from Section V - Functional significance
Published online by Cambridge University Press: 07 September 2011
Summary
Sleep has been generally divided into rapid eye movement (REM) sleep and non-REM (NREM) sleep in higher order mammals, including humans. Several theories have proposed various functions of different stages of sleep. We hypothesized that REM sleep maintains brain excitability. In this chapter, we discuss the significance of REM sleep in the maintenance of neuronal electrochemical homeostasis, which governs brain excitability. Selective REM-sleep loss increases the activity of Na-K ATPase, a membrane-bound enzyme that maintains neuronal Na+ and K+ homeostasis and, thus, the neuronal resting membrane potential. Further, the REM sleep deprivation-induced increase in Na-K ATPase activity has been attributed to an increased level of norepinephrine in the brain.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.