Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T02:51:09.522Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 July 2021

Michael Casey
Affiliation:
PCA Engineers Limited
Chris Robinson
Affiliation:
PCA Engineers Limited
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Radial Flow Turbocompressors
Design, Analysis, and Applications
, pp. 715 - 751
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, I. H. and von Doenhoff, A. E. (1949) Theory of Wing Sections. Dover, New York.Google Scholar
Abdel-Hamid, A. N. (1980) Analysis of Rotating Stall in Vaneless Diffusers of Centrifugal Compressors. ASME Paper 80-GT-184, ASME Gas Turbine Conference, 10–13 March, New Orleans. DOI:10.1115/80-GT-184Google Scholar
Abdel-Hamid, A. N. (1987) A New Technique for Stabilizing the Flow and Improving the Performance of Vaneless Radial Diffusers. ASME J. Turbomach., 109(1):3640. DOI:10.1115/1.3262067Google Scholar
Abdelwahab, A. and Gerber, G. (2008) A New Three-Dimensional Aerofoil Diffuser for Centrifugal Compressors. I. Mech. Eng. Part A: Power Proc. Eng., 222(8):819830. DOI:10.1243/09576509JPE579CrossRefGoogle Scholar
Adkins, G. G. and Smith, L. H. (1982) Spanwise Mixing in Axial Flow Turbomachines. ASME J. Eng. Power, 104(1):97110. DOI:10.1115/1.3227271Google Scholar
AGARD-AG-207 (1975) Modern Methods of Testing Rotating Components of Turbomachinery. AGARD Agardograph 207.Google Scholar
AGARD-AR-175 (1981) Through Flow Calculations in Axial Turbomachines. AGARD Advisory Report no. 175.Google Scholar
AGARD-CP-195 (1976) Throughflow Calculations in Axial Turbomachinery. AGARD Conference Proceeding No. 195.Google Scholar
AGARD-CP-282 (1980) Centrifugal Compressors, Flow Phenomena and Performance. AGARD Conference Proceeding No. 282.Google Scholar
Ahmad, M., Casey, M. V. and Sürken, N. (2009) Experimental Assessment of Droplet Impact Erosion Resistance of Steam Turbine Blade Materials. J. Wear, 267(9–10):16051618. DOI:10.1016/j.wear.2009.06.012Google Scholar
Akima, H. (1970) A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. JACM, 17(4):589602. DOI:10.1145/321607.321609Google Scholar
Aknouche, S. (2003) Impact of Tip Clearance Flow on Centrifugal Pump Impeller Performance. MSc Thesis, MIT.Google Scholar
Aldi, N., Casari, N., Pinelli, M. and Suman, A. (2018) A Statistical Survey on the Actual State-of-the-Art Performance of Radial Flow Fans Based on Market Data. Conference: Fan 2018, Darmstadt, 18–20 April.Google Scholar
Almasi, A. (2018) Shop Performance Test of Turbocompressors. 22 July, Turbomachinery Magazine.Google Scholar
Ambühl, H. and Bachmann, P. (1980) Bestimmung der Verlustanteile einzelner Stufenkomponenten in ein- und mehrstufigen Pumpturbinen radialer Bauart. Escher Wyss Mitteilungen, 53(1):8291Google Scholar
Anish, S. and Sitaram, N. (2009) Computational Investigation of Impeller–Diffuser Interaction in a Centrifugal Compressor with Different Types of Diffusers I. Mech. Eng. Part A: Power Proc. Eng., 223(2):167178. DOI:10.1243/09576509JPE662Google Scholar
API standard 617 (2016) Axial and Centrifugal Compressors and Expander-Compressors, 8th Edition, August 2016. American Petroleum Institute, Washington.Google Scholar
ASHRAE (2016) Laboratory Methods of Testing Fans for Aerodynamic Performance Rating. ASHRAE/AMCA 51, ASHRAE, Atlanta.Google Scholar
ASME Performance test code PTC10 (1997) Performance Test Code on Compressors and Exhausters. ASME Standard PTC 10. ASME, New York.Google Scholar
Auchoybur, K. and Miller, R. (2018) The Sensitivity of 3D Separations in Multi-Stage Compressors. J. Glob. Power Propuls. Soc., 2018(2):329343. DOI:10.22261/jgpps.34c05tGoogle Scholar
Aungier, R. H. (1995a) Centrifugal Compressor Stage Preliminary Aerodynamic Design and Component Sizing. ASME Paper 95-GT-078, ASME Gas Turbine Congress, 5–8 June, Houston. DOI:10.1115/95-GT-078CrossRefGoogle Scholar
Aungier, R. H. (1995b) Mean Streamline Aerodynamic Performance Analysis of Centrifugal Compressors. ASME J. Turbomach., 117(3):360366. DOI:10.1115/1.2835669Google Scholar
Aungier, R. H. (1995c) A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications. ASME J. Fluids Eng., 117(2):277281. DOI:10.1115/1.2817141Google Scholar
Aungier, R. H. (2000) Centrifugal Compressors – A Strategy for Aerodynamic Design and Analysis. ASME Press, New York.Google Scholar
Backström, T. W. (2006) A Unified Correlation for Slip Factor in Centrifugal Impellers. ASME J. Turbomach., 128(1):110. DOI:10.1115/1.2101853Google Scholar
Backström, T. W. (2008) The Effect of Specific Heat Ratio on the Performance of Compressible Flow Turbomachines. ASME Paper GT2008-50183, ASME Turbo Expo, 9-13 June, Berlin. DOI:10.1115/GT2008-50183Google Scholar
Baehr, H. D. and Kabelac, S. (2012) Thermodynamik. Springer Viehweg, Germany.Google Scholar
Baines, N., Wygant, K. D. and Dris, A. (2010) The Analysis of Heat Transfer in Automotive Turbochargers. ASME. J. Eng. Gas Turbines Power, 132(4):042301. DOI:10.1115/1.3204586Google Scholar
Baines, N. C. (2005) Fundamentals of Turbocharging. Concepts NREC, White River Junction.Google Scholar
Bakken, L.E., Jordal, K., Syverud, E. and Veer, T. (2004) Centenary of the First Gas Turbine to Give Net Power Output: A Tribute to Ægidius Elling. ASME paper GT2004-53211. ASME Turbo Expo, 14-17 June, Vienna. DOI:10.1115/GT2004-53211Google Scholar
Baldassarre, L., Bernocchi, A., Fontana, M. et al. (2014) Optimization of Swirl Brake Design and Assessment of Its Stabilizing Effect on Compressor Rotordynamic Performance. 43rd Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R15P94Google Scholar
Baldwin, W. S. and Lomax, H. (1978) Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper 87-257. DOI:10.2514/6.1978-257Google Scholar
Balje, O. E. (1962) A Study on Design Criteria and Matching of Turbomachines: Part A – Similarity Relations and Design Criteria of Turbines. ASME J. Eng. Power, 84(1):83102. DOI:10.1115/1.3673386Google Scholar
Balje, O. E. (1970) Loss and Flow Path Studies on Centrifugal Compressors Part I and Part II. ASME J. Eng. Power, 92(3):287300. DOI:10.1115/1.3445353CrossRefGoogle Scholar
Balje, O. E. (1978) A Flow Model for Centrifugal Compressor Rotors. ASME J. Eng. Power, 100(1):148158. DOI:10.1115/1.3446308Google Scholar
Balje, O. E. (1981) Turbomachines, a Guide to Design, Selection and Theory. John Wiley & Sons, Toronto.Google Scholar
Baltadjiev, N. D., Lettieri, C. and Spakovszky, Z. S. (2015) An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors. ASME J. Turbomach., 137(9):091003. DOI:10.1115/1.4029616Google Scholar
Barbarin, V. I. and Mikirtichan, V. M. (1982) The Entropic Efficiency of Compressors and Turbines. Fluid Mech. –Sov. Res., 11(3):3647.Google Scholar
Baumann, U. (1999) Rotordynamic Stability Tests on High-Pressure Radial Compressors. 28th Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1TD30Google Scholar
Behlke, R. F. (1986) The Development of a Second Generation of Controlled Diffusion Airfoils for Multistage Compressors. ASME J. Turbomach., 108(1):3240. DOI:10.1115/1.3262020Google Scholar
Beinecke, D. and Lüdtke, K. (1983) Die Auslegung von Turboverdichtern unter Berücksichtigung des realen Gasverhaltens. VDI-Berichte 487, 271279.Google Scholar
Belardini, E, Pandit, R. et al. (2016) 2nd Quadrant Centrifugal Compressor Performance: Part II. ASME Paper GT2016-57124, ASME Turbo Expo 2016. 13–17 June, Seoul. DOI:10.1115/GT2016-57124CrossRefGoogle Scholar
Bennett, I., Tourlidakis, A. and Elder, R. L. (2000) The design and analysis of pipe diffusers for centrifugal compressors. I. Mech. Eng. Part A: Power and Energy, 214(1):8796. DOI:10.1243/0957650001537886Google Scholar
Benvenuti, E. (1978a) Aerodynamic Development of Stages for Industrial Centrifugal Compressors: Part 1 – Testing Requirements and Equipment – Immediate Experimental Evidence. ASME Paper 78-GT-4, ASME Gas Turbine Conference. 9–13 April, London. DOI:10.1115/78-GT-4Google Scholar
Benvenuti, E. (1978b) Aerodynamic Development of Stages for Industrial Centrifugal Compressors: Part 2 – Test Data Analysis Correlation and Use. ASME Paper 78-GT-5, ASME 1978 Gas Turbine Conference. 9–13 April, London. DOI:/10.1115/78-GT-5Google Scholar
Berdanier, R. A., Smith, N. R., Fabian, J. C. and Key, N. L. (2014) Humidity Effects on Experimental Compressor Performance – Corrected Conditions for Real Gases. ASME J. Turbomach., 137(3):031011. DOI:10.1115/1.4028356Google Scholar
Berenyi, S. G. (2006) High Pressure Turbocharger for Solid Oxide Fuel Cells. ASME Paper GT2006-90222, ASME Turbo Expo 2006, Barcelona. DOI:10.1115/GT2006-90222Google Scholar
Berman, P. A. (1978) Compressed Air Energy Storage Turbomachinery. ASME Paper 78-GT-97, ASME Gas Turbine Congress, 9–13 April, London. DOI:10.1115/78-GT-97Google Scholar
Bianchini, A., Carnele, E. A., Bilotti, D. et al. (2015) Development of a Research Test Rig for Advanced Analyses in Centrifugal Compressors. Energy Procedia, 82:230236. DOI:10.1016/j.egypro.2015.12.027Google Scholar
Bidaut, Y. and Baumann, U. (2012) Identification of Eigenmodes and Determination of the Dynamical Behaviour of Open Impellers. ASME Paper GT2012-68182, ASME Turbo Expo, 11–15 June, Copenhagen. DOI:10.1115/GT2012-68182Google Scholar
Bidaut, Y. and Dessibourg, D. (2014) The Challenge for the Accurate Determination of the Axial Thrust in Centrifugal Compressors. 43rd Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1QD7KGoogle Scholar
Biliotti, D., Bianchini, A., Vannini, G. et al. (2014) Analysis of the Rotordynamic Response of a Centrifugal Compressor Subject to Aerodynamic Loads Due to Rotating Stall. ASME. J. Turbomach., 137(2):021002. DOI:10.1115/1.4028246Google Scholar
Bindon, J. P. (1989) The Measurement and Formation of Tip Clearance Loss. ASME J. Turbomach., 111(3):257263. DOI:10.1115/1.3262264Google Scholar
Bloch, H. P. (2006) A Practical Guide to Compressor Technology. Wiley, New York.Google Scholar
Bölcs, A. (2005) Transonic Flow in Turbomachines. Computerized Education Platform, Heat and Power Technology, Lecture series vol. 4, Stockholm.Google Scholar
Bolleter, U. (1980) European patent. EP0046173A1Google Scholar
Bommes, L., Fricke, J. and Grundmann, R. (2003) Ventilatoren. Vulkan Verlag Essen.Google Scholar
Bonaiuti, D. and Zangeneh, M. (2006) On the Coupling of Inverse Design and Optimization Techniques for Turbomachinery Blade Design. ASME Paper GT2006-90897, ASME Turbo Expo, 8–11 May, Barcelona. DOI:10.1115/GT2006-90897Google Scholar
