Published online by Cambridge University Press: 07 September 2011
Abstract
A survey of equisingularity theory focussed on Terry Gaffney's work.
The article begins with an account of the early history of equisingularity. Next I develop notation, particularly for polar varieties; recall the theory of integral closures of ideals, show how Gaffney generalised this to integral closures of modules, and list a variety of applications he has made.
The invariants available are classical and Buchsbaum-Rim multiplicities of modules, polar multiplicities and Segre numbers of ideals, and generalisations to modules. Some of the main theorems are of the form: the constancy of certain numerical invariants of a family imply equisingularity of the family (usually in the form of Whitney triviality). Many of the proofs use results showing that constancy of some invariants implies an integral dependence relation. One notable paper gives a sufficient condition for topological triviality of families of maps.
Introduction
The classification of singularities of plane curves was achieved in 1932 by Brauner [2], Burau [6], [7] and Zariski [60]: it yields an easily stated, necessary and sufficient condition for topological equivalence, which clearly does not imply analytic equivalence. Probably the simplest example is the case of 4 concurrent lines xy(x + y)(x + ty) = 0 with t an invariant of analytic, but not of topological equivalence.
This situation presents the problem of creating a theory of equivalence of families of objects (e.g. algebraic varieties or morphisms) which will say when the members of the family are essentially the same.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.