Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T10:27:29.820Z Has data issue: false hasContentIssue false

6 - Generalized Random Graphs

from Part III - Models for Complex Networks

Published online by Cambridge University Press:  12 January 2017

Remco van der Hofstad
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
Get access

Summary

In this chapter, we discuss inhomogeneous random graphs, in which the equal edge probabilities of the Erdős–Rényi random graph are replaced by edge occupation statuses that are independent but not equally distributed. Indeed, in the models studied here, the edge probabilities are moderated by certain vertex weights. These weights can be taken to be deterministic or random, and both options will be considered in this chapter. An important example, on which we focus in this chapter, is the so-called generalized random graph. We show that this model has a power-law degree distribution when the weights do so. As such, this is one of the simplest adaptions of the Erdős–Rényi random graph having a power-law degree sequence.

Organisation of this Chapter

This chapter is organized as follows. In Section 6.1, we motivate the model and in Section 6.2 we introduce it formally. In Section 6.3, we investigate the degree of a fixed vertex in the generalized random graph, and in Section 6.4, we investigate the degree sequence of the generalized random graph. In Section 6.5, we study the generalized random graph with i.i.d. vertex weights. In Section 6.6, we show that the generalized random graph, conditioned on its degrees, is a uniform random graph with these degrees. In Section 6.7, we study when two inhomogeneous random graphs are asymptotically equivalent, meaning that they have the same asymptotic probabilities. Finally, in Section 6.8, we introduce several more models of inhomogeneous random graphs similar to the generalized random graph that have been studied in the literature, such as the so-called Chung-Lu or random graph with prescribed expected degrees and the Norros–Reittu or Poisson graph process model. We close this chapter with notes and discussion in Section 6.9 and exercises in Section 6.10.

Motivation of the Model

In the Erdős–Rényi random graph, every vertex plays the same role, leading to a completely homogeneous random graph. Of course, vertices do have different degrees, but the amount of variability in degrees in the Erdős–Rényi random graph is much smaller than in many real-world applications. In this chapter, we explain a possible way of extending the Erdős– Rényi random graph model to include a higher amount of inhomogeneity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Generalized Random Graphs
  • Remco van der Hofstad, Technische Universiteit Eindhoven, The Netherlands
  • Book: Random Graphs and Complex Networks
  • Online publication: 12 January 2017
  • Chapter DOI: https://doi.org/10.1017/9781316779422.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Generalized Random Graphs
  • Remco van der Hofstad, Technische Universiteit Eindhoven, The Netherlands
  • Book: Random Graphs and Complex Networks
  • Online publication: 12 January 2017
  • Chapter DOI: https://doi.org/10.1017/9781316779422.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Generalized Random Graphs
  • Remco van der Hofstad, Technische Universiteit Eindhoven, The Netherlands
  • Book: Random Graphs and Complex Networks
  • Online publication: 12 January 2017
  • Chapter DOI: https://doi.org/10.1017/9781316779422.009
Available formats
×