Bosman, C. and Marsh, H. (1974) An Improved Method for Calculating the Flow in Turbo-Machines, Including a Consistent Loss Model. I. Mech. Eng. Part C: J. Mech. Eng. Sci., 16(1):2531. DOI:10.1243/JMES_JOUR_1974_016_006_02Google Scholar
Bousquet, Y., Carbonneau, X., Dufour, G., Binder, N. and Trebinjac, I. (2014) Analysis of the Unsteady Flow Field in a Centrifugal Compressor from Peak Efficiency to Near Stall with Full-Annulus Simulations. Int. J. Rotating Mach., 2014:ID 729629. DOI:10.1155/2014/729629Google Scholar
Boyce, M. (2002) Centrifugal Compressors: A Basic Guide. Pennwell Pub. Tulsa.Google Scholar
Bradshaw, P. (1994) Turbulence: The Chief Outstanding Difficulty of Our Subject. Exp. Fluids, 16:203216.Google Scholar
Brandvik, T. and Pullan, G. (2011) An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines. ASME J. Turbomach., 133(2):021025. DOI:10.1115/1.4001192Google Scholar
Braunscheidel, E. P., Welch, G. E., Skoch, G. J. et al. (2016) Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level, NASA/TM – 2015-218455.Google Scholar
Brebner, G. G. and Bagley, J. A. (1956) Pressure and Boundary Layer Measurements on a Two-Dimensional Wing at Low-Speed. ARC R&M 2886 HMSO.Google Scholar
Brown, L. E. (1972) Axial Flow Compressor and Turbine Loss Coefficients: A Comparison of Several Parameters. ASME J. Eng. Power, 94(3):195201. DOI:10.1115/1.3445672CrossRefGoogle Scholar
Brown, R. N., (2005) Compressors: Selection and Sizing, Gulf Professional Publishing, Houston.Google Scholar
Brown, W. B. and Bradshaw, G. R. (1947) Method of Designing Vaneless Diffusers and Experimental Investigation of Certain Undetermined Parameters. NACA TN1426.Google Scholar
Brun, K. and Kurz, R. (2019) Compression Machinery for Oil and Gas. Gulf Professional Publishing, Houston.Google Scholar
Brun, K. and Nored, M. G. (2006) Guideline for Field Testing of Gas Turbine and Centrifugal Compressor Performance. Gas Machinery Research Council, Southwest Research Institute, Dallas.Google Scholar
Bullock, R. O. and Johnsen, I. A. (1965) Aerodynamic Design of Axial Flow Compressors. NASA-SP-36.Google Scholar
Bulot, N. and Trebinjac, I. (2009) Effect of the Unsteadiness on the Diffuser Flow in a Transonic Centrifugal Compressor Stage. Int. J. Rotating Mach., 2009:ID 932593. DOI:10.1155/2009/932593Google Scholar
Busemann, A. (1928) Das Forderhohenverhaltniss radialer Kreiselpumen mit logarithmischspiraligen Schaufeln. Z. Angew. Math. Mech., 8: 372384.Google Scholar
Bygrave, J., Villanueva, A. and Enos, R. (2010) Upgrading the Performance of a Centrifugal Barrel Compressor Family. ASME Turbo Expo, 14–18 June, Glasgow. DOI:10.1115/GT2010-23767CrossRefGoogle Scholar
Calvert, W. J. (1982) An Inviscid–Viscous Interaction Treatment to Predict the Blade-to-Blade Performance of Axial Compressors with Leading-Edge Normal Shock Waves. ASME Paper 82-GT-135, ASME Gas Turbine Conference, 18–22 April, London. DOI:10.1115/82-GT-135Google Scholar
Calvert, W. J. (1994) Inviscid–Viscous Method to Model Leading Edge Separation Bubbles. ASME Paper 94-GT-247, ASME Gas Turbine Congress, 13–16 June, The Hague. DOI:10.1115/94-GT-247Google Scholar
Calvert, W. J. and Ginder, R. B. (1999) Transonic Fan and Compressor Design. I. Mech. Eng. Part C: J. Mech. Eng. Sci., 213(5):419436. DOI:10.1243/0954406991522671CrossRefGoogle Scholar
Came, P. M. (1978) The Development, Application and Experimental Evaluation of a Design Procedure for Centrifugal Compressors. I. Mech. E., 192(1):4967. DOI:10.1243/PIME_PROC_1978_192_007_02Google Scholar
Came, P. M. (1995) Streamline Curvature Throughflow Analysis. Proceedings of First European Turbomachinery Conference, VDI Berichte, Germany 1185:291.Google Scholar
Came, P. M. and Robinson, C. J. (1998) Centrifugal Compressor Design. I. Mech. Eng. Part C: J. Mech. Eng. Sci., 213(2):139155. DOI:10.1243/0954406991522239CrossRefGoogle Scholar
Came, P. M., Connor, W. A., Fyles, A. and Swain, E. (1984) High Performance Turbochargers for Marine Diesel Engines. Paper 64. Trans I Marine E., 96:112.Google Scholar
Camp, T. R., and Day, I. J. (1998) A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor. ASME. J. Turbomach., 120(3):393401. DOI:10.1115/1.2841730Google Scholar
Campbell, W. (1924) Protection of Steam Turbine Disk Wheels from Axial Vibration. Trans ASME 46:31160.Google Scholar
Carter, A. D. S. (1961) Blade Profiles for Axial Flow Fans, Pumps and Compressors. I. Mech. Eng. Part C: J. Mech. Eng. Sci., 175(1):775806. DOI:10.1243/PIME_PROC_1961_175_051_02Google Scholar
Casey, M. V. (1983) A Computational Geometry for the Blades and Internal Flow Channels of Centrifugal Compressors. ASME J. Eng. Power., 105(2):288295. DOI:10.1115/1.3227414Google Scholar
Casey, M. V. (1985a) The Effects of Reynolds Number on the Efficiency of Centrifugal Compressor Stages. ASME J. Eng. Power., 107(2):541548. DOI:10.1115/1.3239767CrossRefGoogle Scholar
Casey, M. V. (1985b) The Aerodynamic Development of High-Performance Radial Compressor Stages for Industrial Turbocompressors. VDI Berichte 572.1, Thermische Strömungsmaschinen 1985. VDI Verlag, Düsseldorf.Google Scholar
Casey, M. V. (1994a) Computational Methods for Preliminary Design and Geometry Definition in Turbomachinery. AGARD-LS-195, AGARD Lecture Series on Turbomachinery Design Using CFD, NASA-Lewis.Google Scholar
Casey, M. V. (1994b) The Industrial Use of CFD in the Design of Turbomachinery. AGARD-LS-195, AGARD Lecture Series on Turbomachinery Design Using CFD, NASA-Lewis.Google Scholar
Casey, M. V. (2004) Third State of the Art Review for Thematic Area 6, CFD for Turbomachinery Internal Flows. EU Project QNET-CFD.Google Scholar
Casey, M. V. (2007) Accounting for Losses and Definitions of Efficiency in Turbomachinery Stages. I. Mech. Eng. Part C: J. Mech. Eng. Sci., 221(6):735743. DOI:10.1243/09576509JPE459Google Scholar
Casey, M. V. (2008) Manuscripts of Lecture Courses: Grundlagen der Thermischen Strömungsmaschinen (TSM), Turbochargers (TC), Turbokompressoren und Ventilatoren (TKV), on www.itsm.uni-stuttgart.de, University of Stuttgart.Google Scholar
Casey, M. V. and Fesich, T. M. (2010) The Efficiency of Turbocharger Components with Diabatic Flows. ASME J. Eng. Power, 132(7):072302. DOI:10.1115/1.4000300Google Scholar
Casey, M. V. and Roth, P. (1984) A Streamline Curvature Throughflow Method for Radial Turbocompressors. I. Mech. E. Conference on Computational Methods in Turbomachinery, April, Birmingham. Paper No. C57/84.Google Scholar
Casey, M. V. and Marty, F. (1985) Centrifugal Compressors – Performance at Design and Off-Design. Proceedings of the Institute of Refrigeration, London, 1985–86, 71–82.Google Scholar
Casey, M. V. and Robinson, C. J. (2006) A Guide to Turbocharger Compressor Characteristics. Paper 4, Dieselmotorentechnik, 10th Symposium, 30–31 March. TAE Esslingen, Esslingen.Google Scholar
Casey, M. V. and Robinson, C. J. (2010) A New Streamline Curvature Throughflow Code for Radial Turbomachinery. ASME J. Turbomach., 132(3):03102. DOI:10.1115/1.3151601CrossRefGoogle Scholar
Casey, M. V. and Robinson, C. J. (2011) A Unified Correction Method for Reynolds Number, Size and Roughness Effects on the Performance of Compressors. I. Mech. E. Part A: J. Power Energy, 225(7):864876. DOI:10.1177/0957650911410161Google Scholar
Casey, M. V. and Robinson, C. J. (2013). A Method to Estimate the Performance Map of a Centrifugal Compressor Stage. ASME J. Turbomach., 135(2):021034. DOI:10.1115/1.4006590Google Scholar
Casey, M. V. and Rusch, D. (2014) The Matching of a Vaned Diffuser with a Radial Compressor Impeller and Its Effect on the Stage Performance. ASME J. Turbomach., 136(12):121004. DOI:10.1115/1.4028218Google Scholar
Casey, M. V. and Schlegel, M. (2010) Estimation of the Performance of Turbocharger Compressors at Extremely Low Pressure Ratios. I. Mech. E. Part A: J. Power Energy, 224(2):239250. DOI:10.1243/09576509JPE810Google Scholar
Casey, M. V. and Wintergerste, T. (2000) ERCOFTAC Best Practice Guidelines for Industrial CFD. ERCOFTAC, January 2000.Google Scholar
Casey, M. V., Dalbert, P. and Schurter, E. (1990) Radial Compressor Stages for Low Flow Coefficients. Paper C403/004, I. Mech. Eng. International Conference, Machinery for the Oil and Gas Industries, Amsterdam.Google Scholar
Casey, M. V., Dalbert, P. and Roth, P. (1992) The Use of 3D Viscous Flow Calculations in the Design and Analysis of Industrial Centrifugal Compressors. ASME J. Turbomach., 114(1):2737. DOI:10.1115/1.2927995Google Scholar
Casey, M. V., Gersbach, F. and Robinson, C. J. (2008) An Optimisation Technique for Radial Compressor Impellers. ASME Paper GT2008-50561, ASME Turbo Expo, 9–13 June, Berlin. DOI:10.1115/GT2008-50561Google Scholar
Casey, M. V., Krähenbuhl, D. and Zwyssig, C. (2013) The Design of Ultra-High-Speed Miniature Compressors. 10th European Conference on Turbomachinery ETC10, 15-19 April, Lappeenranta.Google Scholar
Casey, M. V., Robinson, C. J. and Zwyssig, C. (2010) The Cordier Line for Mixed Flow Compressors. ASME Paper GT2010-22549, ASME Turbo Expo, 14–18 June, Glasgow. DOI:10.1115/GT2010-22549Google Scholar
Cengel, Y. and Boles, M. (2015) Thermodynamics, and Engineering Approach, 8th Edition. McGraw-Hill, India.Google Scholar
Chen, G. T., Greitzer, E. M., Tan, C. S. and Marble, F. E. (1991) Similarity Analysis of Compressor Tip Clearance Flow Structure. ASME J. Turbomach., 113(2):260269. DOI:10.1115/1.2929098Google Scholar
Chen, H. and Lei, V. (2013) Casing Treatment and Inlet Swirl of Centrifugal Compressors. ASME J. Turbomach., 135(4):041010. DOI:10.1115/1.4007739Google Scholar
Chen, H. (2017) Noise of Turbocharger Compressors. ISROMAC 2017, Maui. https://hal.archives-ouvertes.fr/hal-02376818/documentGoogle Scholar
Chen, N. (2010) Aerothermodynamics of Turbomachinery. Wiley, New York.Google Scholar
Cheshire, L. J. (1945). The Design and Development of Centrifugal Compressors for Aircraft Gas Turbines. I. Mech. E., 153(1):426440. DOI:10.1243/PIME_PROC_1945_153_048_02Google Scholar
Childs, D. (1993) Turbomachinery Rotordynamics. John Wiley & Sons, New York.Google Scholar
Childs, P. R. N. and Noronha, M. B. (1999/1997) The Impact of Machining Techniques on Centrifugal Compressor Impeller Performance. ASME J. Turbomach., 121(4):637643. DOI:10.1115/1.2836715CrossRefGoogle Scholar
Chivers, J. W. R. (1989) A Technique for the Measurement of Blade Tip Clearance in a Gas Turbine. Ph.D. Thesis, Imperial College, London.Google Scholar
