Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T11:06:06.979Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 July 2019

Elizabeth S. Meckes
Affiliation:
Case Western Reserve University, Ohio
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, Greg W., Guionnet, Alice, and Zeitouni, Ofer. An Introduction to Random Matrices, volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.Google Scholar
Ané, Cécile, Blachère, Sébastien, Chafaï, Djalil, Fougères, Pierre, Gentil, Ivan, Malrieu, Florent, Roberto, Cyril, and Scheffer, Grégory. Sur les Inégalités de Sobolev Logarithmiques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris, 2000. With a preface by Dominique Bakry and Michel Ledoux.Google Scholar
Anttila, Milla, Ball, Keith, and Perissinaki, Irini. The central limit problem for convex bodies. Trans. Amer. Math. Soc., 355(12):47234735, 2003.Google Scholar
Artstein-Avidan, Shiri, Giannopoulos, Apostolos, and Milman, Vitali D.. Asymptotic Geometric Analysis. Part I, volume 202 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.Google Scholar
Aubrun, Guillaume, Szarek, Stanisław, and Werner, Elisabeth. Hastings’s additivity counterexample via Dvoretzky’s theorem. Comm. Math. Phys., 305(1):8597, 2011.CrossRefGoogle Scholar
Bai, Z. D.. Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica, 9(3):611677, 1999. With comments by G. J. Rodgers and Jack W. Silverstein; and a rejoinder by the author.Google Scholar
Baik, Jinho and Rains, Eric M.. Algebraic aspects of increasing subsequences. Duke Math. J., 109(1):165, 2001.Google Scholar
Bakry, D. and Émery, Michel. Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pages 177– 206. Springer, Berlin, 1985.Google Scholar
Bakry, Dominique, Gentil, Ivan, and Ledoux, Michel. Analysis and Geometry of Markov Diffusion Operators, volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham, 2014.Google Scholar
Berg, Christian, Peter, Jens Christensen, Reus, and Ressel, Paul. Harmonic Analysis On Semigroups: Theory of Positive Definite and Related Functions, volume 100 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1984.Google Scholar
Bhatia, Rajendra. Matrix Analysis, volume 169 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997.Google Scholar
Blower, Gordon. Random Matrices: High Dimensional Phenomena, volume 367 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2009.Google Scholar
Boucheron, Stéphane, Lugosi, Gábor, and Massart, Pascal. Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, Oxford, 2013.Google Scholar
Brazitikos, Silouanos, Giannopoulos, Apostolos, Valettas, Petros, and Vritsiou, Beatrice-Helen. Geometry of Isotropic Convex Bodies, volume 196 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2014.Google Scholar
Brehm, Ulrich and Voigt, Jürgen. Asymptotics of cross sections for convex bodies. Beiträge Algebra Geom., 41(2):437454, 2000.Google Scholar
Bump, Daniel. Lie Groups, volume 225 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013.Google Scholar
Bump, Daniel, Diaconis, Persi, and Keller, Joseph B.. Unitary correlations and the Fejér kernel. Math. Phys. Anal. Geom., 5(2):101123, 2002.Google Scholar
Sourav Chatterjee and Elizabeth Meckes. Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat., 4:257283, 2008.Google Scholar
Chhaïbi, Réda, Najnudel, Joseph, and Nikeghbali, Ashkan. The circular unitary ensemble and the Riemann zeta function: the microscopic landscape and a new approach to ratios. Invent. Math., 207(1):23113, 2017.Google Scholar
Collins, Benoît. Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability. Int. Math. Res. Not., (17):953982, 2003.Google Scholar
Collins, Benoît and Śniady, Piotr. Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Comm. Math. Phys., 264(3):773795, 2006.Google Scholar
Collins, Benoît and Stolz, Michael. Borel theorems for random matrices from the classical compact symmetric spaces. Ann. Probab., 36(3):876895, 2008.Google Scholar
Conrey, J. B. and Snaith, N. C.. In support of n-correlation. Comm. Math. Phys., 330(2):639653, 2014.Google Scholar
Coram, Marc and Diaconis, Persi. New tests of the correspondence between unitary eigenvalues and the zeros of Riemann’s zeta function. J. Phys. A, 36(12):28832906, 2003.Google Scholar
Dallaporta, S.. Eigenvalue variance bounds for Wigner and covariance random matrices. Random Matrices Theory Appl., 1(3):1250007, 28, 2012.CrossRefGoogle Scholar
Dallaporta, S.. Eigenvalue variance bounds for covariance matrices. Markov Process. Related Fields, 21(1):145175, 2015.Google Scholar
