Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T13:08:04.680Z Has data issue: false hasContentIssue false

Part III - Analysis Methods

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access
Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 287 - 348
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adams, J.B. & McCord, T.B. (1971a) Alteration of lunar optical properties: Age and composition effects. Science, 171, 567571.CrossRefGoogle ScholarPubMed
Adams, J.B. & McCord, T.B. (1971b) Optical properties of mineral separates, glass, and anorthositic fragments from Apollo mare samples. Proceedings of the 2nd Lunar Sci. Conf., 2183–2195.Google Scholar
Basu, A. (1977) Steady state, exposure age, and growth of agglutinates in lunar soils. Proceedings of the 8th Lunar Planet. Sci. Conf., 3617–3632.Google Scholar
Bauch, K.E., Hiesinger, H., & Helbert, J. (2011) Insolation and resulting surface temperatures of study regions on Mercury. 42nd Lunar Planet. Sci. Conf., Abstract #2257.Google Scholar
Beck, P., Quirico, E., Montes-Hernandez, G., et al. (2010) Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids. Geochimica et Cosmochimica Acta, 74, 48814892.CrossRefGoogle Scholar
Beck, P., Schmitt, B., Cloutis, E.A., & Vernazza, P. (2015) Low-temperature reflectance spectra of brucite and the primitive surface of 1-Ceres? Icarus, 257, 471476.CrossRefGoogle Scholar
Bennett, C.J., Pirim, C., & Orlando, T.M. (2013) Space weathering of Solar System bodies: A laboratory perspective. Chemical Reviews, 113, 90869150.CrossRefGoogle ScholarPubMed
Bishop, J.L. & Pieters, C.M. (1995) Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials. Journal of Geophysical Research, 100, 53695379.Google Scholar
Blewett, D.T., Lucey, P.G., Hawke, B.R., Ling, G.G., & Robinson, M.S. (1997) A comparison of Mercurian reflectance and spectral quantities with those of the Moon. Icarus, 129, 217231.CrossRefGoogle Scholar
Blewett, D.T., Vaughan, W.M., Xiao, Z., et al. (2013) Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. Journal of Geophysical Research, 118, 10131032.CrossRefGoogle Scholar
Borin, P., Cremonese, G., Marzari, F., Bruno, M., & Marchi, S. (2009) Statistical analysis of micrometeoroids flux on Mercury. Astronomy and Astrophysics, 503, 259264.CrossRefGoogle Scholar
Bradley, J.P. (1994) Chemically anomalous, preaccretionally irradiated grains in interplanetary dust from comets. Science, 265, 925929.Google Scholar
Bradley, J.P., Sandford, S.A., & Walker, R.M. (1988) Interplanetary dust particles. In: Meteorites and the early Solar System (Kerridge, J.F. & Matthews, M.S., eds.). University of Arizona Press, Tucson, 861895.Google Scholar
Brownlee, D. (1985) Cosmic dust-collection and research. Annual Review of Earth and Planetary Sciences, 13, 147173.Google Scholar
Brunetto, R. & Strazzulla, G. (2005) Elastic collisions in ion irradiation experiments: A mechanism for space weathering of silicates. Icarus, 179, 265273.Google Scholar
Brunetto, R., Romano, F., Blanco, A., et al. (2006) Space weathering of silicates simulated by nanosecond pulse UV excimer laser. Icarus, 180, 546554.CrossRefGoogle Scholar
Burns, R.G. (1993Mineralogical applications of crystal field theory, 2nd edn. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Charette, M.P., Soderblom, L.A., Adams, J.B., Gaffey, M.J., & McCord, T.B. (1976) Age-color relationships in the lunar highlands. Proceedings of the 7th Lunar Sci. Conf., 2579–2592.Google Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., et al. (2000) A thermal emission spectral library of rock-forming minerals. Journal of Geophysical Research, 105, 97359739.CrossRefGoogle Scholar
Ciddor, P.E. (1996) Refractive index of air: New equations for the visible and near infrared. Applied Optics, 35, 15661573.CrossRefGoogle ScholarPubMed
Cintala, M.J. (1992) Impact-induced thermal effects in the lunar and mercurian regoliths. Journal of Geophysical Research, 97, 947973.CrossRefGoogle Scholar
Clark, R.N. (1981) The spectral reflectance of water-mineral mixtures at low temperatures. Journal of Geophysical Research, 86, 30743086.CrossRefGoogle Scholar
Cloutis, E.A., Craig, M.A., Mustard, J.F., et al. (2007) Stability of hydrated minerals on Mars. Geophysical Research Letters, 34, L20202, DOI:10.1029/2007GL031267.Google Scholar
Cloutis, E.A., Craig, M.A., Kruzelecky, R.V., et al. (2008) Spectral reflectance properties of minerals exposed to simulated Mars surface conditions. Icarus, 195, 140168.CrossRefGoogle Scholar
Cooper, J.F., Johnson, R.E., Mauk, B.H., Garrett, H.B., & Gehrels, N. (2001) Energetic ion and electron irradiation of the icy Galilean satellites. Icarus, 149, 133159.Google Scholar
Dalton, J.B. & Pitman, K.M. (2012) Low temperature optical constants of some hydrated sulfates relevant to planetary surfaces. Journal of Geophysical Research, 117, E09001, DOI:10.1029/2011JE004036.Google Scholar
Dalton, J.B., Prieto-Ballesteros, O., Kargel, J.S., Jamieson, C.S., Jolivet, J., & Quinn, R. (2005) Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus, 177, 472490.CrossRefGoogle Scholar
De Angelis, S., Carli, C., Tosi, F., et al. (2017) Temperature-dependent VNIS spectroscopy of hydrated Mg-sulfates. Icarus, 281, 444458.Google Scholar
De Sanctis, M.C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
De Sanctis, M.C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
Delbo, M., Mueller, M., Emery, J.P., et al. (2015) Asteroid thermophysical modeling. In: Asteroids IV (Michel, P., De Meo, F.E., & Bottke, W.F. Jr., eds.). University of Arizona Press, Tucson, 107128.Google Scholar
Denevi, B.W. & Robinson, M.S. (2008) Mercury’s albedo from Mariner 10: Implication for the presence of ferrous iron. Icarus, 197, 239246.CrossRefGoogle Scholar
Denevi, B.W., Robinson, M.S., Boyd, A.K., Sato, H., Hapke, B.W., & Hawke, B. (2014) Characterization of space weathering from Lunar Reconnaissance Orbiter Camera ultraviolet observations of the Moon. Journal of Geophysical Research, 119, 976997.Google Scholar
Duke, M.B., Woo, C.C., Bird, M.L., Sellers, G.A., & Finkelman, R.B. (1970) Lunar soil: Size distribution and mineralogical constituents. Science, 167, 648650.CrossRefGoogle ScholarPubMed
Dukes, C.A., Baragiola, R.A., & McFadden, L.A. (1999) Surface modification of olivine by H+ and He+ bombardment. Journal of Geophysical Research, 104 (E1) 1865–1872.Google Scholar
Dybwad, J. (1971) Radiation effects on silicates (5‐keV H+, D+, He+, N2+). Journal of Geophysical Research, 76, 40234029.Google Scholar
Fama, M., Loeffler, M.J., Raut, U., & Baragiola, R.A. (2010) Radiation-induced amorphization of crystalline ice. Icarus, 207, 314319.Google Scholar
Ferrari, S., Nestola, F., Massironi, M., et al. (2014) In-situ high-temperature emissivity spectra and thermal expansion of C2/c pyroxenes: Implications for the surface of Mercury. American Mineralogist, 99, 786792.Google Scholar
Fink, U. & Sill, G.T. (1982) The infrared spectral properties of frozen volatiles. In: Comets (Wilkening, L.L., ed.). University of Arizona Press, Tucson, 164202.Google Scholar