Christmann, R., Langler, F., Habermehl, M. et al. (2010) Low-Cycle Fatigue of Turbocharger Compressor Wheels Online Prediction and Lifetime Extension. I. Mech. E. 9th Int Conference on Turbocharging and Turbochargers, 2010. London.Google Scholar
Clark, C. J., Pullan, G., Curtis, E. and Goenaga, F. (2017) Secondary Flow Control in Low Aspect Ratio Vanes Using Splitters. ASME J. Turbomach., 139(9):091003. DOI:10.1115/1.4036190Google Scholar
Clements, W. W. and Artt, D. W. (1987) The Influence of Diffuser Channel Geometry on the Flow Range and Efficiency of a Centrifugal Compressor. I. Mech. E. Part A: J. Power Energy, 201(2):145152. DOI:10.1243/PIME_PROC_1987_201_016_02Google Scholar
Clements, W. W. and Artt, D. W. (1988) The Influence of Diffuser Channel Length-Width Ratio on the Efficiency of a Centrifugal Compressor. P I Mech. Eng. A–J Pow, 202(3):163169. DOI:10.1243/PIME_PROC_1988_202_022_02Google Scholar
Colby, G. M. (2005) Hydraulic Shop Performance Testing of Centrifugal Compressors. 34th Turbomachinery Symposium, 2005, Texas A&M, Houston. DOI:10.21423/R18930Google Scholar
Coles, D. E. (1956) The Law of the Wake in the Turbulent Boundary Layer. J. Fluid Mech., 1:191226. DOI:10.1017/S0022112056000135Google Scholar
Conboy, T., Wright, S., Pasch, J. et al. (2012) Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle. ASME. J. Eng. Gas Turbines Power., 134(11):111703. DOI:10.1115/1.4007199Google Scholar
Coppage, J. E., Dallenbach, F., Eichenberger, H. P. et al. (1956) Study of Supersonic Radial Compressors for Refrigeration and Pressurisation systems. WADC Technical Report 55-257.Google Scholar
Coppinger, M. and Swain, E. (2000) Performance Prediction of an Industrial Centrifugal Compressor Inlet Guide Vane System. I. Mech.E. Part A: J. Power Energy, 214(2):153164. DOI:10.1243/0957650001538254Google Scholar
Cordes, G. (1963) Strömungstechnik der gasbeaufschlagten Axialturbine. Springer, Berlin.Google Scholar
Cordier, O. (1953) Ähnlichkeitsbedingungen für Strömungsmaschinen. BWK Zeitschrift, 5(10):337340.Google Scholar
Cousins, W. T., Yu, L., Garofano, J. et al. (2014) Test and Simulation of the Effects of Surface Roughness on a Shrouded Centrifugal Impeller. ASME Paper GT2014-25480, ASME Turbo Expo, 16–20 June, Düsseldorf. DOI:10.1115/GT2014-25480Google Scholar
Cox, G. D., Fischer, C. and Casey, M. (2010) The Application of Throughflow Optimisation to the Design of Radial and Mixed Flow Turbines. C1302, I. Mech E. 9th International Conference on Turbochargers and Turbocharging, 19–20 May 2010, London.Google Scholar
Cumpsty, N. A. (2004) Compressor Aerodynamics. Krieger Publishing Company, Malabar.Google Scholar
Cumpsty, N. A. (2010) Some Lessons Learned. ASME. J. Turbomach., 132(4):041018. DOI:10.1115/1.4001222Google Scholar
Cumpsty, N. A. and Heyes, A. (2018) Jet Propulsion, 3rd Edition, Cambridge University Press, Cambridge.Google Scholar
Cumpsty, N. A. and Horlock, J. H. (2006) Averaging Nonuniform Flow for a Purpose. ASME J. Turbomach., 128(1):120129. DOI:10.1115/1.2098807Google Scholar
Cukurel, B., Lawless, P. B. and Fleeter, S. (2008) PIV Investigations of a High Speed Centrifugal Compressor Diffuser: Spanwise Loading Variations. ASME Paper GT2008-51321, ASME Turbo Expo, 9–13 June, Berlin. DOI:10.1115/GT2008-51321CrossRefGoogle Scholar
Cukurel, B., Lawless, P. B. and Fleeter, S. (2012) PIV Investigation of a High Speed Centrifugal Compressor Diffuser: Circumferential and Spanwise Variations. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 08–11 July, Cincinnati. DOI:10.2514/6.2007-5021Google Scholar
Dailey, J. W. and Nece, R. E. (1960) Chamber Dimension Effects on Frictional Resistance of Enclosed Rotating Disks. ASME J. Basic Eng., 82(1):217230. DOI:10.1115/1.3662532Google Scholar
Dalbert, P., Casey, M. V. and Schurter, E. (1988) Development, Testing and Performance Prediction of Radial Stages for Multi-Stage Industrial Compressors. J. Turbomach., 110(3):283292. DOI:10.1115/1.3262194Google Scholar
Dalbert, P., Ribi, B., Kmecl, T. and Casey, M. V. (1999). Radial Compressor Design for Industrial Compressors. I. Mech. Eng. Part C: J. Mech. Eng. Sci., 213(1):7183. DOI:10.1243/0954406991522194Google Scholar
Dallenbach, F. (1961) The Aerodynamic Design and Performance of Centrifugal and Mixed Flow Compressors. SAE Technical Paper 610160. DOI: 10.4271/610160.CrossRefGoogle Scholar
Damle, S. V., Dang, T. Q. and Reddy, D. R. (1997) Throughflow Method for Turbomachines Applicable for All Flow Regimes. ASME J. Turbomach., 119(2):256262. DOI:10.1115/1.2841108Google Scholar
Dawes, W. N. (1987) Application of a Three-Dimensional Viscous Compressible Flow Solver to a High-Speed Centrifugal Compressor Rotor-Secondary Flow and Loss Generation. I. Mech. E. Conference on Turbomachinery – Efficiency Prediction and Improvement, 1–3 September, Robinson College, Cambridge.Google Scholar
Dawes, W. N. (1988) Development of a 3D Navier Stokes Solver for Application to All Types of Turbomachinery. ASME Paper 88-GT-70, ASME Gas Turbine Congress, 6–9 June, Amsterdam. DOI:10.1115/88-GT-70Google Scholar
Dawes, W. N. (1990) A Comparison of Zero and One Equation Turbulence Modelling for Turbomachinery Calculations. ASME Paper 90-GT-303 ASME Gas Turbine Congress, 11–14 June, Brussels. DOI:10.1115/90-GT-303Google Scholar
Dawes, W. N. (1992) Toward Improved Throughflow Capability: The Use of Three-Dimensional Viscous Flow Solvers in a Multistage Environment. ASME J. Turbomach., 114(1):817. DOI:10.1115/1.2928002CrossRefGoogle Scholar
Dawes, W. N. (1992) The Simulation of Three-Dimensional Viscous Flow in Turbomachinery Geometries Using a Solution-Adaptive Unstructured Mesh Methodology. ASME J. Turbomach., 114(3):528537. DOI:10.1115/1.2929176Google Scholar
Day, I. J. (1976) Axial Compressor Stall. Ph.D. Thesis, University of CambridgeGoogle Scholar
Day, I. J. (1993). Stall Inception in Axial Flow Compressors. ASME. J. Turbomach., 115(1):19. DOI:10.1115/1.2929209Google Scholar
Day, I. J. (2016) Stall, Surge, and 75 Years of Research. ASME J. Turbomach., 138(1):011001. DOI:10.1115/1.4031473Google Scholar
Day, I. J., Greitzer, E. M. and Cumpsty, N. A. (1978) Prediction of Compressor Performance in Rotating Stall. ASME J. Eng. Power., 100(1):112. DOI:10.1115/1.3446318Google Scholar
De Haller, P. (1953) Das Verhalten von Tragflugelgittern in Axialverdichtern und in Windkanal. BWK Zeitschrift, 5(10):333337.Google Scholar
Dean, R. C. Jr. (1959) On the Necessity of Unsteadiness in Fluid Machines. J. Basic Eng., 81(1):2428. DOI:10.1115/1.4008350Google Scholar
Dean, R. C. Jr. (1971) On the Unresolved Fluid Dynamics of the Centrifugal Compressor. In Advanced Centrifugal Compressors, ASME Gas Turbine Division, New York. 155.Google Scholar
Dean, R. C. Jr. and Senoo, Y. (1960) Rotating Wakes in Vaneless Diffusers. J. Basic Eng., 82(3):563570. DOI:10.1115/1.3662659Google Scholar
Del Greco, A. S., Biagi, F. R., Sassanelli, G. and Michelassi, V. (2007) A New Slip Factor Correlation for Centrifugal Impellers in a Wide Range of Flow Coefficients and Peripheral Mach Numbers. ASME Paper GT2007-27199, ASME Turbo Expo 2007, 14–17 May, Montreal. DOI:10.1115/GT2007-27199Google Scholar
Deniz, S. (1997) Effects of Inlet Conditions on Centrifugal Diffuser Performance. Report 225 GTL, MIT, Cambridge.Google Scholar
Deniz, S., Greitzer, E. M. and Cumpsty, N. A. (2000) Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor Diffusers: Part 2 – Straight Channel Diffuser. ASME J. Turbomach., 122(1):1121. DOI:10.1115/1.555424CrossRefGoogle Scholar
Denton, J. D. (1975) A Time Marching Method for Two- and Three-Dimensional Blade to Blade Flows. ARC R&M. No. 3775 HMSO.Google Scholar
Denton, J. D. (1978) Throughflow Calculations for Transonic Axial Flow Turbines. ASME J. Eng. Power, 100(2):212218. DOI:10.1115/1.3446336Google Scholar
Denton, J. D. (1983) An Improved Time-Marching Method for Turbomachinery Flow Calculation. ASME J. Eng. Power, 105(3):514521. DOI:10.1115/1.3227444Google Scholar
Denton, J. D. (1986) The Use of a Distributed Body Force to Simulate Viscous Effects in 3D Flow Calculations. ASME Paper 86-GT-144, ASME Gas Turbine Conference, 8–12 June, Dusseldorf. DOI:10.1115/86-GT-144Google Scholar
Denton, J. D. (1992) The Calculation of Three-Dimensional Viscous Flow through Multistage Turbomachines. ASME J. Turbomach., 114(1):1826. DOI:10.1115/1.2927983Google Scholar
Denton, J. D. (1993) The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines. ASME J. Turbomach., 115(4):621656. DOI:10.1115/1.2929299Google Scholar
Denton, J. D. (1997) Lessons from Rotor 37. J. Thermal Science, 6(1):113. DOI:10.1007/s11630-997-0010-9Google Scholar
Denton, J. D. (2010) Some Limitations of Turbomachinery CFD. ASME Turbo Expo 2010, 14–18 June. Glasgow. DOI:10.1115/GT2010-22540Google Scholar
Denton, J. D. (2017) Multall: An Open Source, CFD Based, Turbomachinery Design System. ASME Paper GT2017-63993, ASME Turbo Expo 2017, 26–30 June, Charlotte. DOI:10.1115/GT2017-63993Google Scholar
Denton, J. D. and Cumpsty, N. A. (1987) Loss Mechanisms in Turbomachines. I. Mech E Paper C260/87.Google Scholar
Denton, J. D. and Dawes, W. N. (1998) Computational Fluid Dynamics for Turbomachinery Design. I. Mech. E. Part C: J. Mech. Eng. Sci., 213(2):107124. DOI:10.1243/0954406991522211Google Scholar
Denton, J. D. and Xu, L. (2002) The Effects of Lean and Sweep on Transonic Fan Performance. ASME Paper GT2002-30327, ASME Turbo Expo, 3–6 June, Amsterdam. DOI:10.1115/GT2002-30327Google Scholar
Dick, E. (2015) Fundamentals of Turbomachines. Springer, Berlin.Google Scholar
Dick, E., Heirman, P. and Annerel, S. (2011) Optimization of the Deceleration Ratio in Impellers of Centrifugal Fans. 9th European Turbomachinery Conference, Conference Proceedings, vol. 2, ed. Sen, M.. Istanbul Technical University, Istanbul, 935944.Google Scholar
Dickens, T. and Day, I. (2011) The Design of Highly Loaded Axial Compressors. ASME J. Turbomach., 133(3):031007. DOI:10.1115/1.4001226Google Scholar
Dickmann, H. P. (2013) Shroud Contour Optimization for a Turbocharger Centrifugal Compressor Trim Family. Paper ETC2013-015, 10th European Turbomachinery Conference, 15–19 April, Lappeenranta.Google Scholar
Diehl, M. (2019) Mitigation of Tip Leakage Induced Phenomena in a Low Reynolds Number Centrifugal Compressor via Blade Loading Distribution. Thesis Nr. 9720 EPFL, Lausanne.Google Scholar
