D.Formally-reversible maps of (ℂ2,0). To appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), DOI:10.2422/2036–2145.201201_001.
[194] O'Farrell, A. G., and Zaitsev, D. 2014. Factoring formal maps into reversible or involutive factors. J. Algebra, 399, 657–674.Google Scholar
[195] Pérez Marco, R. 1995. Nonlinearizable holomorphic dynamics having an uncountable number of symmetries. Invent. Math., 119(1), 67–127.Google Scholar
[196] Poincaré, H. 1907. Les fonctions analytiques de deux variables et la prepresentation conforme. Rend. Circ. Mat. Palermo, 23(1), 185–220.CrossRefGoogle Scholar
[197] Poincaré, H. 1996. Œuvres. Tome VI. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Sceaux: Éditions Jacques Gabay. Géométrie. Analysis situs (topologie). [Geometry. Analysis situs (topology)], Reprint of the 1953 edition.
[198] Quispel, G. R. W., and Capel, H. W. 1989. Local reversibility in dynamical systems. Phys. Lett. A, 142(2–3), 112–116.CrossRefGoogle Scholar
[199] Quispel, G. R. W., and Roberts, J. A. G. 1988. Reversible mappings of the plane. Phys. Lett. A, 132(4), 161–163.CrossRefGoogle Scholar
[200] Radjavi, H. 1975. Decomposition of matrices into simple involutions. Linear Algebra and Appl., 12(3), 247–255.CrossRefGoogle Scholar
[201] Radjavi, H. 1981. The group generated by involutions. Proc. Roy. Irish Acad. Sect. A, 81(1), 9–12.Google Scholar
[202] Rämö, J. 2011. Strongly real elements of orthogonal groups in even characteristic. J. Group Theory, 14(1), 9–30.CrossRefGoogle Scholar
[203] Ratcliffe, J. G. 1994. Foundations of hyperbolic manifolds. Graduate Texts in Mathematics, vol. 149. New York: Springer-Verlag.CrossRefGoogle Scholar
[204] Roberts, J. A. G., and Capel, H. W. 1992. Area preserving mappings that are not reversible. Phys. Lett. A, 162(3), 243–248.CrossRefGoogle Scholar
[205] Roberts, J. A. G., and Quispel, G. R. W. 1992. Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems. Phys. Rep., 216(2–3), 63–177.CrossRefGoogle Scholar
[206] Robinson, D. J. S. 1996. A course in the theory of groups. Second edn. Graduate Texts in Mathematics, vol. 80. New York: Springer-Verlag.CrossRefGoogle Scholar
[207] Sarnak, P. 2007. Reciprocal geodesics. Pages 217–237 of: Analytic number theory. Clay Math. Proc., vol. 7. Providence, RI: Amer. Math. Soc.Google Scholar
[208] Schreier, J., and Ulam, S. 1933. Über die Permutationsgruppe der naturlichen Zahlenfolge. StudiaMath., 4, 134–141.Google Scholar
[209] Sepanski, M. R. 2007. Compact Lie groups. Graduate Texts in Mathematics, vol. 235. New York: Springer.CrossRefGoogle Scholar
[210] Series, C. 1985. The geometry of Markoff numbers. Math. Intelligencer, 7(3), 20–29.CrossRefGoogle Scholar
[211] Sevryuk, M. B. 1986. Reversible systems. Lecture Notes in Mathematics, vol. 1211. Berlin: Springer-Verlag.CrossRefGoogle Scholar
[212] Shalev, Aner. 2009. Word maps, conjugacy classes, and a noncommutative Waring-type theorem. Ann. of Math. (2), 170(3), 1383–1416.CrossRefGoogle Scholar
[213] Short, I. 2008. Reversible maps in isometry groups of spherical, Euclidean and hyperbolic space. Math. Proc. R. Ir. Acad., 108(1), 33–46.CrossRefGoogle Scholar
[214] Siegel, C. B., and Moser, J. K. 1995. Lectures on Celestial Mechanics, reprint of the 1971 edition. Berlin, Heidelberg: Springer.Google Scholar
[215] Simon, B. 1996. Representations of finite and compact groups. Graduate Studies in Mathematics, vol. 10. Providence, RI: American Mathematical Society.Google Scholar
[216] Singh, A., and Thakur, M. 2005. Reality properties of conjugacy classes in G2. Israel J. Math., 145, 157–192.CrossRefGoogle Scholar
[217] Singh, A., and Thakur, M. 2008. Reality properties of conjugacy classes in algebraic groups. Israel J. Math., 165, 1–27.CrossRefGoogle Scholar
[218] Springer, T. A. 1974. Regular elements of finite reflection groups. Invent. Math., 25, 159–198.CrossRefGoogle Scholar
[219] Stebe, P. F. 1972. Conjugacy separability of groups of integer matrices. Proc. Amer. Math. Soc., 32, 1–7.CrossRefGoogle Scholar
[220] Sternberg, S. 1957. Local Cn transformations of the real line. Duke Math. J., 24, 97–102.CrossRefGoogle Scholar
[221] Sternfeld, Y. 1986. Uniform separation of points and measures and representation by sums of algebras. Israel J. Math., 55(3), 350–362.CrossRefGoogle Scholar
[222] Stewart, I., and Tall, D. 1979. Algebraic number theory. London: Chapman and Hall. Chapman and Hall Mathematics Series.CrossRefGoogle Scholar
[223] Szekeres, G. 1964. Fractional iteration of entire and rational functions. J. Austral. Math. Soc., 4, 129–142.CrossRefGoogle Scholar
[224] Takens, F. 1973. Normal forms for certain singularities of vectorfields. Ann. Inst. Fourier (Grenoble), 23(2), 163–195. Colloque International sur l'Analyse et la Topologie Differentielle (Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1972).CrossRefGoogle Scholar
[225] Taylor, D. E. 1992. The geometry of the classical groups. Sigma Series in Pure Mathematics, vol. 9. Berlin: Heldermann Verlag.Google Scholar
[226] Thomas, S.The automorphism tower problem. Book in preparation.