Fischer, E.M. & Pieters, C.M. (1994) Remote determination of exposure degree and iron concentration of lunar soils using VIS-NIR spectroscopic methods. Icarus, 111, 475488.CrossRefGoogle Scholar
Fischer, E.M. & Pieters, C.M. (1996) Composition and exposure age of the Apollo 16 Cayley and Descartes regions from Clementine data: Normalizing the optical effects of space weathering. Journal of Geophysical Research, 101, 22252234.Google Scholar
Garenne, A., Beck, P., Montes-Hernandez, G., et al. (2014) The abundance and stability of “water” in type 1 and 2 carbonaceous chondrites (CI, CM and CR). Geochimica et Cosmochimica Acta, 137, 93112.Google Scholar
Garenne, A., Beck, P., Montes-Hernandez, G., et al. (2016) Bidirectional reflectance spectroscopy of carbonaceous chondrites: Implications for water quantification and primary composition. Icarus, 264, 172183.Google Scholar
Garrick-Bethell, I., Head, J.W., & Pieters, C.M. (2011) Spectral properties, magnetic fields, and dust transport at lunar swirls. Icarus, 212, 480492.Google Scholar
Gillis-Davis, J.J., Lucey, P.G., Bradley, J.P., et al. (2017) Incremental laser space weathering of Allende reveals non-lunar like space weathering effects. Icarus, 286, 114.CrossRefGoogle Scholar
Gosling, J.T. (2007) The solar wind. In: Encyclopedia of the Solar System (McFadden, L.A., Weissman, P.R., & Johnson, T.V., eds.). Academic Press, Amsterdam, 99116.CrossRefGoogle Scholar
Gundlach, B. & Blum, J. (2012) Outgassing of icy bodies in the Solar System – II: Heat transport in dry, porous surface dust layers. Icarus, 219, 618629.Google Scholar
Hamilton, V.E. (2010) Thermal infrared (vibrational) spectroscopy of Mg–Fe olivines: A review and applications to determining the composition of planetary surfaces. Chemie der Erde, 70, 733.Google Scholar
Hapke, B. (2001) Space weathering from Mercury to the asteroid belt. Journal of Geophysical Research, 106, 1003910073.CrossRefGoogle Scholar
Hapke, B.W., Cassidy, W.A., & Wells, E.N. (1975) Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties of the lunar regolith. Moon, 13, 339353.CrossRefGoogle Scholar
Hapke, B.W., Wells, E., Wagner, J., & Partlow, W. (1981) Far-UV, visible, and near-IR reflectance spectra of frosts of H2O, CO2, NH3 and SO2. Icarus, 47, 361367.Google Scholar
Helbert, J., Müller, N., Kostama, P., Marinangeli, L., Piccioni, G., & Drossart, P. (2008) Surface brightness variations seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus. Geophysical Research Letters, 35, L11201.Google Scholar
Helbert, J., Nestola, F., Ferrari, S., et al. (2013) Olivine thermal emissivity under extreme temperature ranges: Implication for Mercury surface. Earth and Planetary Science Letters, 371372, 252257.CrossRefGoogle Scholar
Hemingway, D.J., Garrick-Bethell, I., & Kreslavsky, M.A. (2015) Latitudinal variation in spectral properties of the lunar maria and implications for space weathering. Icarus, 261, 6679.CrossRefGoogle Scholar
Hendrix, A.R. & Vilas, F. (2006) The effects of space weathering at UV wavelengths: S-class asteroids. The Astronomical Journal, 132, 13961404.CrossRefGoogle Scholar
Hendrix, A.R., Retherford, K.D., Gladstone, G.R., et al. (2012) The lunar far‐UV albedo: Indicator of hydration and weathering. Journal of Geophysical Research, 117, E12001, DOI:10.1029/2012JE004252.Google Scholar
Hinrichs, J.L. & Lucey, P.G. (2002) Temperature-dependent near-infrared spectral properties of minerals, meteorites, and lunar soil. Icarus, 155, 169180.Google Scholar
Hiroi, T. & Sasaki, S. (2001) Importance of space weathering simulation products in compositional modeling of asteroids: 349 Dembowska and 446 Aeternitas as examples. Meteoritics and Planetary Science, 36, 15871596.CrossRefGoogle Scholar
Hiroi, T., Zolensky, M.E., Pieters, C.M., & Lipschutz, M.E. (1996) Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites. Meteoritics and Planetary Science, 31, 321327.Google Scholar
Ip, W.H., Williams, D.J., McEntire, R.W., & Mauk, B.H. (1998) Ion sputtering and surface erosion at Europa. Geophysical Research Letters, 25, 829832.Google Scholar
Izawa, M.R.M., Applin, D.M., Mann, P., et al. (2013) Reflectance spectroscopy (200–2500 nm) of highly-reduced phases under oxygen- and water-free conditions. Icarus, 226, 16121617.Google Scholar
Kaluna, H.M., Ishii, H.A., Bradley, J.P., Gillis-Davis, J.J., & Lucey, P.G. (2017) Simulated space weathering of Fe- and Mg-rich aqueously altered minerals using pulsed laser irradiation. Icarus, 292, 245258.CrossRefGoogle Scholar
Keller, L.P. & McKay, D.S. (1993) Discovery of vapor deposits in the lunar regolith. Science, 261, 13051307.CrossRefGoogle ScholarPubMed
Keller, L.P. & McKay, D.S. (1994) The nature of agglutinitic glass in the fine-size fraction of lunar soil 10084. 25th Lunar Planet. Sci. Conf., Abstract, 685–686.Google Scholar
Keller, L.P. & McKay, D.S. (1997), The nature and origin of rims on lunar soil grains, Geochimica et Cosmochimica Acta, 61, 23312341.CrossRefGoogle Scholar
Kieffer, H.H. (1969) A reflectance spectrometer/environmental chamber for frosts. Applied Optics, 8, 24972500.Google Scholar
Kohout, T., Cuda, J., Filip, J., et al. (2014) Space weathering simulations through controlled growth of iron nanoparticles on olivine. Icarus, 237, 7583.CrossRefGoogle Scholar
Koike, C., Chihara, H., Tsuchiyama, A., Suto, H., Sogawa, H., & Okuda, H. (2003) Compositional dependence of infrared absorption spectra of crystalline silicate—II. Natural and synthetic olivines. Astronomy and Astrophysics, 399, 11011107.CrossRefGoogle Scholar
Lantz, C., Brunetto, R., Barucci, M.A., et al. (2017) Ion irradiation of carbonaceous chondrites: A new view of space weathering on primitive asteroids. Icarus, 285, 4357.CrossRefGoogle Scholar
Lazzarin, M., Marchi, S., Moroz, L.V., et al. (2006) Space weathering in the main asteroid belt: The big picture. Astrophysical Journal, 647, L179L182.CrossRefGoogle Scholar
Loeffler, M., Baragiola, R., & Murayama, M. (2008) Laboratory simulations of redeposition of impact ejecta on mineral surfaces. Icarus, 196, 285292.Google Scholar
Loeffler, M.J., Dukes, C.A., & Baragiola, R.A. (2009) Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind. Journal of Geophysical Research, 114, E03003.Google Scholar
Loeffler, M.J., Dukes, C.A., Christoffersen, R., & Baragiola, R.A. (2016) Space weathering of silicates simulated by successive laser irradiation: In situ reflectance measurements of Fo90, Fo99+, and SiO2. Meteoritics and Planetary Science, 51, 261275.Google Scholar
Logan, L.M., Hunt, G.R., Salisbury, J.W., & Balsamo, S.R. (1973) Compositional implications of Christiansen frequency maximums for infrared remote sensing applications. Journal of Geophysical Research, 78, 49835003.Google Scholar
Lucey, P.G. & Noble, S K. (2008) Experimental test of a radiative transfer model of the optical effects of space weathering. Icarus, 197, 348353.CrossRefGoogle Scholar
Lucey, P.G. & Riner, M.A. (2011) The optical effects of small iron particles that darken but do not redden: Evidence of intense space weathering on Mercury. Icarus, 212, 451462.Google Scholar
