Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T09:16:55.923Z Has data issue: false hasContentIssue false

6 - Markov Chains and Random Walks

from I - Tools and Techniques

Published online by Cambridge University Press:  05 March 2013

Rajeev Motwani
Affiliation:
Stanford University, California
Prabhakar Raghavan
Affiliation:
Google, Inc.
Get access

Summary

THE study of random walks on graphs is fascinating in its own right. In addition, it has a number of applications to the design and analysis of randomized algorithms. This chapter will be devoted to studying random walks on graphs, and to some of their algorithmic applications. We start by describing a simple algorithm for the 2-SAT problem, and analyze it by studying the properties of random walks on the line. Following a brief treatment of the basics of Markov chains, we consider random walks on undirected graphs. It is shown that there is a strong connection between random walks and the theory of electric networks. Random walks are then applied to the problem of determining the connectivity of graphs. Next, we turn to the study of random walks on expander graphs. We define a class of expanders and use algebraic graph theory to characterize their properties. Finally, we illustrate the special properties of random walks on expanders via an application to probability amplification.

Let G = (V,E) be a connected, undirected graph with n vertices and m edges. For a vertex v Є V, Γ(v) denotes the set of neighbors of v in G. A random walk on G is the following process, which occurs in a sequence of discrete steps: starting at a vertex v0, we proceed at the first step to a randomly chosen neighbor of V0. This may be thought of as choosing a random edge incident on V0 and walking along it to a vertex v1 Є Γ(v0).

Type
Chapter
Information
Randomized Algorithms , pp. 127 - 160
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×