Dietmann, F. (2015) Zum Einfluss der Reynolds-Zahl und der Oberflächenrauigkeit bei thermischen Turbokompressoren. Ph.D. Thesis. ITSM, Stuttgart Shaker-Verlag.Google Scholar
Dietmann, F. and Casey, M. V. (2013) The Effects of Reynolds Number and Roughness on Compressor Performance. Paper ETC2013-052, 10th European Turbomachinery Conference, 15–19 April, Lappeenranta.Google Scholar
Dietmann, F., Casey, M. V. and Vogt, D. M. (2020) Reynolds Number and Roughness Effects on Turbocompressor Performance: Numerical Calculations and Measurement Data Evaluation. ASME Paper GT2020-14653, ASME Turbo Expo, 22–26 June, London.Google Scholar
Dietzen, F. J. and Nordmann, R. (1987) Calculating Rotordynamic Coefficients of Seals by Finite-Difference Techniques. ASME J. Tribol., 109(3):388394. DOI:10.1115/1.3261453Google Scholar
Dimmock, N. A. (1963) A Compressor Routine Test Code. ARC R&M 3337, HMSO.Google Scholar
Dixon, L. and Hall, C. (2010), Fluid Mechanics and Thermodynamics of Turbomachinery, 6th Edition. Butterworth Heinemann, Oxford.Google Scholar
Dolle, B., Brillert, D., Dohmen, H. J. and Benra, F. K. (2018) Investigation of Aerodynamic Effects in Stator Components of Multistage Centrifugal Compressors. ASME Paper GT2018-76783, ASME Turbo Expo, 11–15 June, Oslo.Google Scholar
Dong, L. and Cao, L. (2015) Effects of Residual Riblets of Impeller's Hub Surface on Aerodynamic Performance of Centrifugal Compressors. Engi. Appli. Comput. Fluid Mech., 9(1):99113. DOI:10.1080/19942060.2015.1004813Google Scholar
Dowson, P., Bauer, D. and Laney, S. (2008) Selection of Materials and Material Related Processes for Centrifugal Compressors and Steam Turbines in the Oil and Petrochemical Industry. 37th Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1SS8CGoogle Scholar
Drela, M., Giles, M. and Thompkins, W. T. (1986) Newton Solution of Coupled Euler and Boundary Layer Equations. In Numerical and Physical Aspects of Aero-Dynamic Flow III, ed. Cebeci, T.. Springer-Verlag, New York, 143154.Google Scholar
Drela, M. and Youngren, H. (1991) Viscous/Inviscid Method for Preliminary Design of Transonic Cascades. AIAA Paper No. 91-2364. DOI:10.2514/6.1991-2364Google Scholar
Dring, R. P. (1984) Blockage in Axial Compressors. ASME J. Eng. Power, 106(3):712714. DOI:10.1115/1.3239628Google Scholar
Dubbel, H. (2001) Taschenbuch für den Maschinenbau. 20th Edition. Springer, Berlin, Germany.Google Scholar
Dunham, J. (1998) CFD Validation for Propulsion System Components. AGARD Advisory Report 355.Google Scholar
Eck, B. (1972) Fans: Design and Operation of Centrifugal Axial Flow and Cross Flow Fans. Pergamon Press, Oxford.Google Scholar
Eckardt, D. (1975) Instantaneous Measurements in the Jet-Wake Discharge Flow of a Centrifugal Compressor Impeller. ASME J. Eng. Power, 97(3):337345. DOI:10.1115/1.3445999Google Scholar
Eckardt, D. (1976) Detailed Flow Investigations within a High-speed Centrifugal Compressor Impeller. ASME J. Fluids Eng., 98(3):390399. DOI:10.1115/1.3448334Google Scholar
Eckardt, D. (1978) Investigation of the Jet-Wake Flow of a Highly-Loaded Centrifugal Compressor Impeller. Translation of a doctoral thesis from Aachen, Germany. NASA TM -75232.Google Scholar
Eckardt, D. (1979) Flow Field Analysis of Radial and Backswept Centrifugal Compressor Impellers, Part 1: Flow Measurements Using Laser Velocimeter. In Performance Prediction of Centrifugal Pumps and Compressors, ed. Gopalakrishnan. ASME Publication, New York, 7786Google Scholar
Eckardt, D. (2014) Gas Turbine Powerhouse. Oldenbourg, MunichGoogle Scholar
Eckert, B. and Schnell, E. (1961) Axial- und Radial-Kompressoren. Springer, Berlin.Google Scholar
Eckardt, D., Trülzsch, K. J. and Weimann, W. (1977) Vergleichende Strömungsuntersuchungen an den drei Radial-Verdichter Laufrädern mit konventionellen Messverfahren, FVV Radialverdichter Vorhaben. No. 182, Heft 237, FVV, Frankfurt.Google Scholar
Edminster, W. C. (1961) Applied Hydrocarbon Thermodynamics. Gulf Publishing Company, Houston.Google Scholar
Elfert, M., Weber, A., Wittrock, D., Peters, A., Voss, C. and Nicke, E. (2017) Experimental and Numerical Verification of an Optimization of a Fast-Rotating High-Performance Radial Compressor Impeller. ASME. J. Turbomach., 139(10): 101007. DOI:10.1115/1.4036357Google Scholar
Eisele, K., Zhang, Z., Casey, M. V., Gülich, J. and Schachenmann, A. (1997) Flow Analysis in a Pump Diffuser – Part 1: LDA and PTV Measurements of the Unsteady Flow. ASME J. Fluids Eng., 119(4):968977. DOI:10.1115/1.2819525Google Scholar
Eisenlohr, G. and Chladek, H. (1994) Thermal Tip Clearance Control for Centrifugal Compressor of an APU Engine. ASME J. Turbomach., 116(4):629634. DOI:10.1115/1.2929453Google Scholar
Eisenlohr, G., Dalbert, P., Krain, H. et al. (1998) Analysis of the Transonic Flow at the Inlet of a High Pressure Ratio Centrifugal Impeller. ASME Paper 98-GT-024, ASMEGas Turbine Congress, 2–5 June, Stockholm. DOI:10.1115/98-GT-024Google Scholar
Elder, R. L. and Gill, M. E. (1985) A Discussion of the Factors Affecting Surge in Centrifugal Compressors. ASME J. Eng. Power, 107(2):499506. DOI:10.1115/1.3239759Google Scholar
Elfert, M., Weber, A., Wittrock, D. et al. (2017) Experimental and Numerical Verification of an Optimization of a Fast-Rotating High-Performance Radial Compressor Impeller. ASME. J. Turbomach., 139(10):101007. https://doi.org/10.1115/1.4036357Google Scholar
Emmons, H. W., Pearson, C. E. and Grant, H. P. (1955) Compressor Surge and Stall Propagation. ASME 53-A-65; ASME J. Basic Eng., 77:455469.Google Scholar
Engeda, A. (1998) Early Historical Development of the Centrifugal Impeller. ASME Paper 98-GT-22, ASME Gas Turbine Congress, 2–5 June, Stockholm. DOI:10.1115/98-GT-022Google Scholar
Engeda, A. (2001) The Design and Performance Results of Simple Flat Plate Low Solidity Vaned Diffusers. I. Mech. E. Part A: J. Power Energy, 215(1):109118. DOI:10.1243/0957650011536471Google Scholar
Engeda, A. (2007) Effect of Impeller Exit Width Trimming on Compressor Performance. Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, July, Lyon. ISAIF8–00135.Google Scholar
Engels, B. (1990) Verbesserung des Instationärverhaltens von Abgasturboladern, Seminar on Brennverfahrensentwicklung für direkeinspritzende Dieselmotoren, 25–26 January, Nurnberg.Google Scholar
Epple, P., Durst, F. and Delgado, A. (2010) A Theoretical Derivation of the Cordier Diagram for Turbomachines, I. Mech. E. Part C: J. Mech. Eng. Sci., 225(2):354-368. DOI:10.1243/09544062JMES2285Google Scholar
Epstein, A. H. (2004) Millimetre-Scale, Micro-Electro-Mechanical Systems for Gas Turbine Engines. ASME J. Eng. Power., 126(2):205226. DOI:10.1115/1.1739245Google Scholar
ESDU 74015 (2007) Performance in Incompressible Flow of Plane-Walled Diffusers with Single-Plane Expansion.Google Scholar
Everitt, J. N., Spakovszky, Z. S., Rusch, D. and Schiffmann, J. (2017) The Role Impeller Outflow Conditions on the Performance of Vaned Diffusers. ASME J. Turbomach., 139(4):041004. DOI:10.1115/1.4035048Google Scholar
Ewins, D. J. (1969) The Effects of Detuning upon the Forced Vibrations of Bladed Disks. J. of Sound Vib., 9(1), 6572. DOI:10.1016/0022-460X(69)90264-8Google Scholar
Falomi, S., Aringhieri, C., Iurisci, G. et al. (2016) Full Scale Validation of a High Pressure Ratio Centrifugal Compressor. 45th Turbomachinery Symposium, Texas A&M, Houston.Google Scholar
Farkas, F. (1977) The Development of Brown Boveri Gas Turbine Compressors. Brown Boveri Review, 64(1):5259.Google Scholar
Faux, I. D. and Pratt, M. J. (1979) Computational Geometry for Design and Manufacture. Ellis Horwood, London.Google Scholar
Ferguson, T. B. (1963) The Centrifugal Compressor Stage. Butterworth, London.Google Scholar
Ferziger, J. H. and Peric, M. (2002) Computational Methods for Fluid Dynamics. Springer, BerlinGoogle Scholar
Filipenco, V. G., Deniz, S., Johnston, J. M., Greitzer, E. M. and Cumpsty, N. A. (2000) Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor Diffusers: Part 1 – Discrete Passage Diffuser. ASME J. Turbomach., 122(1):110. DOI:10.1115/1.555418Google Scholar
Fink, D. A., Cumpsty, N. A. and Greitzer, E. M. (1992) Surge Dynamics in a Free-Spool Centrifugal Compressor System. ASME J. Turbomach., 114(2):321332. DOI:10.1115/1.2929146Google Scholar
Fisher, F. B. (1988) Application of Map Width Enhancement Devices to Turbocharger Compressor Stages. SAE Trans., 1988(97):13031310.Google Scholar
Flathers, M. B., Bache, G. E. and Rainsberger, R. (1996) An Experimental and Computational Investigation of Flow in A Radial Inlet of an Industrial Pipeline Centrifugal Compressor. ASME J. Turbomach., 118(2):371384. DOI:10.1115/1.2836652Google Scholar
Fontana, M., Baldassarre, L., Bernocchi, A. et al. (2015) Axial Thrust in High Pressure Centrifugal Compressors: Description of a Calculation Model Validated by Experimental Data from Full Load Test. 44th Turbomachinery Symposium, Texas A&M, Houston.Google Scholar
Fox, R. W. and Kline, S. J. (1962) Flow Regimes in Curved Subsonic Diffusers. ASME J. Basic Eng., 84(3):303312. DOI:10.1115/1.3657307Google Scholar
Freeman, C. (1985) Effect of Tip Clearance Flow on Compressor Stability and Engine Performance. VKI Lecture series LS-1985-05, Von Karman institute, BrusselsGoogle Scholar
Freeman, C. and Cumpsty, N. A. (1992) A Method for the Prediction of Supersonic Compressor Blade Performance. J. Propul., 8(1):199. DOI:10.2514/3.23461Google Scholar
Frigne, P. and Van den Braembussche, R. (1979) One Dimensional Design of Centrifugal Compressors Taking into Account Flow Separation in the Impeller. Von Karman Institute for Fluid Mechanics, Sint-Genesius-Rode, TN 129.Google Scholar
Frigne, P. and Van den Braembussche, R. (1984) Distinction between Different Types of Impeller and Diffuser Rotating Stall in a Centrifugal Compressor with Vaneless Diffuser. ASME J. Eng. Power, 106(2):468474. DOI:10.1115/1.3239589Google Scholar
Fritsch, G. and Giles, M. B. (1995) An Asymptotic Analysis of Mixing Loss. ASME J. Turbomach., 117(3):367374. DOI:10.1115/1.2835670Google Scholar
Fulton, J. W., Klein, J. M., Marriott, A. and Graham, D. A, (2001) Full Load Testing of an All-Electric Centrifugal Compressor for Miscible Gas Injection. 30th Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1ZD2VGoogle Scholar
