Published online by Cambridge University Press: 18 February 2010
In this chapter we illustrate some of the ideas of radiation transport and hydrodynamics coupled with radiation transport by means of a small selection of examples. As described in the introduction, the challenging applications of the theory are left for the technical literature, and the problems presented here have been chosen for their simplicity or pedagogical value.
Marshak wave and evaporation fronts
The classic example of nonlinear radiation diffusion is the Marshak wave, first discussed by Marshak (1958). It is a self-similar thermal wave, treated with the thermal diffusion approximation, for a material with a constant specific heat and for which the Rosseland mean opacity varies as a power of the temperature. Hydrodynamic motion is ignored. This assumption is unrealistic, but is made for simplicity. This “thermal wave” is not a wave in the sense we used earlier; it does not come from a hyperbolic system of PDEs, and the dispersion relation does not yield wave speeds ω/k, etc. It is a wave in the sense that there is a characteristic structure, in this case a sharp temperature front, that moves through the material in the course of time, of which the shape remains fairly constant. The propagation law is not distance α time, as expected for a hyperbolic system, but distance α time½ instead, owing to its diffusion nature.
A thorough discussion of how the thermal diffusion solution to this problem compares with transport solutions is given in Mihalas and Mihalas (1984), Section 103.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.