Published online by Cambridge University Press: 22 September 2009
Introduction
Panel data-sets have been increasingly used in economics to analyse complex economic phenomena. One of their attractions is the ability to use an extended data-set to obtain information about parameters of interest which are assumed to have common values across panel units. Most of the work carried out on panel data has usually assumed some form of cross-sectional independence to derive the theoretical properties of various inferential procedures. However, such assumptions are often suspect and as a result recent advances in the literature have focused on estimation of panel data models subject to error cross-sectional dependence.
A number of different approaches have been advanced for this purpose. In the case of spatial data-sets where a natural immutable distance measure is available the dependence is often captured through “spatial lags” using techniques familiar from the time series literature. In economic applications, spatial techniques are often adapted using alternative measures of “economic distance”. This approach is exemplified in work by Lee and Pesaran (1993), Conley and Dupor (2003), Conley and Topa (2002) and Pesaran, Schuermann, and Weiner (2004), as well as the literature on spatial econometrics recently surveyed by Anselin (2001). In the case of panel data models where the cross-section dimension (N) is small (typically N < 10) and the time-series dimension (T) is large the standard approach is to treat the equations from the different cross-section units as a system of seemingly unrelated regression equations (SURE) and then estimate the system by the Generalized Least Squares (GLS) techniques.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.