Galindo, J., Serrano, J. R., Margot, X., Tiseira, A., Schorn, N. and Kindl, H. (2007) Potential of Flow Pre-Whirl at the Compressor Inlet of Automotive Engine Turbochargers to Enlarge Surge Margin and Overcome Packaging Limitations, Int. J. Heat Fluid Flow, 28(3):374-387. DOI:10.1016/j.ijheatfluidflow.2006.06.002Google Scholar
Gallimore, S. J. (1986) Spanwise Mixing in Multistage Axial Flow Compressors: Part II. Throughflow Calculations Including Mixing. J. Turbomach., 108(1):1016. DOI:10.1115/1.3262009Google Scholar
Gallimore, S. J., Bolger, J. J., Cumpsty, N. A. et al. (2002) The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading. Part I: University Research and Methods Development. ASME J. Turbomach., 124(4):521532. DOI:10.1115/1.1507333Google Scholar
Galloway, L. (2018) Enhancing Centrifugal Compressor Stability Using Porous Endwall Treatments in the Vaned Diffuser. Ph.D. Thesis, Queen’s University, Belfast.Google Scholar
Galloway, L., Spence, S., In Kim, S., Rusch, D., Vogel, K. and Hunziker, R. (2018) An Investigation of the Stability Enhancement of a Centrifugal Compressor Stage Using a Porous Throat Diffuser. ASME J. Turbomach., 140(1):011008. DOI:10.1115/1.4038181Google Scholar
Galpin, P. F., Broberg, R. B. and Hutchinson, B. R. (1995) Three-Dimensional Navier–Stokes Predictions of Steady State Rotor/Stator Interaction with Pitch Change. Third Annual Conference of the CFD Society of Canada, 25–27 June, Banff.Google Scholar
Galpin, P. F., Van Doormaal, J. P. and Raithby, G. D. (1985) Solution of the Incompressible Mass and Momentum Equations by Application of a Coupled Equation Line Solver. Int. J. Numer. Methods in Fluids, 5(7):615625.Google Scholar
Galvas, M. (1973) Fortran Program for Predicting Off-Design Performance of Centrifugal Compressors. NASA-TND-7487. NASA Lewis Research Center, Cleveland.Google Scholar
Gao, C., Gu, C., Wang, T. and Yang, B. (2007) Analysis of Geometries' Effects on Rotating Stall in Vaneless Diffuser with Wavelet Neural Networks. Int. J. Rotating Mach., 2007, Article ID 76476., DOI:10.1155/2007/76476.Google Scholar
Gao, R., Spakovszky, Z., Rusch, D. and Hunziker, R. (2017) Area Schedule-Based Design of High-Pressure Recovery Radial Diffusion Systems. ASME J. Turbomach., 139(1):011012. DOI:10.1115/1.4034488Google Scholar
Garrison, L., and Cooper, N. (2009) Visualization and Post-Processing of Centrifugal Compressor Computational Fluid Dynamics Flow Fields. ASME Paper GT2009-60165, ASME Turbo Expo, Orlando, 8–12 June. DOI:10.1115/GT2009-60165Google Scholar
Gasch, R., Nordmann, R. and Pfützner, H. (2006) Rotordynamik. Springer Berlin.Google Scholar
Gaster, M. (1969) Structure and Behaviour of Laminar Separation Bubbles. ARC R&M 3595. HMSO.Google Scholar
Gault, D. E. (1957) A Correlation of Low-Speed, Airfoil-Section Stalling Characteristics with Reynolds Number and Airfoil Geometry. NACA-TN-3963.Google Scholar
Geller, W. (2015) Thermodynamik für Maschinenbauer. Springer, Berlin.Google Scholar
Gibson, L., Galloway, L., Kim, S. and Spence, S. (2017) Assessment of Turbulence Model Predictions for a Centrifugal Compressor Simulation. J. GPPS., 1:142156. DOI:10.22261/2II890Google Scholar
Giesecke, D., Stark, U., Garcia, R. H. and Friedrichs, J. (2017) Design and Optimisation of Compressor Airfoils by Using Class Function/Shape Function Methodology. Conference ISROMAC 2017 – 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Maui.Google Scholar
Gill, A., von Backström, T. W. and Harms, T. M. (2007) Fundamentals of Four-Quadrant Axial Flow Compressor Maps. I. Mech. E., Part A: J. Power Energy, 221(7):10011010. https://doi.org/10.1243/09576509JPE354Google Scholar
Ginder, R. B. and Calvert, W. J. (1987) The Design of an Advanced Civil Fan Rotor. ASME J. Turbomach., 109(3):340345. DOI:10.1115/1.3262111Google Scholar
Godard, A., Trébinjac, L. and Roumeas, M. (2017) Experimental characterisation of the surge onset in a turbocompressor for a fuel cell application. Paper ID: ETC2017-040, 12th European Turbomachinery Conference, 3–7 April, Stockholm. DOI:10.29008/ETC2017-040Google Scholar
Goodhand, M. N. and Miller, R. J. (2011) Compressor Leading Edge Spikes: A New Performance Criterion. ASME J. Turbomach., 133(2):021006. DOI:10.1115/1.4000567Google Scholar
Goodhand, M. N. and Miller, R. J. (2012) The Impact of Real Geometries on Three-Dimensional Separations in Compressors. ASME J. Turbomach., 134(2):021007. DOI:10.1115/1.4002990Google Scholar
Gooding, W. J., Fabian, J. C. and Key, N. L. (2019) LDV Characterization of Unsteady Vaned Diffuser Flow in a Centrifugal Compressor. ASME Paper GT2019-90476, ASME Turbo Expo, 17–21 June, Phoenix.Google Scholar
Goodman, J. (1919) Mechanics Applied to Engineering. Longmans, Green and Co., London.Google Scholar
Gosman, A. D. and Johns, R. J. R. (1978) Development of a Predictive Tool for In-Cylinder Gas Motion in Engines. SAE International Congress, Detroit. Paper 7803l5.Google Scholar
Gostelow, J. P. (1984) Cascade Aerodynamics. Pergamon Press, Oxford.Google Scholar
Gossweiler, C. R. (1993) Sonden und Messsystem für schnelle aerodynamische Strömungs-messung mit piezoresistiven Druckgebern. Dissertation ETH Nr. 10253. ZürichGoogle Scholar
Goto, A. (1992) Study of Internal Flows in a Mixed-Flow Pump Impeller at Various Tip Clearances Using Three-Dimensional Viscous Flow Computations. ASME J. Turbomach., 114(2):373382. DOI:10.1115/1.2929154Google Scholar
Grates, D. R., Jeschke, P. and Niehuis, R. (2014) Numerical Investigation of the Unsteady Flow inside a Centrifugal Compressor Stage with Pipe Diffuser. ASME. J. Turbomach., 136(3):031012. DOI.org/10.1115w1.4024873Google Scholar
Gravdahl, J. D. and Egeland, O. (1998) Speed and Surge Control for a Low Order Centrifugal Compressor Model. J. Modell. Identifi. Control, 19(1):1329. DOI:10.1109/87.784420Google Scholar
Green, J. E., Weeks, D. J. and Brooman, J. W. F. (1977) Prediction of Turbulent Boundary Layers and Wakes in Compressible Flow by a Lag-Entrainment Method. R.A.E. Technical Report, R.&M. 3791, 1973. HMSO.Google Scholar
Gregory-Smith, D. G. and Crossland, S. C. (2001) Prediction of Turbomachinery Flow Physics from CFD: Review of Recent Computations of APPACET Test Cases. Task Quarterly, 5 (4):407432.Google Scholar
Greitzer, E. M. (1976) Surge and Rotating Stall in Axial Flow Compressors – Part II: Experimental Results and Comparison with Theory. ASME J. Eng. Power., 98(2):199211. DOI:10.1115/1.3446139Google Scholar
Greitzer, E. M. (1981) The Stability of Pumping Systems. ASME. J. Fluids Eng., 103(2):193242. DOI:10.1115/1.3241725Google Scholar
Greitzer, E. M., Nikkanen, J. P., Haddad, D. E., Mazzawy, R. S. and Joslyn, H. D. (1979) A Fundamental Criterion for the Application of Rotor Casing Treatment. ASME J. Fluids Eng., 101(2):237243. DOI:10.1115/1.3448945Google Scholar
Greitzer, E. M., Tan, C. S. and Graf, M. B. (2004) Internal Flow: Concepts and Applications. Cambridge University Press, Cambridge.Google Scholar
Gresh, T. M. (2018) Compressor Performance. Butterworth Heinemann, Elsevier, Oxford.Google Scholar
Grieb, H. (2009) Verdichter für Turbo-Flugtriebwerke. Springer, Berlin and Heidelberg. DOI:10.1007/978-3-540-34374-5Google Scholar
Grigoriadis, P., Sens, M. and Müller, S. (2012) Variable Trim Compressor – A New Approach to Variable Compressor Geometry. Tenth International Conference on Turbochargers and Turbocharging I Mech E, London.Google Scholar
Grimaldi, A. and Michelassi, V. (2018) The Impact of Inlet Distortion and Reduced Frequency on the Performance of Centrifugal Compressors. ASME J. Eng. Power, 141(2):021012. DOI:10.1115/1.4040907Google Scholar
Grönman, A., Dietmann, F., Casey, M. V. and Backman, J. (2013) Review and Collection of Preliminary Design Rules for Low Solidity Diffusers. Tenth European Conference on Turbomachinery ETC10, 15–19 April, Lappeenranta.Google Scholar
Guasti, M. (1992) Analytic Geometry of Some Rectilinear Figures. Int. J. Educ. Sci. Technol., 23:895901.Google Scholar
Guidotti, E., Toni, L., Rubino, D. T. et al. (2014) Influence of Cavity Flows Modelling on Centrifugal Compressor Stages Performance Prediction across Different Flow Coefficient Impellers. ASME Paper GT2014-25839, ASME Turbo Expo, 16–20 June, Düsseldorf. DOI:10.1115/GT2014-25830Google Scholar
Gülich, J. F. (2008) Centrifugal Pumps. Springer, Berlin.Google Scholar
Guo, G., Zhang, Y., Xu, J., Zheng, X. and Zhuge, W. (2008) Numerical Simulation of a Transonic Centrifugal Compressor Blades Tip Clearance Flow of Vehicle Turbocharger, ASME Paper GT2008-50957, ASME Turbo Expo, 9–13 June, Berlin. DOI:10.1115/GT2008-50957Google Scholar
Gyarmathy, G. (1996) Impeller-Diffuser Momentum Exchange during Rotating Stall. ASME Paper 96-WA/PID-6, ASME International Mechanical Engineering Congress, Atlanta.Google Scholar
Gyarmathy, G. (2003) Personal Communication of Unpublished Turbomachinery Lecture Notes, ETH, Zürich.Google Scholar
Haaland, S E. (1983) Simple and Explicit Formulae for the Friction Factor in Turbulent Pipe Flow, Trans. ASME J. Fluids Eng., 105:8999. DOI:10.1115/1.3240948Google Scholar
Hah, C., Puterbaugh, S. L. and Wadia, A. R. (1998) Control of Shock Structure and Secondary Flow Field inside Transonic Compressor Rotors through Aerodynamic Sweep. ASME Paper 98-GT-561, ASME Gas Turbine Congress, 2–5 June, Stockholm. DOI:10.1115/98-GT-561Google Scholar
Hall, D. K., Greitzer, E. M., and Tan, C. S. (2012) Performance Limits of Axial Compressor Stages. ASME Paper GT2012-69709, ASME Turbo Expo, 11–15 June, Copenhagen. DOI:10.1115/GT2012-69709Google Scholar
Halstead, D. E., Wisler, D. C., Okishii, T. H., Walker, G. J., Hodson, H. P. and Shin, H. W. (1997) Boundary Layer Development in Axial Compressors and Turbines – Part 1 of 4: Composite Picture. ASME J. Turbomach., 119(2):114127. DOI:10.1115/1.2841105Google Scholar
Hama, F. R. (1954) Boundary Layer Characteristics for Smooth and Rough Surfaces. SNAME. 62:333358.Google Scholar
Han, G., Gua, L., Yand, C. et al. (2017) Design and Analysis of a High Pressure Ratio Centrifugal Compressor with Three Diffusers. GPPS-2017-0104 Proceedings of Shanghai GPP Forum 2017, 30 October–1 November.Google Scholar
Hanimann, L., Mangani, L., Casartelli, E. et al. (2014) Development of a Novel Mixing Plane Interface Using a Fully Implicit Averaging for Stage Analysis. ASME J. Turbomach., 136(8):081010. DOI:10.1115/1.4026323Google Scholar
Hanlon, P. C. (2001) Compressor Handbook. McGraw-Hill, New York.Google Scholar
