Published online by Cambridge University Press: 22 September 2009
Introduction
Let x ∈ χ be an m × 1 variate with a known distribution. Suppose x is transformedinto a new n × 1 variate defined by the deterministic function y := g(x) ∈ Y. What are the statistical properties of y? More specifically, how can we express the distribution of y in terms of the (known) distribution of x? Three main methods are available: the moment-generating function (m.g.f.) or characteristic function (c.f.) technique, the cumulative distribution function (c.d.f.) technique, and the probability density function (p.d.f.) technique.
The transformation theorem relates to the p.d.f. technique when the variates are continuous, and is our focus here. The theorem is difficult and lengthy to prove, typically relying on advanced results in analysis, on differential forms and changes of variables of integration, see for example Wilks (1962, pp. 53–9) and Rao (1973, pp. 156–7) for statements and discussions, and Rudin (1976, ch. 10) for a proof. It is one of the very few major statistical theorems for which there is no proof in the statistics literature. Here, we provide a simple proof, by exploiting the statistical context that it is a density function whose arguments are being transformed. The proof uses the idea of conditioning for continuous random variables. It also illustrates how conditioning can provide shortcuts to proofs by reducing the dimensionality of some statistical problems.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.