Book contents
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- 1 Introduction – from eye field to eyesight
- 2 Formation of the eye field
- 3 Retinal neurogenesis
- 4 Cell migration
- 5 Cell determination
- 6 Neurotransmitters and neurotrophins
- 7 Comparison of development of the primate fovea centralis with peripheral retina
- 8 Optic nerve formation
- 9 Glial cells in the developing retina
- 10 Retinal mosaics
- 11 Programmed cell death
- 12 Dendritic growth
- 13 Synaptogenesis and early neural activity
- 14 Emergence of light responses
- New perspectives
- Index
- Plate section
- References
6 - Neurotransmitters and neurotrophins
Published online by Cambridge University Press: 22 August 2009
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- 1 Introduction – from eye field to eyesight
- 2 Formation of the eye field
- 3 Retinal neurogenesis
- 4 Cell migration
- 5 Cell determination
- 6 Neurotransmitters and neurotrophins
- 7 Comparison of development of the primate fovea centralis with peripheral retina
- 8 Optic nerve formation
- 9 Glial cells in the developing retina
- 10 Retinal mosaics
- 11 Programmed cell death
- 12 Dendritic growth
- 13 Synaptogenesis and early neural activity
- 14 Emergence of light responses
- New perspectives
- Index
- Plate section
- References
Summary
Introduction
In addition to intrinsic control mechanisms (see Chapter 5 and Cepko et al., 1996), the production of neurons by progenitor cells and the determination of their fate are regulated via an array of diffusible factors, two families of which are considered in this chapter: neurotransmitters and neurotrophins. Neurotrophins are now known to play an essential role in both the formation and the maintenance of the nervous system throughout development and adult life. There is growing evidence that besides their role as molecules mediating communication between nerve cells in the mature nervous system, a variety of both slow and fast neurotransmitters also play important roles during neuronal development. This chapter reviews recent evidence that demonstrates that a number of non-synaptic neurotransmitter release mechanisms, together with many neurotransmitters and their receptors, are present in the developing retina prior to the onset of synapse formation and that these early neurotransmitters act to modulate a range of events in neural development. Their precise mechanisms of action are still being elucidated but, as described here, the ability to modulate [Ca2+]i is one feature common to these early neurotransmitter systems, and is thought to underlie a number of their developmental actions. It is becoming clear that both neurotransmitters and neurotrophins play important regulatory roles in the early stages of retinal development, including the modulation of proliferation, differentiation, cell survival and circuit formation.
- Type
- Chapter
- Information
- Retinal Development , pp. 99 - 125Publisher: Cambridge University PressPrint publication year: 2006