Lucey, P.G., Keil, K., & Whitely, R. (1998) The influence of temperature on the spectra of the A-asteroids and implications for their silicate chemistry. Journal of Geophysical Research, 103, 58655871.Google Scholar
Lucey, P.G., Blewett, D.T., Taylor, G.J., & Hawke, B.R. (2000) Imaging of lunar surface maturity. Journal of Geophysical Research, 105, 20,37720,386.CrossRefGoogle Scholar
Mastrapa, R.M.E. & Brown, R.H. (2006) Ion irradiation of crystalline H2O-ice: Effect on the 1.65 µm band. Icarus, 183, 207214.Google Scholar
Matsuoka, M., Nakamura, T., Kimura, Y., et al. (2015) Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids. Icarus, 254, 135143.Google Scholar
Maturilli, A., Helbert, J., St. John, J.M., et al. (2014a) Komatiites as Mercury surface analogues: Spectral measurements at PEL. Earth and Planetary Science Letters, 398, 5865.CrossRefGoogle Scholar
Maturilli, A., Shiryaev, A.A., Kulakova, I.I., & Helbert, J. (2014b) Infrared reflectance and emissivity spectra of nanodiamonds. Spectroscopy Letters, 47, 446450.Google Scholar
McKay, D., Fruland, R., & Heiken, G. (1974) Grain size and the evolution of lunar soils. Proceedings of the 5th Lunar Sci. Conf., 887–906.Google Scholar
McKay, D.S., Heiken, G., Basu, A., et al. (1991) The lunar regolith. In: Lunar sourcebook: A user’s guide to the Moon (Heiken, G.H., Vaniman, D.T., & French, B.M., eds.). Cambridge University Press, Cambridge, 285365.Google Scholar
Michalski, G., Böhlke, J.K., & Thiemens, M. (2004) Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions. Geochimica et Cosmochimica Acta, 68, 40234038.Google Scholar
Moroz, L.V., Fisenko, A.V., Semjonova, L.F., Pieters, C.M., & Korotaeva, N.N. (1996) Optical effect of regolith processes on S-asteroids as simulated by laser shot on ordinary chondrites and other mafic materials. Icarus, 122, 366382.Google Scholar
Moroz, L., Schade, U., & Wasch, R. (2000) Reflectance spectra of olivine-orthopyroxene-bearing assemblages at decreased temperatures: Implications for remote sensing of asteroids. Icarus, 147, 7993.Google Scholar
Moroz, L.V., Starukhina, L.V., Rout, S.S., et al. (2014) Space weathering in silicate regoliths with various FeO contents: New insights from laser irradiation experiments and theoretical spectral simulations. Icarus, 235, 187206.CrossRefGoogle Scholar
Morris, R. (1980) Origins and size distribution of metallic iron particles in the lunar regolith. Proceedings of the 11th Lunar Planet. Sci. Conf., 1697–1712.Google Scholar
Murchie, S.L., Klima, R.L., Denevi, B.W., et al. (2015) Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305.Google Scholar
Nash, D.B. (1967) Proton-irradiation darkening of rock powders – Contamination and temperature effects and applications to solar-wind darkening of Moon. Journal of Geophysical Research, 72, 30893104.CrossRefGoogle Scholar
Nestola, F., Nimis, P., Ziberna, L., et al. (2011a) First crystal-structure determination of olivine in diamond: Composition and implications for provenance in the Earth’s mantle. Earth and Planetary Science Letters, 305, 249255.Google Scholar
Nestola, F., Pasqual, D., Smyth, J.R., et al. (2011b) New accurate elastic parameters for the forsterite-fayalite solid solution. American Mineralogist, 96, 17421747.Google Scholar
Nesvorný, D., Jenniskens, P., Levison, H.F., Bottke, W.F., Vokrouhlický, D., & Gounelle, M. (2010) Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: Implications for hot debris disks. The Astrophysical Journal, 713, 816836.Google Scholar
Nettles, J.W., Staid, M., Besse, S., et al. (2011) Optical maturity variation in lunar spectra as measured by Moon Mineralogy Mapper data. Journal of Geophysical Research, 116, E00G17, DOI:10.1029/2010JE003748.CrossRefGoogle Scholar
Noble, S.K. & Pieters, C.M. (2003) Space weathering on Mercury: Implications for remote sensing. Solar System Research, 37, 3439.Google Scholar
Noble, S.K., Pieters, C.M., & Keller, J. (2007) An experimental approach to understanding the optical effects of space weathering. Icarus, 192, 629642.CrossRefGoogle Scholar
Noble, S.K., Hiroi, T., Keller, L.P., Rahman, Z., Sasaki, S., & Pieters, C.M. (2011) Experimental space weathering of ordinary chondrites by nanopulse laser: TEM results. 42nd Lunar Planet. Sci. Conf., Abstract #1382.Google Scholar
Noguchi, T., Nakamura, T., Kimura, M., et al. (2001) Incipient space weathering observed on the surface of Itokawa dust particles. Science, 333, 11211125.CrossRefGoogle Scholar
Papike, J.J., Simon, S.B., White, C., & Laul, J.C. (1981) The relationship of the lunar regolith <10 μm fraction and agglutinates. Part I: A model for agglutinate formation and some indirect supportive evidence. Proceedings of the 12th Lunar Planet. Sci. Conf., 409–420.Google Scholar
Peterson, R.C., Nelson, W., Madu, B., & Shurvell, H.F. (2007) Meridianiite: A new mineral species observed on Earth and predicted to exist on Mars. American Mineralogist, 92, 17561759.CrossRefGoogle Scholar
Pieters, C.M. & Noble, S.K. (2016) Space weathering on airless bodies. Journal of Geophysical Research, 121, 18651884.CrossRefGoogle ScholarPubMed
Pieters, C.M., Fischer, E.M., Rode, O., & Basu, A. (1993) Optical effects of space weathering: The role of the finest fraction. Journal of Geophysical Research, 98, 20,81720,824.CrossRefGoogle Scholar
Pieters, C.M., Taylor, L.A., Noble, S.K., et al. (2000) Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteoritics and Planetary Science, 35, 11011107.CrossRefGoogle Scholar
Pommerol, A., Schmitt, B., Beck, P., & Brissaud, O. (2009) Water sorption on martian regolith analogs: Thermodynamics and near-infrared reflectance spectroscopy. Icarus, 204, 114136.CrossRefGoogle Scholar
Roush, T.L. & Singer, R.B. (1986) Gaussian analysis of temperature effects on the reflectance spectra of mafic minerals in the 1-µm region. Journal of Geophysical Research, 91, 10,30110,308.Google Scholar
Roush, T.L. & Singer, R.B. (1987) Possible temperature variation effects on the interpretation of spatially resolved reflectance observations of asteroid surfaces. Icarus, 69, 571574.Google Scholar
Roush, T.L., Pollack, J.B., Witteborn, F.C., & Bregman, J.D. (1990) Ice and minerals on Callisto: A reassessment of the reflectance spectra. Icarus, 86, 355382.Google Scholar
Sasaki, S., Nakamura, K., Hamabe, Y., Kurahashi, E., & Hiroi, T. (2001), Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature, 410, 555557.CrossRefGoogle Scholar
Sasaki, S., Kurahashi, E., Yamanaka, C., & Nakamura, K. (2003) Laboratory simulation of space weathering: Changes of optical properties and TEM/ESR confirmation of nanophase metallic iron. Advances in Space Research, 31, 25372542.Google Scholar
Schade, U. & Wasch, R. (1999) NIR reflectance spectroscopy of mafic minerals in the temperature range between 80 and 473 K. Advances in Space Research, 23, 12531256.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751767.Google Scholar
Sherman, D.M. (1985) SCF-Xα-SW MO study of Fe-O and Fe-OH chemical bonds; applications to Mössbauer spectra and magnetochemistry of hydroxyl-bearing Fe3+ oxides and silicates. Physics and Chemistry of Minerals, 12, 311314.CrossRefGoogle Scholar
