from Section V - Functional significance
Published online by Cambridge University Press: 07 September 2011
Summary
The first and most important active defense of homeothermy in non-rapid eye movement (NREM) sleep is both reactive, i.e., depending on actual ambient temperature, and predictive, in that it is set before sleep by behavioral temperature regulation. This behavior provides thermal conditions counteracting the static influence of ambient temperature on the thermal balance of the body. An important passive defense is the thermal inertia of the body, particularly with regard to negative thermal loads. Such inertia is sufficient to buffer temporarily transient thermal imbalances due to sleep processes. In addition, under the influence of thermal loads and in the presence of an important pressure for sleep, autonomic temperature regulation is fully operative during NREM sleep without eliciting immediate awakening from sleep. This defense is energetically expensive, but the advantage is that as a result of the maintenance of brain thermal homeostasis REM sleep onset may also be promoted and then sustained for a while by the thermal inertia of the body. The important tenet is that the more the behavioral temperature regulation and the thermal inertia of the body constrain the activation of autonomic temperature regulation, the more they protect sleep from terminating. Awakening is the extreme defense of body core homeothermy but at the expense of REM sleep initially and, secondarily, of NREM sleep.
More than 40 years have elapsed since it was experimentally shown in cats exposed to cold and warm ambient thermal loads that shivering and panting, respectively, are present in NREM sleep and absent during REM sleep (Parmeggiani and Rabini, 1967). Then, the interaction between sleep and temperature regulation was the object of study in several mammals, and particularly in cats, rabbits, rats, and humans, which will be dealt with in this chapter. Such experiments not only confirmed the original result but also extended and deepened our knowledge of the changes in temperature regulation that characterize the sleep states. Nevertheless, the physiologic reason why temperature regulation is suspended during REM sleep is still a mystery.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.