Harada, H. (1985) Performance Characteristics of Shrouded and Unshrouded Impellers of a Centrifugal Compressor. ASME J. Eng. Power., 107(2):528533. DOI:10.1115/1.3239765Google Scholar
Harari, Y. N. (2018) 21 Lessons for the 21st Century. Jonathan Cape, London.Google Scholar
Hardin, J. R. (2002) A New Approach to Predicting Centrifugal Compressor Sideload Pressure. ASME Paper IMECE2002-39592, ASME Mechanical Engineering Congress, 17–22 November, New Orleans. DOI:10.1115/IMECE2002-39592Google Scholar
Harley, P., Spence, S., Filsinger, D., Dietrich, M. and Early, J. (2014) Meanline Modelling of Inlet Recirculation in Automotive Turbocharger Centrifugal Compressors. ASME J. Turbomach., 137(1):011007. DOI:10.1115/1.4028247Google Scholar
Harley, P., Starke, A. Bamba, T. and Filsinger, D. (2017) Axial Groove Casing Treatment in an Automotive Turbocharger Centrifugal Compressor. I. Mech. E. Part C: J. Mech. Eng. Sci., 232(24):44724484. DOI:10.1177/0954406216688495Google Scholar
Harris, L. E. (1951) Some Factors in the Early Development of the Centrifugal Pump 1689 to 1851. Trans. Newcomen Soc., 28(1):187202. DOI: 10.1179/tns.1951.014Google Scholar
Harvey, N. W., Rose, M. G., Taylor, M. D. et al. (1999) Non-Axisymmetric Turbine End Wall Design: Part I – Three-Dimensional Linear Design System. ASME J. Turbomach., 122(2):278285. DOI:10.1115/1.555445Google Scholar
Hathaway, M. D. (2007) Passive Endwall Treatments for Enhancing Stability. NASA/TM-2007-214409.Google Scholar
Hathaway, M. D., Wood, J. R. and Wasserbauer, C. A. (1992) NASA Low-Speed Centrifugal Compressor for Three-Dimensional Viscous Code Assessment and Fundamental Flow Physics Research. ASME J. Turbomach., 114(2):295303. DOI:10.1115/1.2929143Google Scholar
Hausenblas, H. (1965) Trennung der Lauf- und Leitradverluste bei der Aufwertung von Versuchen an einstufigen Radialverdichtern, Forsch. Ing. Wes., 31(1):1113.Google Scholar
Hawthorne, W. R. (1974) Secondary Vorticity in Stratified Compressible Flows in Rotating Systems. C.U.E.D./A-Turbo/TR63.Google Scholar
Hayami, H., Senoo, Y. and Utsunomiya, K. (1990) Application of a Low-Solidity Cascade Diffuser to Transonic Centrifugal Compressor. ASME J. Turbomach., 112(1):2529. DOI:10.1115/1.2927416Google Scholar
Haywood, R. W. (1980) Analysis of Engineering Cycles. Pergamon Press, Oxford.Google Scholar
Hazby, H. R. (2010) Centrifugal Compressor Aerodynamics. Ph.D. Thesis, Cambridge University.Google Scholar
Hazby, H. R and Robinson, C. J. (2018) Inducer Design of Centrifugal Impellers. Paper No: CON6516/161. The 13th International Conference on Turbochargers and Turbocharging, 16–17 May, I. Mech E.Google Scholar
Hazby, H. R. and Xu, L. (2009a) Numerical Investigation of the Effects of Leading Edge Sweep in a Small Transonic Impeller. Eighth European Turbomachinery Conference on Turbomachinery Fluid Dynamics and Thermodynamics, 23–27 March, Graz.Google Scholar
Hazby, H. R. and Xu, L. (2009b) Role of Tip Leakage in Stall of a Transonic Centrifugal Impeller. ASME Paper GT2009-59372, ASME Turbo Expo, 8–12 June, Orlando. DOI:10.1115/GT2009-59372Google Scholar
Hazby, H. R., Casey, M. V. and Březina, L. (2019) Effect of Leakage Flows on the Performance of a Family of Inline Centrifugal Compressors. ASME J. Turbomach., 141(9):091006. DOI:10.1115/1.4043786Google Scholar
Hazby, H. R., Casey, M. V., Numakura, R. and Tamaki, H. (2014) Design and Testing of a High Flow Coefficient Mixed Flow Impeller. Eleventh International Conference on Turbochargers and Turbocharging, 13–14 May, London.Google Scholar
Hazby, H. R., Robinson, C. J., Casey, M. V., Rusch, D. and Hunziker, R. (2018) Free-Form versus Ruled Inducer Design in a Transonic Centrifugal Impeller. ASME J. Turbomach., 140(1):011010. DOI:10.1115/1.4038176Google Scholar
Hazby, H. R., Xu, L. and Casey, M. V. (2017) Investigation of the Flow in a Small-Scale Turbocharger Centrifugal Compressor. I. Mech. E. Part A: J. Power Energy, 231(1):313. DOI:10.1177/0957650916671277Google Scholar
Hazby, H. R., Xu, L. and Schleer, M. (2013) Study of the Flow in a Vaneless Diffuser at Part Speed Operating Conditions. ASME J. Turbomach., 136(3):031011. DOI:10.1115/1.4024693Google Scholar
Hazby, H., Woods, I., Casey, M., Numakura, R. and Tamaki, H. (2015). Effects of Blade Deformation on the Performance of a High Flow Coefficient Mixed Flow Impeller. ASME J. Turbomach., 137(12):121005. DOI:10.1115/1.4031356Google Scholar
Hazby, H. R., O’Donoghue, R. and Robinson, C. J. (2020) Design and Modelling of Circular Volutes for Centrifugal Compressors. 14th International Conference on Turbochargers and Turbocharging,11–12 May, London.Google Scholar
He, L. and Shan, P. (2012) Three-Dimensional Aerodynamic Optimization for Axial-Flow Compressors Based on the Inverse Design and the Aerodynamic Parameters. ASME. J. Turbomach., 134(3):031004. DOI:10.1115/1.4003252Google Scholar
He, X. and Zheng, X. (2019) Roles and Mechanisms of Casing Treatment on Different Scales of Flow Instability in High Pressure Ratio Centrifugal Compressors. Aerosp. Sci. Technol., 84:734746, DOI:10.1016/j.ast.2018.10.015Google Scholar
Head, M. R. (1960) Entrainment in the Turbulent Boundary Layer. ARC R&M 3152, HMSO.Google Scholar
Head, M. R. and Patel, V. C. (1968) Improved Entrainment Method for Calculating Turbulent Boundary Layer Development. ARC R&M 3643, HMSO.Google Scholar
Hederer, M., Editor (2011) Radialverdichterforschung in der Forchungsvereinigung, Heft R555-2011. Forschungsvereinigung Verbrennungskraftmaschinen, Frankfurt.Google Scholar
Hehn, A., Mosdzien, M., Grates, D. and Jeschke, P. (2018) Aerodynamic Optimization of a Transonic Centrifugal Compressor by Using Arbitrary Blade Surfaces. ASME. J. Turbomach., 140(5):051011. DOI:.10.1115/1.4038908Google Scholar
Herbert, M. V. (1980) A Method of Performance Prediction for Centrifugal Compressors. ARC R&M 3843, HMSO.Google Scholar
Hetzer, T., Epple, P., and Delgado, A. (2010) Exact Solution of the Plane Flow and Slip Factor in Arbitrary Radial Blade Channels and Extended Design Method for Radial Impellers. ASME Paper IMECE2010-39081, ASME 2010 Mechanical Engineering Congress, 12–18 November, Vancouver. DOI:10.1115/IMECE2010-39081Google Scholar
Hirsch, C. (2007) Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics, 2nd Edition. Butterworth Heinemann, Oxford.Google Scholar
Hirsch, C. and Warzee, G. (1976) A Finite-Element Method for through Flow Calculations in Turbomachines. ASME J. Fluids Eng., 98(3):403414. DOI:10.1115/1.3448341Google Scholar
Hirsch, C. and Deconinck, H. (1985) Through Flow Models for Turbomachines: Streamsurface and Passage Averaged Representations. In Thermodynamics and Fluid Dynamics of Turbomachinery, eds. Üçer, A. S., Stow, P. and Hirsch, Ch., vol. 1. Martinus Nijhoff Publishers, Dordrecht. 335.Google Scholar
Hirsch, Ch., Kang, S., and Pointel, G. (1996) A Numerically Supported Investigation of the 3D Flow in Centrifugal Impellers: Part II – Secondary Flow Structure. ASME Paper 96-GT-152, ASMEGas Turbine Congress, 10–13 June, Birmingham. DOI:10.1115/96-GT-152Google Scholar
Hirschmann, A., Casey, M. V. and Montgomery, M. (2013) A Zonal Calculation Method for Axial Gas Turbine Diffusers. ASME Turbo Expo, 3–7 June, San Antonio. DOI:10.1115/GT2013-94117.Google Scholar
Hobbs, D. E. and Weingold, H. D. (1984) Development of Controlled Diffusion Airfoils for Multistage Compressor Application. ASME J. Eng. Power., 106(2):271278. DOI:10.1115/1.3239559Google Scholar
Hodson, H. P., Hynes, T. P., Greitzer, E. M. and Tan, C. S. (2012) A Physical Interpretation of Stagnation Pressure and Enthalpy Changes in Unsteady Flow. J. Turbomach., 134(6):060902. DOI:10.1115/1.4007208Google Scholar
Horlock, J. H. (1958) Axial Flow Compressors. Butterworth, Oxford, reprinted with additional material in 1973 by Krieger Publishing Co., Malabar, 1973.Google Scholar
Horlock, J. H. (1960) Losses and Efficiencies in Axial-Flow Turbines. Int. J. Mech. Sci., 2:4875. DOI:10.1016/0020-7403(60)90013-8Google Scholar
Horlock, J. H. (1966) Axial Flow Turbines. Butterworth, Oxford.Google Scholar
Horlock, J. H. (1971) On Entropy Production in Adiabatic Flow in Turbomachines. ASME J. Basic Eng. Series D, 93(4):587593. DOI:10.1115/1.3425313Google Scholar
Horton, H. P. (1967) A Semi-Empirical Theory for the Growth and Bursting of Laminar Separation Bubbles. ARC Conf. Proc. 1073, HMSO.Google Scholar
Howard, J. H. G. and Ashrafizaadeh, M. (1994) A Numerical Investigation of Blade Lean Angle Effects on Flow in a Centrifugal Impeller. ASME Gas Turbine Congress, 13–16 June, The Hague. DOI:10.1115/94-GT-149Google Scholar
Howell, A. R. (1945) Fluid Dynamics of Axial Compressors. I. Mech. E., 153 (1):441452Google Scholar
Howell, A. R. and Calvert, W. J. (1978) A New Stage Stacking Technique for Axial Flow Compressor Performance Prediction. ASME J. Eng. Power, 100(4):698703. DOI:10.1115/1.3446425Google Scholar
Hu, B., Brillert, D., Dohmen, H. J. and Benra, F. K. (2018) Investigation on Thrust and Moment Coefficients of a Centrifugal Turbomachine. Int. J. Propuls. Power, 3(2):9. DOI:10.3390/ijtpp3020009Google Scholar
Huntington, R. A. (1985) Evaluation of Polytropic Calculation Methods for Turbomachinery Performance. ASME J. Eng. Power, 107(4):872876. DOI:10.1115/1.3239827Google Scholar
Hunziker, R. (1993) Einfluss der Diffusorgeometrie auf die Instabilitätsgrenze des Radialverdichters. ETH Dissertation Nr. 10252 Zürich.Google Scholar
Hunziker, R., and Gyarmathy, G. (1994) The Operational Stability of a Centrifugal Compressor and Its Dependence on the Characteristics of the Subcomponents. ASME J. Turbomach., 116(2):250259. DOI:10.1115/1.2928359Google Scholar
Hunziker, R., Dickmann, H. P. and Emmrich, R. (2001) Numerical and Experimental Investigation of a Centrifugal Compressor with an Inducer Casing Bleed System. I. Mech.E. Part A: J. Power Energy, 215(6):783791. DOI:10.1243/0957650011538910Google Scholar
Ibaraki, S., Tomita, S., Ebisu, M. and Takashi, S. (2012) Development of a Wide-Range Centrifugal Compressor for Automotive Turbochargers. Mitsubishi Heavy Ind. Tech. Rev., 49(1):6879.Google Scholar
Inoue, M. (1983) Radial Vaneless Diffusers: A Re-Examination of the Theories of Dean and Senoo and of Johnston and Dean. ASME J. Fluids Eng., 105(1):2127. DOI:10.1115/1.3240935Google Scholar
Inoue, M. and Cumpsty, N. A. (1984) Experimental Study of Centrifugal Impeller Discharge Flow in Vaneless and Vaned Diffusers. ASME J. Eng. Power, 106(2):455467. DOI:10.1115/1.3239588Google Scholar