Shestopalov, D.I. Golubeva, L.F., & Cloutis, E.A. (2013) Optical maturation of asteroid surfaces. Icarus, 225, 781793.Google Scholar
Shkuratov, Y.G., Kaydash, V.G., & Opanasenko, N.V. (1999) Iron and titanium abundance and maturity degree distribution on the lunar nearside. Icarus, 137, 222234.Google Scholar
Singer, R.B. & Roush, T.L. (1985) Effects of temperature on remotely sensed mineral absorption features. Journal of Geophysical Research, 90, 12,43412,444.CrossRefGoogle Scholar
Singh, S., Cornet, T. Chevrier, V.F., et al. (2016) Near-infrared spectra of liquid/solid acetylene under Titan relevant conditions and implications for Cassini/VIMS detections. Icarus, 270, 429434.Google Scholar
Smith, P.H., Lemmon, M.T., Lorenz, R.D., Sromovsky, L.A., Caldwell, J.J. & Allison, M.D. (1996) Titan’s surface, revealed by HST imaging. Icarus, 119, 336349.CrossRefGoogle Scholar
Strom, R.G. & Sprague, A. (2003) Exploring Mercury: The iron planet. Springer-Verlag, London.Google Scholar
Takir, D., Emery, J.P., McSween, H.Y., et al. (2013) Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites. Meteoritics and Planetary Science, 48, 16181637.CrossRefGoogle Scholar
Taylor, L.A., Pieters, C.M., Keller, L.P., Morris, R.V., & McKay, D.S. (2001) Lunar mare soils: Space weathering and the major effects of surface-correlated nanophase Fe. Journal of Geophysical Research, 106, 27,98527,999.CrossRefGoogle Scholar
Vaniman, D.T., Bish, D.L., Chipera, S.J., Fialips, C.I., Carey, J.W., & Feldman, W.C. (2004) Magnesium sulphate salts and the history of water on Mars. Nature, 431, 663665.CrossRefGoogle ScholarPubMed
Vasavada, A., Paige, D.A., & Wood, S.E. (1999) Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141, 179193.Google Scholar
Vilas, F. & Hendrix, A.R. (2015) The UV/blue effects of space weathering manifested in S-complex asteroids. I. Quantifying change with asteroid age. The Astronomical Journal, 150, 64.Google Scholar
Vilas, F., Domingue, D., Helbert, J., et al. (2016) Mineralogical indicators of Mercury’s hollows composition in MESSENGER color observations. Geophysical Research Letters, 43, 14501456.Google Scholar
Walker, R.J. & Papike, J.J. (1981) The relationship of the lunar regolith <10 μm fraction and agglutinates. Part II: Chemical composition of agglutinate glass as a test of the “fusion of the finest fraction” (F3) model. Proceedings of the 12th Lunar Planet. Sci. Conf., 421–432.Google Scholar
Wasiak, F.C., Luspay-Kuti, A., Welivitiya, W.D.D.P., et al. (2013) A facility for simulating Titan’s environment. Advances in Space Research, 51, 12131220.Google Scholar
Wilcox, B.B., Lucey, P.G., & Gillis, J.J. (2005) Mapping iron in the lunar mare: An improved approach. Journal of Geophysical Research, 110, E11001, DOI:10.1029/2005JE002512.Google Scholar
Wu, H.B., Chan, M.N., & Chan, C.K. (2007) FTIR characterization of polymorphic transformation of ammonium nitrate. Aerosol Science and Technology, 41, 581588.Google Scholar
Yamada, M., Sasaki, S., Nagahara, H., et al. (1999) Simulation of space weathering of planet-forming materials: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples. Earth, Planets and Space, 51, 12551265.CrossRefGoogle Scholar

References

Adams, J.B., Smith, M.O., & Gillespie, A.R. (1993) Imaging spectroscopy: Interpretation based on spectral mixture analysis. In: Remote geochemical analysis: Elemental and mineralogical composition (Pieters, C.M. & Englert, , eds.). Cambridge University Press, New York, 145166.Google Scholar
Boardman, J.W. (1993) Automating spectral unmixing of AVIRIS data using convex geometry concepts. 4th JPL Airborne Earth Science Workshop, 1114.Google Scholar
Boardman, J.W. & Kruse, F.A. (1994) Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains, Nevada. Proceedings of the 10th Thematic Conference on Geological Remote Sensing, ERIM, Ann Arbor, MI, I-407–418.Google Scholar
Boardman, J.W., Kruse, F.A., & Green, R.O. (1995) Mapping target signatures via partial unmixing of AVIRIS data. 5th Annual JPL Airborne Earth Science Workshop.Google Scholar
Boser, B.E., Guyon, I.M., & Vapnik, V.N. (1992) A training algorithm for optimal margin classifiers. Proceedings of the Annual Workshop on Computational Learning Theory, 144–152.Google Scholar
Brown, M., Lewis, H.G., & Gunn, S.R. (2000) Linear spectral mixture models and support vector machines for remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 38, 23462360.CrossRefGoogle Scholar
Bruzzone, L., Chi, M., & Marconcini, M. (2006) A novel transductive SVM for semisupervised classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 44, 33633373.Google Scholar
Camps-Valls, G. & Bruzzone, L. (2005) Kernel-based methods for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, 43, 13511362.Google Scholar
Camps-Valls, G., Gomez-Chova, L., Muñoz-Marí, J., Vila-Francs, J., & Calpe-Maravilla, J. (2006) Composite kernels for hyperspectral image classification. IEEE Geoscience Remote Sensing Letters, 3, 9397.Google Scholar
Camps-Valls, G., Shervashidze, N., & Borgwardt, K.M. (2010) Spatio-spectral remote sensing image classification with graph kernels. IEEE Geoscience Remote Sensing Letters, 7, 741745.Google Scholar
Chandrasekhar, S. (1960) Radiative transfer. Dover Publications, Mineola, NY.Google Scholar
Chang, C.-I. (2000) An information theoretic-based approach to spectral variability, similarity and discriminability for hyperspectral image analysis. IEEE Transactions on Information Theory, 46, 1927–1932.Google Scholar
Chen, J.Y. & Reed, I.S. (1987) A detection algorithm for optical targets in clutter. IEEE Transactions on Aerospace Electronic Systems, AES-23(1).Google Scholar
Combe, J.P., Le Mouelic, S., Sotin, C., et al. (2008) Analysis of OMEGA/Mars express data hyperspectral data using a multiple-endmember linear spectral unmixing model (MELSUM): Methodology and first results. Planetary and Space Science, 56, 951975.CrossRefGoogle Scholar
Cortes, C. & Vapnik, V.N. (1995) Support-vector networksMachine Learning20(3), 273297.CrossRefGoogle Scholar
Farrand, W.H. & Harsanyi, J.C. (1995) Discrimination of poorly exposed lithologies in imaging spectrometer data. Journal of Geophysical Research, 100, 15651578.Google Scholar
Farrand, W.H. & Harsanyi, J.C. (1997) Mapping the distribution of mine tailings in the Coeur d’Alene River Valley, Idaho through the use of a Constrained Energy Minimization technique. Remote Sensing of the Environment, 59, 6476.Google Scholar
Farrand, W.H., Bell, J.F. III, Johnson, J.R., et al. (2008a) Rock spectral classes observed by the Spirit rover’s Pancam on the Gusev crater plains and in the Columbia Hills. Journal of Geophysical Research, 113, E12S38, DOI:10.1029/2008JE003237.Google Scholar
Farrand, W.H., Merényi, E., Johnson, J.R., & Bell, J.F., III (2008b) Comprehensive mapping of spectral classes in the imager for Mars Pathfinder Super Pan. Mars, 4, 33–55.Google Scholar
Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., & Tilton, J.C. (2013) Advances in spectral-spatial classification of hyperspectral images. Proceedings of the IEEE, 101, 652675.Google Scholar
Felder, M.P., Grumpe, A., & Wöhler, C. (2014) Automatic segmentation of spectrally similar lunar surface areas with emphasis on the spectral absorption features. 45th Lunar Planet. Sci. Conf., Abstract # 2537.Google Scholar
Friedman, J.H. & Tukey, J.W. (1974) A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers, 23, 881890.CrossRefGoogle Scholar
Gilmore, M.S., Bornstein, B., Merrill, M.D., Castaño, R., & Greenwood, J.P. (2008) Generation and performance of automated jarosite mineral detectors for visible/near-infrared spectrometers at Mars. Icarus, 195, 169183.Google Scholar
Gilmore, M.S., Thompson, D.R., Anderson, L.J., Karamzadeh, N., Mandrake, L., & Castaño, R. (2011) Superpixel segmentation for analysis of hyperspectral datasets, with application to CRISM data, M3 data, and Ariadnes Chaos, Mars. Journal of Geophysical Research, 116, E07001, DOI:10.1029/2010JE003763.CrossRefGoogle Scholar
Gomez-Chova, L., Camps-Valls, G., Muñoz-Marí, J., & Calpe, J. (2008) Semi-supervised image classification with Laplacian support vector machines. IEEE Geoscience Remote Sensing Letters, 5, 336340.CrossRefGoogle Scholar
Green, A.A., Berman, M., Switzer, P., & Craig, M.D. (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal, IEEE Transactions on Geoscience and Remote Sensing, 26, 6574.CrossRefGoogle Scholar
Gruninger, J.H., Ratkowski, A.J., & Hoke, M.L. (2004) The sequential maximum angle convex cone (SMACC) endmember model. Proceedings of SPIE 5425, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, 1, DOI:10.1117/12.543794.Google Scholar
Gualtieri, J.A. & Chettri, S. (2000) Support vector machines for classification of hyperspectral data. IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium, IEEE 2000 International Support vector machines for classification of hyperspectral data, 2, 813815.Google Scholar
Hapke, B. (1981) Bidirectional reflectance spectroscopy: 1. Theory. Journal of Geophysical Research, 86, 30393054.Google Scholar
Hapke, B. (2012) Theory of reflectance and emittance spectroscopy. Cambridge University Press, New York.CrossRefGoogle Scholar
Harsanyi, J.C. (1993) Detection and classification of subpixel spectral signatures in hyperspectral image sequences. PhD dissertation, Department of Electrical Engineering, University of Maryland.Google Scholar
Hogan, R.C. & Roush, T.L. (2002) SOM classification of martian TES data. 23rd Lunar Planet. Sci. Conf., Abstract #1693.Google Scholar
Howell, E.S., Merényi, E., & Lebofsky, L.A. (1994) Using neural networks to classify asteroid spectra. Journal of Geophysical Research, 99, 10,84710,865.Google Scholar
Kohonen, T. (1988) Self-organization and associative memory. Springer-Verlag, New York.CrossRefGoogle Scholar
Kruse, F.A., Lefkoff, A.B., Boardman, J.W., et al. (1993) The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44, 145163.CrossRefGoogle Scholar
Kullback, S. (1968) Information theory and statistics. Dover, Gloucester, MA.Google Scholar
Li, J., Marpu, P.R., Plaza, A., Bioucas-Dias, J., & Benediktsson, J.A. (2013) Generalized composite kernel framework for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 51, 48164829.Google Scholar
Liu, Y., Glotch, T.D., Scudder, N., et al. (2016) End-member identification and spectral mixture analysis of CRISM hyperspectral data: A case study on southwest Melas Chasma, Mars. Journal of Geophysical Research, 121, 20042036.Google Scholar
Maulik, U. & Chakraborty, D. (2017) Remote Sensing Image Classification: A survey of support-vector-machine-based advanced techniques. IEEE Geoscience and Remote Sensing Magazine, 5(1), 3352.Google Scholar
Melgani, F. & Bruzzone, L. (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42, 7781790.Google Scholar
Merényi, E., Farrand, W.H., Brown, R.H., Villmann, Th., & Fyfe, C. (2007) Information extraction and knowledge discovery from high-dimensional and high-volume complex data sets through precision manifold learning. Proceedings of NASA Science Technology Conference (NSTC2007), College Park, MD, June 1921, 2007.Google Scholar
Merényi, E., Taşdemir, K., & Zhang, L. (2009) Learning highly structured manifolds: Harnessing the power of SOMs. Similarity based clustering. (Biehl, M., Hammer, B., Verleysen, M., & Villmann, T., eds.). Lecture Notes in Computer Science. Springer, Berlin and Heidelberg, 138168.Google Scholar
Merényi, E., Farrand, W.H., Taranik, J.V., & Minor, T.B. (2014) Classification of hyperspectral imagery with neural networks: Comparison to conventional tools, EURASIP Journal on Advances in Signal Processing, 71, DOI:10.1186/1687-6180-2014-71.Google Scholar
Merényi, E., Taylor, J., & Isella, A. (2016) Mining complex hyperspectral ALMA cubes for structure with neural machine learning. Proceedings of the IEEE Symposium Series of Computational Intelligence and Data Mining, SSCI 2016, Athens, Greece, December 6–9, 2016, DOI:10.1109/SSCI.2016.7849952.CrossRefGoogle Scholar
Moser, G., Serpico, S.B., & Benediktsson, J.A. (2013) Land-cover mapping by Markov modeling of spatial-contextual information. Proceedings of the IEEE, 101, 631651.CrossRefGoogle Scholar
Poulet, F. & Erard, S. (2004) Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures. Journal of Geophysical Research, 109(E2), DOI:10.1029/2003JE002179.CrossRefGoogle Scholar
Poulet, F., Cuzzi, J.N., Cruikshank, D.P., Roush, T., & Dalle Ore, C.M. (2002) Comparison between the Shkuratov and Hapke scattering theories for solid planetary surfaces: Application to the surface composition of two Centaurs. Icarus, 160, 313324.Google Scholar
Poulet, F., Bibring, J.-P., Langevin, Y., et al. (2009) Quantitative compositional analysis of martian mafic regions using MEx/OMEGA reflectance data: 1. Methodology, uncertainties and examples of application. Icarus, 201, 6983.Google Scholar
Ramsey, M.S. & Christensen, P.R. (1998) Mineral abundance determination: Quantitative deconvolution of thermal emission spectra, Journal of Geophysical Research, 103, 577596.CrossRefGoogle Scholar
Reed, I.S. & Yu, X. (1990) Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38, 17601770.Google Scholar
Ren, H. & Chang, C.I. (2000) A target-constrained interference-minimized filter for subpixel target detection in hyperspectral imagery. IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. IEEE 2000 International Support vector machines for classification of hyperspectral data, 4. 15451547.Google Scholar
Richards, J.A. (2013) Supervised classification techniques. In: Remote sensing digital image analysis. Springer, Berlin and Heidelberg, 247318.Google Scholar
Roush, T.L. & Hogan, R.C. (2007) Automated classification of visible and near-infrared spectra using self-organizing maps. Proceedings of the IEEE Aerospace Conference 2007, 1–10, DOI:10.1109/AERO.2007.352701.Google Scholar
Roush, T.L., Helbert, J., Hogan, R.C., & Maturilli, A. (2007) Classification of Mars analogue mixtures and end-member minerals using self-organizing maps. 38th Lunar Planet. Sci. Conf., Abstract #1291.Google Scholar