D’Aristotile, Anthony, Diaconis, Persi, and Newman, Charles M.. Brownian motion and the classical groups. In Probability, Statistics and their Applications: Papers in Honor of Rabi Bhattacharya, volume 41 of IMS Lecture Notes Monogr. Ser., pages 97116. Inst. Math. Statist., Beachwood, OH, 2003.Google Scholar
Davidson, Kenneth R. and Szarek, Stanislaw J.. Local operator theory, random matrices and Banach spaces. In Handbook of the Geometry of Banach Spaces, Vol. I, pages 317366. North-Holland, Amsterdam, 2001.Google Scholar
Dawid, A. P.. Some matrix-variate distribution theory: notational considerations and a Bayesian application. Biometrika, 68(1):265274, 1981.Google Scholar
Dembo, Amir and Zeitouni, Ofer. Large Deviations Techniques and Applications, volume 38 of Applications of Mathematics (New York). Springer-Verlag, New York, second edition, 1998.Google Scholar
Diaconis, Persi. Group Representations in Probability and Statistics, volume 11 of Institute of Mathematical Statistics Lecture Notes—Monograph Series. Institute of Mathematical Statistics, Hayward, CA, 1988.Google Scholar
Diaconis, Persi and Evans, Steven N.. Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc., 353(7):26152633, 2001.Google Scholar
Diaconis, Persi and Forrester, Peter J.. Hurwitz and the origins of random matrix theory in mathematics. Random Matrices Theory Appl., 6(1):1730001, 26, 2017.Google Scholar
Diaconis, Persi and Freedman, David. Asymptotics of graphical projection pursuit. Ann. Statist., 12(3):793815, 1984.Google Scholar
Diaconis, Persi and Freedman, David. A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincaré Probab. Statist., 23(2, suppl.):397423, 1987.Google Scholar
Diaconis, Persi and Shahshahani, Mehrdad. On the eigenvalues of random matrices. J. Appl. Probab., 31A:4962, 1994.Google Scholar
Diaconis, Persi W., Eaton, Morris L., and Lauritzen, Steffen L.. Finite de Finetti theorems in linear models and multivariate analysis. Scand. J. Statist., 19(4):289315, 1992.Google Scholar
Döbler, Christian and Stolz, Michael. Stein’s method and the multivariate CLT for traces of powers on the classical compact groups. Electron. J. Probab., 16(86): 23752405, 2011.Google Scholar
Dudley, Richard M.. Real Analysis and Probability. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1989.Google Scholar
Dvoretzky, Aryeh. Some results on convex bodies and Banach spaces. In Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), pages 123–160. Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961.Google Scholar
Eaton, Morris L.. Group Invariance Applications in Statistics, volume 1 of NSF-CBMS Regional Conference Series in Probability and Statistics. Institute of Mathematical Statistics, Hayward, CA; American Statistical Association, Alexandria, VA, 1989.Google Scholar
Edelman, Alan and Rao, N. Raj. Random matrix theory. Acta Numer., 14:233297, 2005.Google Scholar
Fleury, B., Guédon, O., and Paouris, G.. A stability result for mean width of Lp-centroid bodies. Adv. Math., 214(2):865877, 2007.Google Scholar
Forrester, P. J.. Log-Gases and Random Matrices, volume 34 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2010.Google Scholar
Frankl, P. and Maehara, H.. The Johnson-Lindenstrauss lemma and the sphericity of some graphs. J. Combin. Theory Ser. B, 44(3):355362, 1988.Google Scholar
Fulman, Jason. Stein’s method, heat kernel, and traces of powers of elements of compact Lie groups. Electron. J. Probab., 17(66): 16, 2012.Google Scholar
Fulton, William and Harris, Joe. Representation Theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991.Google Scholar
Gordon, Yehoram. Some inequalities for Gaussian processes and applications. Israel J. Math., 50(4):265289, 1985.Google Scholar
Gromov, M.. Paul lévy isoperimetric inequality. I.H.E.S. preprint, 1980.Google Scholar
Gromov, M. and Milman, V. D.. A topological application of the isoperimetric inequality. Amer. J. Math., 105(4):843854, 1983.Google Scholar
Hiai, Fumio and Petz, Dénes. A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices. Ann. Inst. H. Poincaré Probab. Statist., 36(1):7185, 2000.Google Scholar
Hiai, Fumio and Petz, Dénes. The Semicircle Law, Free Random Variables and Entropy, volume 77 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2000.Google Scholar
Horn, Roger A. and Johnson, Charles R.. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1994. Corrected reprint of the 1991 original.Google Scholar
