Published online by Cambridge University Press: 24 December 2019
In many cases, the quantitative spectroscopy of early-type stars requires to account for their line-driven winds, and theoretical models of such winds are based on a consistent calculation of the radiative line acceleration. Both topics ask for a thorough understanding of radiative transfer in expanding atmospheres. In this chapter, we concentrate on three issues, and compare, when possible, with corresponding results forplane-parallel, hydrostatic conditions: First, we investigate how sphericity alone affects the radiation field in those cases where Doppler shifts can be neglected (continua). Subsequently, we consider the impact of velocity fields on the line transfer, both by applying the so-called Sobolev approximation,and by presenting the more exact comoving-frame approach. Restrictions and extensions of both methods are discussed. Finally, we concentrate on the coupling between radiation field and occupation numbers via the NLTE rate equations. We illustrate the basic problem within the conventional Lambda Iteration, which is then solved by means of the so-called Accelerated Lambda Iteration (ALI), and by a "preconditioning" of the rate equations.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.