Schaum, A.P. (2001) Spectral subspace matched filtering. Proceedings of the SPIE 4381, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, 1 (August 20, 2001), DOI:10.1117/12.436996.Google Scholar
Schowengerdt, R.A. (2012) Techniques for image processing and classifications in remote sensing. Academic Press, San Diego.Google Scholar
Shkuratov, Y.G., Starukhina, L., Hoffmann, H., & Arnold, G. (1999) A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon, Icarus, 137, 235246.Google Scholar
Singer, R.B. & McCord, T.B. (1979) Mars: Large scale mixing of bright and dark materials and implications for analysis of spectral bright regions on Mars. Proceedings of the 10th Lunar Planet. Sci. Conf., 18251848.Google Scholar
Sklute, E.C., Glotch, T.D., Piatek, J., Woerner, W., Martone, A., & Kraner, M. (2015) Optical constants of synthetic potassium, sodium, and hydronium jarosite. American Minerologist, 100, 11101122.CrossRefGoogle Scholar
Smith, M.O., Roberts, D.A., Hill, J., et al. (1994) A new approach to quantifying abundances of materials in multispectral images. Geoscience and Remote Sensing Symposium, 1994. IGARSS’94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, International, 23722374.Google Scholar
Stocker, A., Reed, I.S., & Yu, X. (1990) Multidimensional signal processing for electro-optical target detection. Proceedings of SPIE 1305, Signal and Data Processing of Small Targets 1990, 218, DOI:10.1117/12.21593.CrossRefGoogle Scholar
Taşdemir, K. & Merényi, E. (2008) Cluster analysis in remote sensing spectral imagery through graph representation and advanced SOM representation. 11th International Conference on Discovery Science, DS-2008, Budapest, Hungary, October 1316, 2008. Lecture Notes in Computer Science, Volume 5255/2008, 272–283.CrossRefGoogle Scholar
Tuia, D. & Camps-Valls, G. (2009) Semi-supervised remote sensing image classification with cluster kernels. IEEE Geoscience and Remote Sensing Letters, 6, 224228.CrossRefGoogle Scholar
Tuia, D., Camps-Valls, G., Matasci, G., & Kanevski, M. (2010) Learning relevant image features with multiple kernel classification. IEEE Transactions on Geoscience and Remote Sensing, 48, 37803791.Google Scholar
Tuia, D., Volpi, M., Copa, L., Kanevski, M., & Muñoz-Marí, J. (2011) A survey of active learning algorithms for supervised remote sensing image classification. IEEE Journal of Selected Topics on Signal Processing, 5, 606617.CrossRefGoogle Scholar
Varshney, P.K. & Arora, M.K. (2004) Advanced image processing techniques for remotely sensed hyperspectral data. Springer Science+Business Media, New York.Google Scholar
Vieira, E.F. & Ponz, J.D (1998) Automated spectral classification using astronomical data analysis software and systems VII. A.S.P. Conference Series, 145, 508.Google Scholar
Winter, M.E. (1999) N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, 266275.Google Scholar
Zhang, L., Merényi, E., Grundy, W.M., & Young, E.Y. (2010) Inference of surface parameters from near-infrared spectra of crystalline H2O ice with neural learning. Publications of the Astronomical Society of the Pacific, 122 (893), 839852.Google Scholar

References

Baldridge, A.M., Farmer, J.D., & Moersch, J.E. (2004) Mars remote-sensing analog studies in the Badwater Basin, Death Valley, California. Journal of Geophysical Research, 109, E12006, 118.CrossRefGoogle Scholar
Bandfield, J.L. (2008) High‐silica deposits of an aqueous origin in western Hellas Basin, Mars. Geophysical Research Letters, 35, DOI:10.1029/2008GL033807.Google Scholar
Bandfield, J.L. (2009) Effects of surface roughness and graybody emissivity on martian thermal infrared spectra. Icarus, 202, 414428.Google Scholar
Bandfield, J.L. & Smith, M.D. (2003) Multiple emission angle surface-atmosphere separations of thermal emission spectrometer data. Icarus, 161, 4765.Google Scholar
Bandfield, J.L., Hamilton, V.E., & Christensen, P.R. (2000) A global view of martian surface compositions from MGS-TES. Science, 287, 16261630.Google Scholar
Bandfield, J.L., Edgett, K.S., & Christensen, P.R. (2002) Spectroscopic study of the Moses Lake dune field, Washington: Determination of compositional distributions and source lithologies. Journal of Geophysical Research, 107, DOI:10.1029/2000JE001469.CrossRefGoogle Scholar
Bandfield, J.L., Glotch, T.D., & Christensen, P.R. (2003) Spectroscopic identification of carbonate minerals in the martian dust. Science, 301, 10841087.CrossRefGoogle ScholarPubMed
Bandfield, J.L., Rogers, D., Smith, M.D., & Christensen, P.R. (2004) Atmospheric correction and surface spectral unit mapping using Thermal Emission Imaging System data. Journal of Geophysical Research, 109, DOI:10.1029/2004JE002289.CrossRefGoogle Scholar
Bandfield, J.L., Ghent, R.R., Vasavada, A.R., Paige, D.A., Lawrence, S.J., & Robinson, M.S. (2011) Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data. Journal of Geophysical Research, 116, DOI:10.1029/2011JE003866.Google Scholar
Bandfield, J.L., Hayne, P.O., Williams, J.-P., Greenhagen, B.T., & Paige, D.A. (2015) Lunar surface roughness derived from LRO Diviner Radiometer observations. Icarus, 248, 357372.CrossRefGoogle Scholar
Christensen, P.R. (1986) The spatial distribution of rocks on Mars. Icarus, 68, 217238.Google Scholar
Christensen, P.R., Bandfield, J.L., Clark, R.N., et al. (2000) Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. Journal of Geophysical Research, 105, 96239642.CrossRefGoogle Scholar
Christensen, P.R., Ruff, S.W., Fergason, R.L., et al. (2004) Initial results from the Mini-TES Experiment in Gusev crater from the Spirit rover. Science, 305, 837842.Google Scholar
Feely, K.C. & Christensen, P.R. (1999) Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks. Journal of Geophysical Research, 104, 24,19524,210.Google Scholar
Geladi, P. & Kowalski, B.R. (1986) Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 117.CrossRefGoogle Scholar
Geminale, A., Grassi, D., Altieri, F., et al. (2015) Removal of atmospheric features in near infrared spectra by means of principal component analysis and target transformation on Mars: I. Method. Icarus, 253, 5165.Google Scholar
Ghent, R.R., Hayne, P.O., Bandfield, J.L., et al. (2014) Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42, 10591062.CrossRefGoogle Scholar
Gillespie, A. (1992) Spectral mixture analysis of multispectral thermal infrared images. Remote Sensing of Environment, 42, 137145.CrossRefGoogle Scholar
Glotch, T.D. & Bandfield, J.L. (2006) Determination and interpretation of surface and atmospheric Miniature Thermal Emission Spectrometer spectral end‐members at the Meridiani Planum landing site. Journal of Geophysical Research, 111, E12S06, 1507–1509.Google Scholar
Glotch, T.D. & Rogers, A.D. (2013) Evidence for magma‐carbonate interaction beneath Syrtis Major, Mars. Journal of Geophysical Research, 118, 126137.CrossRefGoogle Scholar
Glotch, T.D., Christensen, P.R., & Sharp, T.G. (2006a) Fresnel modeling of hematite crystal surfaces and application to martian hematite spherules. Icarus, 181, 408418.Google Scholar