Ishimoto, L., Miranda, M. A. Silva, R. T. et al. (2015) Review of Centrifugal Compressors High Pressure Testing for Offshore Applications. 44th Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1V04JGoogle Scholar
Issac, J. M., Sitaram, N. and Govardhan, M. (2004) Effect of Diffuser Vane Height and Position on the Performance of a Centrifugal Compressor. I. Mech. E. Part A: J. Power Energy, 218(8):647654. DOI:10.1243/0957650042584320.Google Scholar
ISO 1302 (2002) Geometrical Product Specifications (GPS) – Indication of Surface Texture in Technical Product Documentation. International Organisation for Standardisation, Geneva.Google Scholar
ISO 10439 (2015) Petroleum, Petrochemical and Natural Gas Industries Axial and Centrifugal Compressors. International Organisation for Standardisation, Geneva.Google Scholar
Itou, S., Oka, N., Furukawa, M., Yamada, K. et al. (2017) Optimum Aerodynamic Design of Centrifugal Compressor Using a Genetic Algorithm and an Inverse Method Based on Meridional Viscous Flow Analysis. ISROMAC 2017 International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, 16–21 December, Hawaii.Google Scholar
Jaatinen-Värri, A., Tiainen, J., Turunen-Saaresti, T. et al. (2016) Centrifugal Compressor Tip Clearance and Impeller Flow. J. Mech. Sci. Technol., 30(11):50295040. DOI:10.1007/s12206-016-1022-8Google Scholar
Jaatinen-Värri, A., Turunen-Saaresti, T., Grönman, A., Roytta, P. and Backman, J. (2013) The Tip Clearance Effects on the Centrifugal Compressor Vaneless Diffuser Flow Fields at Off-Design Conditions. ETC2013-065, 10th European Turbomachinery Conference, Lappeenranta.Google Scholar
Jansen, M. and Rautenberg, M. (1982) Design and Investigations of a Three Dimensionally Twisted Diffuser for Centrifugal Compressors. ASME Paper 82-GT-102, ASME Gas Turbine Conference, 18–22 April, London. DOI:10.1115/82-GT-102Google Scholar
Jansen, W. and Kirschner, A. (1974) Impeller Blade Design Method for Centrifugal Compressors. NASA Special Publication, Washington.Google Scholar
Janssen, M., Seume, J. and Zimmermann, H. (1994) The Model V84.3 Shop Tests: Tip Clearance Measurements and Evaluation. ASMEGas Turbine Congress, 13–16 June, The Hague. DOI:10.1115/94-GT-319Google Scholar
Japikse, D. (1985) Assessment of Single- and Two-Zone Modelling of Centrifugal Compressors, Studies in Component Performance: Part 3. ASME Paper 85-GT-73, ASME Gas Turbine Conference, 18–21 March, Houston. DOI:10.1115/85-GT-73Google Scholar
Japikse, D. (1990) Centrifugal Compressor Design and Performance. Concepts/NREC Publishing, White River Junction.Google Scholar
Japikse, D. and Baines, N. C. (1984) Introduction to Turbomachinery. Concepts/NREC Publishing, White River Junction.Google Scholar
Japikse, D. and Baines, N. C. (1998) Turbomachinery Diffuser Design Technology. Concepts/NREC Publishing, White River Junction.Google Scholar
Jeffcott, H. H. (1919) Lateral Vibration of Loaded Shafts in the Neighbourhood of a Whirling Speed – the Effect of Want on Balance. Phil. Mag., 37:304314Google Scholar
Jennions, I. K. and Stow, P. (1985) A Quasi-Three-Dimensional Turbomachinery Blade Design System: Part II – Computerized System. ASME J. Eng. Power, 107(2):308314. DOI:10.1115/1.3239716Google Scholar
Jenny, E. (1993) The BBC Turbocharger – a Swiss Success Story. Birkhaueser, Basel.Google Scholar
Jiang, P. M. and Whitfield, A. (1992) Investigation of Vaned Diffusers as a Variable Geometry Device for Application to Turbocharger Compressors. I. Mech. Eng. Part D: J. Automob. Eng., 206(3):209220. DOI:10.1243/PIME_PROC_1992_206_179_02Google Scholar
Johnson, M. W. (1978) Secondary Flow in Rotating Bends. ASME J. Eng. Power, 100(4):553560. DOI:10.1115/1.3446393Google Scholar
Johnson, M. W. and Moore, J. (1980) The Development of Wake Flow in a Centrifugal Impeller. ASME J. Eng. Power, 102(2):382389. DOI:10.1115/1.3230265Google Scholar
Johnson, M. W. and Moore, J. (1983) The Influence of Flow Rate on the Wake in a Centrifugal Impeller. ASME J. Eng. Power, 105(1):3339. DOI:10.1115/1.3227395Google Scholar
Jung, S. and Pelton, R. (2016) Numerically Derived Design Guidelines of Self Recirculation Casing Treatment for Industrial Centrifugal Compressors. ASME Paper GT2016-56672, ASME Turbo Expo, 13–17 June, Seoul. DOI:10.1115/GT2016-56672Google Scholar
Kaluza, P., Landgraf, C., Schwarz, P., Jeschke, P. and Smythe, C. (2017) On the Influence of a Hub-Side Exducer Cavity and Bleed Air in a Close-Coupled Centrifugal Compressor Stage. ASME. J. Turbomach., 139(7):071011. DOI:10.1115/1.4035606Google Scholar
Kammerer, A. (2009) Experimental Research into Resonant Vibration of Centrifugal Compressor Blades. ETH Dissertation No. 18587, Zurich.Google Scholar
Kang, S. and Hirsch, C. (1993) Experimental Study on the Three-Dimensional Flow within a Compressor Cascade with Tip Clearance: Part I – Velocity and Pressure Fields, and Part II – the Tip Leakage Vortex, ASME J. Turbomach., 115(3):435450. DOI:10.1115/1.2929271Google Scholar
Karstadt, S., Weiske, S. and Münz, S. (2018) Turbocharger with Variable Compressor Geometry – Another Contribution to Improved Fuel Economy by the Boosting System. 27th Aachen Colloquium Automobile and Engine Technology 2018.Google Scholar
Katsanis, T. (1966) Use of Arbitrary Quasi-Orthogonals for Calculating Flow Distribution in a Turbomachine. ASME J. Eng. Power, 88(2):197202. DOI:10.1115/1.3678504Google Scholar
Kawakubo, T., Numakura, R. and Majima, K. (2008) Prediction of Surface Roughness Effects on Centrifugal Compressor Performance. ASME Paper FEDSM2008-55078, ASME Fluids Eng. Conference, 10–14 August, Jacksonville. DOI:10.1115/FEDSM2008-55078Google Scholar
Kenny, D. P. (1972) A Comparison of the Predicted and Measured Performance of High Pressure Ratio Centrifugal Compressor Diffusers. ASME Paper 72-GT-54, ASME 1972 Gas Turbine Conference, 26–30 March, San Francisco. DOI:10.1115/72-GT-54Google Scholar
Kerres, B., Cronhjort, A. and Mihaescu, M. (2016). Experimental Investigation of Upstream Installation Effects on the Turbocharger Compressor Map. 12th International Conference on Turbochargers and Turbocharging, 17–18 May, London.Google Scholar
Khalid, S. A., Khalsa, A. S., Waitz, I. A. et al. (1999) Endwall Blockage in Axial Compressors. ASME J. Turbomach., 121(3):499509. DOI:10.1115/1.2841344Google Scholar
Kim, Y. and Koch, J. (2004) Design and Numerical Investigation of Advanced Radial Inlet for a Centrifugal Compressor Stage. ASME Paper IMECE2004-60538, ASME Mech. Eng. Congress, 13–19 November, Anaheim. DOI:10.1115/IMECE2004-60538Google Scholar
Kim, Y., Engeda, A., Aungier, R. and Amineni, N. (2002). A Centrifugal Compressor Stage with Wide Flow Range Vaned Diffusers and Different Inlet Configurations. I. Mech. E. Part A: J. Power Energy, 216(4):307320. DOI:10.1243/09576500260251156Google Scholar
Klein, S. and Nellis, G. (2012), Thermodynamics. Cambridge University Press, New York.Google Scholar
Kline, S. J., Abbott, D. E. and Fox, R. W. (1959) Optimum Design of Straight-Walled Diffusers. ASME J. Basic Eng., 81(3):321329. DOI:10.1115/1.4008462Google Scholar
Kmecl, T. and Dalbert, P. (1999) Optimization of a Vaned Diffuser Geometry for Radial Compressors: Part I – Investigation of the Influence of Geometry Parameters on Performance of a Diffuser. ASME Paper 99-GT-437. ASME Gas Turbine Congress, 7–10 June, Indianapolis. DOI:10.1115/99-GT-437Google Scholar
Kmecl, T., ter Harkel, R. and Dalbert, P. (1999) Optimization of a Vaned Diffuser Geometry for Radial Compressors: Part II – Optimization of a Diffuser Vane Profile in Low Solidity Diffusers. ASME Paper 99-GT-434, ASME Gas Turbine Congress, 7–10 June, Indianapolis. DOI:10.1115/99-GT-434Google Scholar
Koch, C. C. (1981) Stalling Pressure Rise Capability of Axial Flow Compressor Stages. ASME J. Eng. Power, 103(4):645656. DOI:10.1115/1.3230787Google Scholar
Koch, C. C. and Smith, L. H. (1976) Loss Sources and Magnitudes in Axial-Flow Compressors. ASME J. Eng. Power, 98(3):411424. DOI:10.1115/1.3446202Google Scholar
Koch, J., Sorokes, J. and Belhassan, M. (2011) Modelling and Prediction of Sidestream Inlet Pressure for Multistage Centrifugal Compressors. 40th Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1SD29Google Scholar
Kocur, J. A. Jr. and Cloud, C. H. (2013) Shop Rotordynamic Testing – Options, Objectives, Benefits and Practices. 42nd Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1GD2HGoogle Scholar
König, S., Petry, N. and Wagner, N. G. (2009) Aeroacoustic Phenomena in High Pressure Centrifugal Compressors – A Possible Root Cause for Impeller Failures. 38th Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1735CGoogle Scholar
Kouremenos, D. A. and Antonopoulos, K. A. (1987) Isentropic Exponents of Real Gases and Application for the Air at Temperatures from 150 K to 450 K.A. Acta Mech., 65:8199. DOI:10.1007/BF01176874Google Scholar
Kowalski, S. C., Pacheco, J. E., Fakhri, S. and Sorokes, J. M. (2012) Centrifugal Stage Performance Prediction and Validation for High Mach Number Applications. 41st Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1K05FGoogle Scholar
Krain, H. (1981) A Study on Centrifugal Impeller and Diffuser Flow. ASME J. Eng. Power, 103(4):688697. DOI:10.1115/1.3230791Google Scholar
Krain, H. (1987) Secondary Flow Measurements with L2F Technique in Centrifugal Compressors. AGARD Proceedings, AGARD CP-421 (PEP Meeting, 69th Symposium, 4–8 May, Paris, 34.1–34.10.Google Scholar
Krain, H. (2005) Review of Centrifugal Compressor’s Application and Development. ASME J. Turbomach., 127(1):2534. DOI:10.1115/1.1791280Google Scholar
Krain, H. and Hoffman, W. (1989) Verification of an Impeller Design by Laser Measurements and 3D-Viscous Flow Calculations. ASME Paper 89-GT-159, ASME Gas Turbine Congress, 4–8 June, Toronto. DOI:10.1115/89-GT-159Google Scholar
Krain, H., Hoffmann, B. and Pak, H. (1995) Aerodynamics of a Centrifugal Compressor Impeller with Transonic Inlet Conditions. ASME Paper 95-GT-079, ASME 1995 Gas Turbine Congress, 5–8 June, Houston. DOI:10.1115/95-GT-079Google Scholar
Krain, H., Hoffmann, B., Rohne, K.-H., Eisenlohr, G. and Richter, F.-A. (2007) Improved High Pressure Ratio Centrifugal Compressor. ASME Paper GT2007-27100, ASME Turbo Expo, 14–17 May, Montreal. DOI:10.1115/GT2007-27100Google Scholar
Kucharski, W. (1918) Strömungen einer reibungsfreien Flüssigkeit bei Rotation fester Körper. Oldenbourg Technology and Engineering, Berlin.Google Scholar