Horn, Roger A. and Johnson, Charles R.. Matrix Analysis. Cambridge University Press, Cambridge, second edition, 2013.Google Scholar
Hough, J. Ben, Krishnapur, Manjunath, Peres, Yuval, and Virág, Bálint. Determinantal processes and independence. Probab. Surv., 3:206229, 2006.Google Scholar
Hughes, C. P., Keating, J. P., and O’Connell, Neil. On the characteristic polynomial of a random unitary matrix. Comm. Math. Phys., 220(2):429451, 2001.Google Scholar
Hughes, C. P. and Rudnick, Z.. Mock-Gaussian behaviour for linear statistics of classical compact groups. J. Phys. A, 36(12):29192932, 2003. Random matrix theory.Google Scholar
Jiang, T. and Ma, Y.. Distances between random orthogonal matrices and independent normals. Preprint, 2017. https://arxiv.org/abs/1704.05205.Google Scholar
Jiang, Tiefeng. How many entries of a typical orthogonal matrix can be approximated by independent normals? Ann. Probab., 34(4):14971529, 2006.Google Scholar
Johansson, Kurt. On random matrices from the compact classical groups. Ann. of Math. (2), 145(3):519545, 1997.Google Scholar
Johnson, William B. and Lindenstrauss, Joram. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 189206. American Mathematical Society, Providence, RI, 1984.Google Scholar
Katz, Nicholas M. and Sarnak, Peter. Random Matrices, Frobenius Eigenvalues, and Monodromy, volume 45 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1999.Google Scholar
Katz, Nicholas M. and Sarnak, Peter. Zeroes of zeta functions and symmetry. Bull. Amer. Math. Soc. (N.S.), 36(1):126, 1999.Google Scholar
Keating, J. P., Mezzadri, F., and Singphu, B.. Rate of convergence of linear functions on the unitary group. J. Phys. A, 44(3):035204, 27, 2011.Google Scholar
Keating, J. P. and Snaith, N. C.. Random matrix theory and ζ(1/2 + it). Comm. Math. Phys., 214(1):5789, 2000.Google Scholar
King, R. C.. Modification rules and products of irreducible representations of the unitary, orthogonal, and symplectic groups. J. Mathematical Phys., 12:15881598, 1971.CrossRefGoogle Scholar
Klartag, B.. A central limit theorem for convex sets. Invent. Math., 168(1):91131, 2007.Google Scholar
Klartag, B.. Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal., 245(1):284310, 2007.Google Scholar
Landkof, N. S.. Foundations of Modern Potential Theory. Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.Google Scholar
Ledoux, Michel. Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXIII, volume 1709 of Lecture Notes in Math., pages 120216. Springer, Berlin, 1999.Google Scholar
Ledoux, Michel. The Concentration of Measure Phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.Google Scholar
Littlewood, Dudley E.. The Theory of Group Characters and Matrix Representations of Groups. Oxford University Press, New York, 1940.Google Scholar
Macchi, Odile. The coincidence approach to stochastic point processes. Advances in Appl. Probability, 7:83122, 1975.Google Scholar
Meckes, E. and Meckes, M.. Rates of convergence for empirical spectral measures: A soft approach. In Carlen, E., Madiman, M., and Werner, E., editors, Convexity and Concentration, The IMA Volumes in Mathematics and its Applications, pages 157181. Springer-Verlag, New York, 2017.Google Scholar
Meckes, Elizabeth. Linear functions on the classical matrix groups. Trans. Amer. Math. Soc., 360(10):53555366, 2008.Google Scholar
Meckes, Elizabeth. Projections of probability distributions: a measure-theoretic Dvoretzky theorem. In Geometric aspects of functional analysis, volume 2050 of Lecture Notes in Math., pages 317326. Springer, Heidelberg, 2012.Google Scholar
Meckes, Elizabeth S. and Meckes, Mark W.. Concentration and convergence rates for spectral measures of random matrices. Probab. Theory Related Fields, 156(1-2):145164, 2013.Google Scholar
Meckes, Elizabeth S. and Meckes, Mark W.. Spectral measures of powers of random matrices. Electron. Commun. Probab., 18(78): 13, 2013.Google Scholar
Mehta, Madan Lal. Random Matrices, volume 142 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, third edition, 2004.Google Scholar
Mezzadri, F. and Snaith, N. C., editors. Recent Perspectives in Random Matrix Theory and Number Theory, volume 322 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2005.Google Scholar
Mezzadri, Francesco. How to generate random matrices from the classical compact groups. Notices Amer. Math. Soc., 54(5):592604, 2007.Google Scholar
Milman, V. D.. A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies. Funkcional. Anal. i Priložen., 5(4):2837, 1971.Google Scholar