Glotch, T.D., Bandfield, J.L., Christensen, P.R., et al. (2006b) Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. Journal of Geophysical Research, 111, E12S03, DOI:10.1029/2005JE002672.Google Scholar
Golombek, M., Huertas, A., Kipp, D., & Calef, F. (2012) Detection and characterization of rocks and rock size-frequency distributions at the final four Mars Science Laboratory landing sites. International Journal of Mars Science and Exploration, 7, 122.Google Scholar
Greenhagen, B.T., Lucey, P.G., Wyatt, M.B., et al. (2010) Global silicate mineralogy of the Moon from the Diviner Lunar Radiometer. Science, 329, 1507–1509.Google Scholar
Hamilton, V.E. & Christensen, P.R. (2000) Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy. Journal of Geophysical Research, 105, 97179733.CrossRefGoogle Scholar
Hamilton, V.E. & Ruff, S.W. (2012) Distribution and characteristics of Adirondack-class basalt as observed by Mini-TES in Gusev crater, Mars and its possible volcanic source. Icarus, 218, 917949.CrossRefGoogle Scholar
Hamilton, V.E., Christensen, P.R., & McSween, H.Y. (1997) Determination of martian meteorite lithologies and mineralogies using vibrational spectroscopy. Journal of Geophysical Research, 102, 2559325604.CrossRefGoogle Scholar
Hecker, C., Dilles, J.H., van der Meijde, M., & van der Meer, F.D. (2012) Thermal infrared spectroscopy and partial least squares regression to determine mineral modes of granitoid rocks. Geochemistry Geophysics Geosystems, 13, Q03021, DOI:10.1029/2011GC004004.Google Scholar
Huang, J., Edwards, C.S., Ruff, S.W., Christensen, P.R., & Xiao, L. (2013) A new method for the semiquantitative determination of major rock‐forming minerals with thermal infrared multispectral data: Application to THEMIS infrared data. Journal of Geophysical Research, 118, 21462152.Google Scholar
Johnson, J.R., Staid, M.I., Titus, T.N., & Becker, K. (2006) Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars. Icarus, 180, 6074.Google Scholar
Lagerros, J.S. (1998) Thermal physics of asteroids. IV. Thermal infrared beaming. Astronomy and Astrophysics, 332, 11231132.Google Scholar
Lane, M.D. & Christensen, P.R. (1998) Thermal infrared emission spectroscopy of salt minerals predicted for Mars. Icarus, 135, 528536.Google Scholar
Lawson, C.L. & Hanson, R.J. (1974) Solving least squares problems. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Li, L. & Mustard, J.F. (2003) Highland contamination in lunar mare soils: Improved mapping with multiple end‐member spectral mixture analysis (MESMA). Journal of Geophysical Research, 108, DOI:10.1029/2002JE001917.Google Scholar
Malinowski, E.R. (1991) Factor analysis in chemistry, 2nd edn. John Wiley & Sons, New York.Google Scholar
Nowicki, S. & Christensen, P. (2007) Rock abundance on Mars from the thermal emission spectrometer. Journal of Geophysical Research, 112, DOI:10.1029/2006JE002798.CrossRefGoogle Scholar
Pan, C., Rogers, A., & Michalski, J. (2015a) Thermal and near‐infrared analyses of central peaks of martian impact craters: Evidence for a heterogeneous martian crust. Journal of Geophysical Research, 120, 662688.Google Scholar
Pan, C., Rogers, A., & Thorpe, M. (2015b) Quantitative compositional analysis of sedimentary materials using thermal emission spectroscopy: 2. Application to compacted fine‐grained mineral mixtures and assessment of applicability of partial least squares methods. Journal of Geophysical Research, 120, 1984–2001.Google Scholar
Ramsey, M.S. (2002) Ejecta distribution patterns at Meteor Crater, Arizona: On the applicability of lithologic end‐member deconvolution for spaceborne thermal infrared data of Earth and Mars. Journal of Geophysical Research, 107, DOI:10.1029/2001JE001827.CrossRefGoogle Scholar
Ramsey, M.S. & Christensen, P.R. (1998) Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research, 103, 577596.Google Scholar
Roberts, D.A., Gardner, M., Church, R., Ustin, S., Scheer, G., & Green, R. (1998) Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 65, 267279.CrossRefGoogle Scholar
Rogers, A. & Aharonson, O. (2008) Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements. Journal of Geophysical Research, 113, DOI:10.1029/2007JE002995.Google Scholar
Ruff, S.W. & Christensen, P.R. (2002) Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. Journal of Geophysical Research, 107, 5119, DOI:10.1029/2001JE001580.CrossRefGoogle Scholar
Ruff, S.W. & Hamilton, V.E. (2017) Wishstone to Watchtower: Amorphous alteration of plagioclase-rich rocks in Gusev crater, Mars. American Mineralogist, 102, 235251.Google Scholar
Sinton, W.M. (1981) The thermal emission spectrum of Io and a determination of the heat flux from its hot spots. Journal of Geophysical Research, 86, 31223128.CrossRefGoogle Scholar
Smith, M.D., Bandfield, J.L., & Christensen, P.R. (2000) Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra. Journal of Geophysical Research, 105, 95899607.Google Scholar
Spencer, J.R. (1990) A rough-surface thermophysical model for airless planets. Icarus, 83, 2738.CrossRefGoogle Scholar
Thomson, J.L. & Salisbury, J.W. (1993) The mid-infrared reflectance of mineral mixtures (7–14 μm). Remote Sensing of Environment, 45, 113.CrossRefGoogle Scholar
Thorpe, M.T., Rogers, A.D., Bristow, T.F., & Pan, C. (2015) Quantitative compositional analysis of sedimentary materials using thermal emission spectroscopy: 1. Application to sedimentary rocks. Journal of Geophysical Research, 120, 19561983.CrossRefGoogle Scholar
Wold, S., Sjöström, M., & Eriksson, L. (2001) PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109130.CrossRefGoogle Scholar
Wyatt, M.B., Hamilton, V.E., McSween, H.Y., Christensen, P.R., & Taylor, L.A. (2001a) Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry, and classification strategies. Journal of Geophysical Research, 106, 1471114732.Google Scholar
Wyatt, M.B., Hamilton, V.E., McSween, H.Y., Jr., Christensen, P.R., & Taylor, L.A. (2001b) Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy, 1. Determination of mineralogy, chemistry, and classification strategies. Journal of Geophysical Research, 106, 14,71114,732.CrossRefGoogle Scholar

References

Bell, J. (2008) The martian surface: Composition, mineralogy, and physical properties. Cambridge University Press, New York.CrossRefGoogle Scholar
Bishop, J.L., Noe Dobrea, E.Z., McKeown, N.K., et al. (2008) Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science, 321, 830833.Campbell, B.A., Hawke, B.R., Carter, L.M., Ghent, R.R., & Campbell, D.B. (2009) Rugged lava flows on the Moon revealed by Earth-based radar. Geophysical Research Letters, 36, 15.Google Scholar
Campbell, B.A., Ray Hawke, B., Morgan, G.A., Carter, L.M., Campbell, D.B., & Nolan, M. (2014) Improved discrimination of volcanic complexes, tectonic features, and regolith properties in Mare Serenitatis from Earth-based radar mapping. Journal of Geophysical Research, 119, 313330.CrossRefGoogle Scholar
Cann, J.R. & Vine, F.J. (1966) An area on the crest of the Carlsberg Ridge: Petrology and magnetic survey. Philosophical Transactions of the Royal Society of London A: Mathematical and Physical Sciences, 259, 198 LP217.Google Scholar
