from Part III - Physical Layer Resource Allocation in Wireless Networks
Published online by Cambridge University Press: 11 May 2017
Introduction
One of the important issues in infrastructure-based multi-cell wireless networks is properly associating mobile user equipments (UEs) to the serving BSs. In the literature, this is usually referred to as user association, cell association, cell selection, or BS assignment. We will use the term “cell association” in this chapter. Obviously, in a wireless network with dense deployment of the BSs, the number of potential BSs with which a UE can be associated is increased. The network densification necessitates the need for designing optimal and/or distributed cell association (BSs assignment to UEs) schemes. This is because, if the UEs are not properly associated with BSs, it may result in reduced throughput, increased interference, inefficient energy consumption, and load imbalance, in uplink and/or downlink.
In Chapters 6 and 7, it was assumed that cell association is already performed (i.e., fixed BS assignment). In fact, in those chapters a fixed cell association is assumed, under which the power control and joint power and admission control problems were defined and addressed. In this chapter, we assume the BS assigned to each UE is not fixed and can be dynamically determined.
Cell association can be performed separately or jointly with other resource allocation schemes. For instance, cell association can be performed based on some metric such as the received (pilot) signal strength, or it can be performed jointly with power control or channel allocation. In this chapter, we first briefly present the system model introduced in Chapter 5 and make a little change in notations to make it suitable for studying the problem of dynamic cell association. Then the joint cell association and power control (CAPC) schemes are studied, followed by a review of the existing approaches for distributed cell association schemes (where cell association is performed separately and independently from the power control). Finally, open challenges and problems are discussed.
System Model and Notations
We consider the same system model presented in Chapter 5, which is briefly introduced again in this chapter.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.