[227] Thomas, S. 1985. The automorphism tower problem. Proc. Amer. Math. Soc., 95(2), 166–168.CrossRefGoogle Scholar
[228] Thompson, R. C. 1961. Commutators in the special and general linear groups. Trans. Amer. Math. Soc., 101, 16–33.CrossRefGoogle Scholar
[229] Thompson, R. C. 1962a. Commutators of matrices with coefficients from the field of two elements. Duke Math. J., 29, 367–373.Google Scholar
[230] Thompson, R. C. 1962b. On matrix commutators. Portugal. Math., 21, 143–153.Google Scholar
[231] Tiep, P. H., and Zalesski, A. E. 2005. Real conjugacy classes in algebraic groups and finite groups of Lie type. J. Group Theory, 8(3), 291–315.CrossRefGoogle Scholar
[232] Trépreau, J-M. 2003. Discrimination analytique des difféomorphismes résonnants de (ℂ,0) et réflexion de Schwarz. Astérisque, 271–319. Autour de l'analyse microlocale.Google Scholar
[233] Vdovin, E. P., and Gal′t, A. A. 2010. Strong reality of finite simple groups. Sibirsk. Mat. Zh., 51(4), 769–777.Google Scholar
[234] Villa, O. 2003. An example of a bireflectional spin group. Arch. Math. (Basel), 81(1), 1–4.CrossRefGoogle Scholar
[235] Vinroot, C. R. 2004. A factorization in GSp(V). Linear Multilinear Algebra, 52(6), 385–403.CrossRefGoogle Scholar
[236] Voronin, S. M. 1981. Analytic classification of germs of conformal mappings (C, 0) → (C, 0). Funktsional. Anal. i Prilozhen., 15(1), 1–17, 96.CrossRefGoogle Scholar
[237] Voronin, S. M. 1982. Analytic classification of pairs of involutions and its applications. Funktsional. Anal. i Prilozhen., 16(2), 21–29, 96.CrossRefGoogle Scholar
[238] Wall, G. E. 1963. On the conjugacy classes in the unitary, symplectic and orthogonal groups. J. Austral. Math. Soc., 3, 1–62.CrossRefGoogle Scholar
[239] Walsh, J. A. 1999. The dynamics of circle homeomorphisms: a hands-on introduction. Math. Mag., 72(1), 3–13.CrossRefGoogle Scholar
[240] Webster, S. M. 1996. Double valued reflection in the complex plane. Enseign. Math. (2), 42(1–2), 25–48.Google Scholar
[241] Webster, S. M. 1997. A note on extremal discs and double valued reflection. Pages 271–276 of: Multidimensional complex analysis and partial differential equations (Sao Carlos, 1995). Contemp. Math., vol. 205. Providence, RI: Amer. Math. Soc.Google Scholar
[242] Webster, S. M. 1998. Real ellipsoids and double valued reflection in complex space. Amer. J. Math., 120(4), 757–809.CrossRefGoogle Scholar
[243] Weyl, H. 1997. The classical groups. Princeton Landmarks in Mathematics. Princeton, NJ: Princeton University Press. Their invariants and representations, Fifteenth printing, Princeton Paperbacks.Google Scholar
[244] Whittaker, J. V. 1963. On isomorphic groups and homeomorphic spaces. Ann. of Math. (2), 78, 74–91.CrossRefGoogle Scholar
[245] Wiegerinck, J. 1995. Local polynomially convex hulls at degenerated CR singularities of surfaces in C2. Indiana Univ. Math. J., 44(3), 897–915.CrossRefGoogle Scholar
[246] Wilson, R., Walsh, P., Tripp, J., Suleiman, I., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J., and Abbott, R.ATLAS of finitie group representations – Version3. http://brauer.maths.qmul.ac.uk/Atlas/v3/.
[247] Wonenburger, M. J. 1966. Transformations which are products of two involutions. J. Math. Mech., 16, 327–338.Google Scholar
[248] Xia, Z. 1992. The existence of noncollision singularities in Newtonian systems. Ann. of Math. (2), 135(3), 411–468.CrossRefGoogle Scholar
[249] Yale, P. B. 1966. Automorphisms of the complex numbers. Math. Magazine, 39, 135–141.CrossRefGoogle Scholar
[250] Yoccoz, J.-C. 1995. Petits diviseurs en dimension 1. Paris: Société Mathématique de France. Astérisque No. 231 (1995).Google Scholar
[251] Young, S. W. 1994. The representation of homeomorphisms on the interval as finite compositions of involutions. Proc. Amer. Math. Soc., 121(2), 605–610.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Anthony G. O'Farrell, National University of Ireland, Maynooth, Ian Short, The Open University, Milton Keynes
  • Book: Reversibility in Dynamics and Group Theory
  • Online publication: 05 June 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139998321.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Anthony G. O'Farrell, National University of Ireland, Maynooth, Ian Short, The Open University, Milton Keynes
  • Book: Reversibility in Dynamics and Group Theory
  • Online publication: 05 June 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139998321.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Anthony G. O'Farrell, National University of Ireland, Maynooth, Ian Short, The Open University, Milton Keynes
  • Book: Reversibility in Dynamics and Group Theory
  • Online publication: 05 June 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139998321.014
Available formats
×