Milman, Vitali D. and Schechtman, Gideon. Asymptotic Theory of Finite-Dimensional Normed Spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov.Google Scholar
Montgomery, H. L.. The pair correlation of zeros of the zeta function. pages 181– 193, 1973.Google Scholar
Muirhead, Robb J.. Aspects of Multivariate Statistical Theory. John Wiley & Sons, Inc., New York, 1982. Wiley Series in Probability and Mathematical Statistics.Google Scholar
Pasquale, Angela. Weyl’s integration formula for U(N). Based on an introductory lecture delivered at the DMV Seminar “The Riemann Zeta Function and Random Matrix Theory,” October, 2000, Oberwolfach, Germany. Available online at http://www.math.tau.ac.il/~rudnick/dmv/Weyl.ps.Google Scholar
Pastur, Leonid and Shcherbina, Mariya. Eigenvalue Distribution of Large Random Matrices, volume 171 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2011.Google Scholar
Rains, E. M.. High powers of random elements of compact Lie groups. Probab. Theory Related Fields, 107(2):219241, 1997.Google Scholar
Rains, E. M.. Increasing subsequences and the classical groups. Electron. J. Combin., 5:Research Paper 12, 9, 1998.Google Scholar
Rains, Eric M.. Images of eigenvalue distributions under power maps. Probab. Theory Related Fields, 125(4):522538, 2003.Google Scholar
Ram, Arun. Characters of Brauer’s centralizer algebras. Pacific J. Math., 169(1):173200, 1995.CrossRefGoogle Scholar
Rudnick, Zeév and Sarnak, Peter. Zeros of principal L-functions and random matrix theory. Duke Math. J., 81(2):269322, 1996.Google Scholar
Schechtman, Gideon. A remark concerning the dependence on ɛ in Dvoretzky’s theorem. In Geometric aspects of functional analysis (1987–88), volume 1376 of Lecture Notes in Math., pages 274277. Springer, Berlin, 1989.Google Scholar
Soshnikov, A.. Determinantal random point fields. Uspekhi Mat. Nauk, 55(5(335)):107160, 2000.Google Scholar
Soshnikov, Alexander. The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann. Probab., 28(3):13531370, 2000.Google Scholar
Stein, Charles.. The accuracy of the normal approximation to the distribution of the traces of powers of random orthogonal matrices. Technical Report No. 470, Stanford University Department of Statistics, 1995.Google Scholar
Stewart, Kathryn. Total variation approximation of random orthogonal matrices by gaussian matrices. Journal of Theoretical Probability, to appear. https://arxiv.org/abs/1704.06641.Google Scholar
Stolz, Michael. On the Diaconis-Shahshahani method in random matrix theory. J. Algebraic Combin., 22(4):471491, 2005.Google Scholar
Sudakov, V. N.. Typical distributions of linear functionals in finite-dimensional spaces of high dimension. Dokl. Akad. Nauk SSSR, 243(6):14021405, 1978.Google Scholar
Talagrand, Michel. The Generic Chaining. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. Upper and lower bounds of stochastic processes.Google Scholar
Vempala, Santosh S.. The Random Projection Method, volume 65 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence, RI, 2004. With a foreword by Christos H. Papadimitriou.Google Scholar
Villani, Cédric. Optimal Transport: Old and New, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009.Google Scholar
Warner, Frank W.. Foundations of Differentiable Manifolds and Lie Groups, volume 94 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition.Google Scholar
Weissler, Fred B.. Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal., 37(2):218234, 1980.Google Scholar
Weyl, Hermann. The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, NJ, 1939.Google Scholar
Wieand, K.. Eigenvalue distributions of random unitary matrices. Probab. Theory Related Fields, 123(2):202224, 2002.Google Scholar
Wojtaszczyk, P.. Banach Spaces for Analysts, volume 25 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1991.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Elizabeth S. Meckes, Case Western Reserve University, Ohio
  • Book: The Random Matrix Theory of the Classical Compact Groups
  • Online publication: 12 July 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Elizabeth S. Meckes, Case Western Reserve University, Ohio
  • Book: The Random Matrix Theory of the Classical Compact Groups
  • Online publication: 12 July 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Elizabeth S. Meckes, Case Western Reserve University, Ohio
  • Book: The Random Matrix Theory of the Classical Compact Groups
  • Online publication: 12 July 2019
Available formats
×