Carrier, W.D., Olhoeft, G.R., & Mendell, W. (1991) Physical properties of the lunar surface. In: Lunar sourcebook: A user’s guide to the Moon. Cambridge University Press, New York, 475594.Google Scholar
Carter, L.M., Campbell, B.A., Hawke, B.R., Campbell, D.B., & Nolan, M.C. (2009) Radar remote sensing of pyroclastic deposits in the southern Mare Serenitatis and Mare Vaporum regions of the Moon. Journal of Geophysical Research, 114, 21562202.CrossRefGoogle Scholar
Carter, L.M., Petro, N.E., Campbell, B.A., Baker, D.M.H., & Morgan, G.A. (2017) Earth-based radar and orbital remote sensing observations of mare basalt flows and pyroclastic deposits in Mare Nubium. 37th Lunar Planet. Sci. Conf., Abstract #1736.Google Scholar
Christensen, P.R. (1986) The spatial distribution of rocks on Mars. Icarus, 68, 217238.Google Scholar
Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 137.CrossRefGoogle Scholar
Craddock, P.R., Dauphas, N., & Clayton, R.N. (2010) Mineralogical control on iron isotopic fractionation during lunar differentiation and magmatism. 41st Lunar Planet. Sci. Conf., Abstract #1230.Google Scholar
Dauphas, N., Pourmand, A., & Teng, F.-Z. (2009) Routine isotopic analysis of iron by HR-MC-ICPMS: How precise and how accurate? Chemical Geology, 267, 175184.CrossRefGoogle Scholar
Ehlmann, B.L., Mustard, J.F., Clark, R.N., Swayze, G.A., & Murchie, S.L. (2011a) Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays and Clay Minerals, 59, 359377.Google Scholar
Ehlmann, B.L., Mustard, J.F., Murchie, S.L., et al. (2011b) Subsurface water and clay mineral formation during the early history of Mars. Nature, 479, 5360.Google Scholar
Fedo, C.M., Nesbitt, H.W., & Young, G.M. (1995) Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921924.2.3.CO;2>CrossRefGoogle Scholar
Gasnault, O., Jeffrey Taylor, G., Karunatillake, S., et al. (2010) Quantitative geochemical mapping of martian elemental provinces. Icarus, 207, 226247.Google Scholar
Giguere, T.A., Taylor, G.J., Hawke, B.R., & Lucey, P.G. (2000) The titanium contents of lunar mare basalts. Meteoritics and Planetary Science, 35, 193200.Google Scholar
Hallis, L.J., Anand, M., Greenwood, R.C., Miller, M.F., Franchi, I.A., & Russell, S.S. (2010) The oxygen isotope composition, petrology and geochemistry of mare basalts: Evidence for large-scale compositional variation in the lunar mantle. Geochimica et Cosmochimica Acta, 74, 68856899.Google Scholar
Heiken, G.H., Vaniman, D.T., & French, B.M., eds. (1991) Lunar sourcebook: A user’s guide to the Moon. Cambridge University Press, New York.Google Scholar
Hurowitz, J.A. & Fischer, W.W. (2014) Contrasting styles of water–rock interaction at the Mars Exploration Rover landing sites. Geochimica et Cosmochimica Acta, 127, 2538.Google Scholar
Hurowitz, J.A. & McLennan, S.M. (2007) A 3.5 Ga record of water-limited, acidic weathering conditions on Mars. Earth and Planetary Science Letters, 260, 432443.CrossRefGoogle Scholar
Jolliff, B.L., Wieczorek, M.A., Shearer, C.K., & Neal, C.R., eds. (2006) New views of the Moon. Reviews in Mineralogy and Geochemistry Series, 60. Mineralogical Society of America.Google Scholar
Karunatillake, S., Wray, J.J., Gasnault, O., et al. (2014) Sulfates hydrating bulk soil in the martian low and middle latitudes. Geophysical Research Letters, 41, 79877996.Google Scholar
Karunatillake, S., Wray, J.J., Gasnault, O., et al. (2016) The association of hydrogen with sulfur on Mars across latitudes, longitudes, and compositional extremes. Journal of Geophysical Research, 121, 129.Google Scholar
Kramer, J.R. (1968) Mineral-water equilibria in silicate weathering. International Geological Congress, 23rd session, 149160.Google Scholar
Liu, Y., Spicuzza, M.J., Craddock, P.R., et al. (2010) Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions. Geochimica et Cosmochimica Acta, 74, 62496262.CrossRefGoogle Scholar
Lucey, P.G., Blewett, D.T., & Jolliff, B.L. (2000) Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. Journal of Geophysical Research, 105, 2029720305.CrossRefGoogle Scholar
Ming, D.W., Gellert, R., Morris, R.V., et al. (2008) Geochemical properties of rocks and soils in Gusev crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, E12S39, DOI:10.1029/2008JE003195.CrossRefGoogle Scholar
Morgan, G.A., Campbell, B.A., Campbell, D.B., & Hawke, B.R. (2016) Investigating the stratigraphy of Mare Imbrium flow emplacement with Earth-based radar. Journal of Geophysical Research, 121, 14981513.Google Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2008) Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. Journal of Geophysical Research, 113, E12S42, DOI:10.1029/2008JE003201.CrossRefGoogle Scholar
Nesbitt, H.W. & Wilson, R.E. (1992) Recent chemical weathering of basalts. American Journal of Science, 292, 740777.CrossRefGoogle Scholar
Nesbitt, H.W. & Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715717.Google Scholar
Nesbitt, H.W. & Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 15231534.CrossRefGoogle Scholar
Nowicki, S.A. & Christensen, P.R. (2007) Rock abundance on Mars from the Thermal Emission Spectrometer. Journal of Geophysical Research, 112, E05007, DOI:10.1029/2006JE002798.Google Scholar
Pettijohn, F.J., Potter, P.E., & Siever, R. (1987) Sand and sandstone. Springer-Verlag, New York.Google Scholar
Poulet, F., Mangold, N., Loizeau, D., et al. (2008) Abundance of minerals in the phyllosilicate-rich units on Mars. Astronomy and Astrophysics, 487, L41U193, DOI:10.1051/0004-6361:200810150.Google Scholar
Putzig, N., Mellon, M., Kretke, K., & Arvidson, R. (2005) Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus, 173, 325341.Google Scholar
Ruff, S.W. & Christensen, P.R. (2002) Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. Journal of Geophysical Research, 107, 5127, DOI:10.1029/2001JE001580.Google Scholar
Spicuzza, M.J., Day, J.M.D., Taylor, L.A., & Valley, J.W. (2007) Oxygen isotope constraints on the origin and differentiation of the Moon. Earth and Planetary Science Letters, 253(1–2), 254265.CrossRefGoogle Scholar
Sullivan, R., Arvidson, R., Bell, J.F., et al. (2008) Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at “El Dorado” and surroundings at Gusev crater. Journal of Geophysical Research, 113, E06S07, DOI:10.1029/2008JE003101.Google Scholar
Taylor, G.J., Boynton, W.V., Brückner, J., et al. (2006) Bulk composition and early differentiation of Mars. Journal of Geophysical Research, 112. E03S10, DOI:10.1029/2005JE002645.Google Scholar
Taylor, G.J., Martel, L.M.V., Karunatillake, S., Gasnault, O., & Boynton, W.V. (2010) Mapping Mars geochemically. Geology, 38, 183186.CrossRefGoogle Scholar
Teng, F.-Z., Dauphas, N., & Helz, R.T. (2008) Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake. Science, 320, 16201622.Google Scholar
Wray, J.J., Ehlmann, B.L., Squyres, S.W., Mustard, J.F., & Kirk, R.L. (2008) Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophysical Research Letters, 35, L12202, DOI:10.1029/2008GL034385.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×