Kumar, S. K., Kurz, R. and O’Connell, J. P. (1999) Equations of State for Gas Compressor Design and Testing. ASME Paper No: 99-GT-012, ASME Turbo Expo, 7–10 June, Indianapolis. DOI:10.1115/99-GT-012Google Scholar
Kunte, R., Jeschke, P. and Smythe, C. (2013) Experimental Investigation of a Truncated Pipe Diffuser with a Tandem De-Swirler in a Centrifugal Compressor Stage. ASME. J. Turbomach., 135(3):031019. DOI:10.1115/1.4007526Google Scholar
Kurz, R. (2019). Optimization of Compressor Stations. Journal of the Global Power and Propulsion Society, 3:668674. DOI:10.33737/jgpps/112399Google Scholar
Kurz, R., Brun, K. and Legrand, D. D. (1999) Field Performance Testing of Gas Turbine Driven Compressor Sets. 28th Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1PM2FGoogle Scholar
Kurz, R., Marechale, R. K., Fowler, E. J. et al. (2016) Operation of Centrifugal Compressors in Choke Conditions. Asia Turbomachinery and Pump Symposium, 22–25 February, Singapore.Google Scholar
Kushner, F., Richard, S. J. and Strickland, R. A. (2000) Critical Review of Compressor Impeller Vibration Parameters for Failure Prevention. 29th Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1F959Google Scholar
Lakshminarayana, B. (1996) Fluid Dynamics and Heat Transfer in Turbomachinery. Wiley, New York.Google Scholar
Langtry, R. B. and Menter, F. R. (2005) Transition Modelling for General CFD Applications in Aeronautics. AIAA Paper 2005-522, 10–13 January, Reno. DOI:10.2514/6.2005-522Google Scholar
Larosiliere, L. M., Skoch, G. J. and Prahst, P. S. (1997) Aerodynamic Synthesis of a Centrifugal Impeller Using CFD and Measurements. NASA Technical Memorandum, ARL-TR-1461.Google Scholar
Launder, B. E. and Spalding, D. B. (1974) The Numerical Computation of Turbulent Flow. Comp. Meth. Appl. Mech. Eng., 3(2): 269289. DOI:10.1016/0045-7825(74)90029-2Google Scholar
Lawless, P. B. and Fleeter, S. (1993) Rotating Stall Acoustic Signature in a Low Speed Centrifugal Compressor: Part 2 – Vaned Diffuser. ASME Paper 93-GT-254, ASME Gas Turbine Congress, 24–27 May, Cincinnati. DOI:10.1115/93-GT-254Google Scholar
Lee, B. I. and Kesler, M. G. (1975) A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States. AIChE, 21:510527. DOI:10.1002/aic.690210313Google Scholar
Lei, D. and Lixin, C. (2015) Effects of Residual Riblets of Impeller's Hub Surface on Aerodynamic Performance of Centrifugal Compressors. Eng. Appl. Comp. Fluid Mech., 9(1):99113, DOI:10.1080/19942060.2015.1004813Google Scholar
Lei, V., Spakovszky, Z. S. and Greitzer, E. M. (2008) A Criterion for Axial Compressor Hub-Corner Stall. ASME J. Turbomach., 130(3):031006. DOI:10.1115/1.2775492Google Scholar
Leichtfuss, S., Bühler, J. Schiffer, H. P., Peters, P. and Hanna, M. (2019) A Casing Treatment with Axial Grooves for Centrifugal Compressors. Int. J. Propuls. Power. 4(3):27. DOI:10.3390/ijtpp4030027Google Scholar
Lenke, L. J. and Simon, H. (1999) Numerical Investigations on the Optimum Design of Return Channels of Multi-Stage Centrifugal Compressors. ASME Paper 99-GT-103, ASME Gas Turbine Congress, 7–10 June, Indianapolis. DOI:10.1115/99-GT-103Google Scholar
Lettieri, C., Baltadjiev, N., Casey, M. V. and Spakovszky, Z. (2014) Low-Flow-Coefficient Centrifugal Compressor Design for Supercritical CO2. ASME J. Turbomach., 136(8):081008. DOI:10.1115/1.4026322Google Scholar
Lewis, K. L. (1994) Spanwise Transport in Axial-Flow Turbines: Part 2 – Throughflow Calculations Including Mixing. ASME J. Turbomach., 116(2):187193. DOI:10.1115/1.2928352Google Scholar
Lewis, R. I. (1996), Turbomachinery Performance Analysis. John Wiley & Sons, New York.Google Scholar
Lewis, R. I., Fisher, E. H. and Saviolakis, A. (1972) Analysis of Mixed-Flow Rotor Cascades. ARC R&M 3703. HMSO.Google Scholar
Li, X., Zhao, Y., Liu, Z. and Chen, H. (2020) A New Methodology for Preliminary Design of Centrifugal Impellers with Pre-Whirl. I. Mech. E., Part A: J. of Power and Energy, 234(3):251262. DOI:10.1177/0957650919864193Google Scholar
Li, Z. and Zheng, X. (2017) Review of Design Optimization Methods for Turbomachinery Aerodynamics. Prog. Aerosp. Sci., 93:123. DOI:10.1016/j.paerosci.2017.05.003Google Scholar
Lieblein, S (1965) Experimental Flow in Two-Dimensional Cascades. Aerodynamic Design of Axial-Flow Compressors. NASA SP-36, ch. 6.Google Scholar
Liu, B., Chen, S. and Martin, H. F. (2000) A Primary Variable Throughflow Code and Its Application to Last Stage Reverse Flow in LP Steam Turbine. Paper: IJPGC2000–5010, Int. Joint Power Generation Conference, 23–26 July, Miami Beach.Google Scholar
Lohmberg, A., Casey, M. V. and Ammann, S. (2003) Transonic Radial Compressor Inlet Design. I. Mech. E. Part A: J. Power Energy, 217(4):367374. DOI:10.1243/095765003322315423Google Scholar
Longley, J. P. and Hynes, T. P. (1990) Stability of Flow through Multistage Axial Compressors. ASME J. Turbomach., 112(1):126132. DOI:10.1115/1.2927409Google Scholar
Lou, F. and Key, N. L. (2019) The Design Space for the Final-Stage Centrifugal Compressor in Aeroengines. AIAA Paper 2019-0944, AIAA Scitech, 2019 Forum, 7–11 January, San Diego. DOI:10.2514/6.2019-0944Google Scholar
Lou, F., Fabian, J. C. and Key, N. L. (2019) Design Considerations for Tip Clearance Sensitivity of Centrifugal Compressors in Aeroengines. J. Propulsion and Power, 35(3):666. DOI/10.2514/1.B37100Google Scholar
Lou, F., Harrison, H. M., Fabian, J. C. et al. (2016) Development of a Centrifugal Compressor Facility for Performance and Aeromechanics Research. ASME Paper GT2016-56188, ASME Turbo Expo, Seoul. DOI:10.1115/GT2016-56188Google Scholar
Lou, F. J., Fabian, H. M. and Key, N. L. (2014). The Effect of Gas Models on Compressor Efficiency Including Uncertainty. ASME. J. Eng. Power, 136(1):012601. DOI:10.1115/1.4025317Google Scholar
Lown, H. and Wiesner, F. J. (1959) Prediction of Choking Flow in Centrifugal Impellers. ASME J. Basic Eng., 81(1):2935. DOI:10.1115/1.4008351Google Scholar
Lüdtke, K. H. (2004) Process Centrifugal Compressors. Springer, Berlin.Google Scholar
Lyman, F. A. (1993) On the Conservation of Rothalpy in Turbomachines. ASME. J. Turbomach., 115(3):520526. DOI:10.1115/1.2929282Google Scholar
Macchi, E. (1985) The Use of Radial Equilibrium and Streamline Curvature Methods for Turbomachinery Design and Prediction. In Thermodynamics and Fluid Mechanics of Turbomachinery, vol. 1 , eds. Uecer, A. S., Stow, P. and Hirsch, Ch.. Springer, Netherlands, 3366.Google Scholar
MacCormack, R. W. (1969) The Effect of Viscosity in Hypervelocity Impact Cratering. AIAA Paper, 69-354. DOI:10.2514/6.1969-354Google Scholar
Mack, R., Casey, M. V. et al. (1997) The Use of a Three-Dimensional Navier Stokes Code for the Sealing and Leakage Flows in Turbomachinery Applications. Second European Conference on Turbomachinery – Fluid Dynamics and Thermodynamics, 5–7 March, Antwerp.Google Scholar
Malik, A. and Zheng, Q. (2019) Effect of Double Splitter Blades Position in a Centrifugal Compressor Impeller. I. Mech. E. Part A: J. Power Energy, 233(6):689701. DOI:10.1177/0957650918792462Google Scholar
Mallen, M. and Saville, G. (1977) Polytropic Processes in the Performance Prediction of Centrifugal Compressors. In I. of Mech. E. Conference, C183/77, London, 89–96.Google Scholar
Marcinowski, H. (1959) Einstufige Turboverdichter. Chemie Ingieurtechnik 31(4):237247.Google Scholar
Marsan, A., Trébinjac, I., Coste, S. and Leroy, G. (2014) Influence of Unsteadiness on the Control of a Hub-Corner Separation within a Radial Vaned Diffuser. ASME. J. Turbomach., 137(2):021008. DOI:10.1115/1.4028244Google Scholar
Marsh, H. (1968) A Digital Computer Program for the Through-Flow Fluid Mechanics in an Arbitrary Turbomachine Using a Matrix Method. ARC R&M, 3509, HMSO.Google Scholar
Mayle, R. E. (1991) The Role of Laminar-Turbulent Transition in Gas Turbine Engines. ASME J. Turbomach., 113:509537. DOI:10.1115/1.2929110Google Scholar
McDonald, G. B., Lennemann, E. and Howard, J. H. G. (1971) Measured and Predicted Flow Near the Exit of a Radial-Flow Impeller. ASME. J. Eng. Power, 93(4):441446. DOI:10.1115/1.3445604Google Scholar
McDougall, N. M., Cumpsty, N. A. and Hynes, T. P. (1990). Stall Inception in Axial Compressors. ASME. J. Turbomach., 112(1):116123. DOI:10.1115/1.2927406Google Scholar
McKenzie, A. B. (1967) Axial Flow Fans and Compressors: Aerodynamic Design and Performance. Ashgate, Aldershot.Google Scholar
Medic, G., Sharma, O. P., Jongwook, J. et al. (2014) High Efficiency Centrifugal Compressor for Rotorcraft Applications. NASA/CR-2014-218114/REV1.Google Scholar
Mehldahl, A. (1941) Die Trennung der Rad- und Diffusorverluste bei Zentrifugalgebläsen, Brown Boveri Mitteilung, 28(8–9):203206.Google Scholar
Meier, M., Gooding, W., Fabian, J. and Key, N. L. (2019) Considerations for Using Additive Manufacturing Technology in Centrifugal Compressor Research. ASME. J. Eng. Power., 142(3):031018. DOI:10.1115/1.4044937Google Scholar
Melnik, R. E., Brook, J. W. and Del Guidice, P. (1986) Computation of Turbulent Separated Flow with an Integral Boundary Layer Method. In Proceedings of the 10th International Conference on Numerical Methods in Fluid Dynamics, Beijing, and Lecture Notes in Physics, 264:473480.Google Scholar
Menter, F. R. (1994) Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32(8):15981605. DOI:10.2514/3.12149Google Scholar
Menter, F. R. (1996) A Comparison of Some Recent Eddy-Viscosity Turbulence Models. ASME J. Fluids Eng., 118(3):514519. DOI:10.1115/1.2817788Google Scholar
Menter, F. R., Kuntz, M. and Langtry, R. (2003) Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence Heat and Mass Transfer, 4:625632.Google Scholar
Methel, J., Gooding, W. J., Fabian, J. C., Key, N. L. and Whitlock, M. (2016) The Development of a Low Specific Speed Centrifugal Compressor Research Facility. ASME Paper GT2016-56683, ASME Turbo Expo, 13–17 June, Seoul. DOI:10.1115/GT2016-56683Google Scholar
Michelassi, V. and Giachi, M. (1997) Experimental and Numerical Analysis of Compressor Inlet Volutes. ASME Paper 97-GT-481, ASME 1997 Gas Turbine Congress, 2–5 June, Orlando. DOI:10.1115/97-GT-481Google Scholar
Miller, D. S. (1990) Internal Flow Systems. BHRA Fluid Engineering, Cranfield.Google Scholar
Miller, R. J. and Denton, J. D. (2018) Loss Generation in Turbomachines. Cambridge Turbomachinery Course, The Moller Centre, 25–29 June, Cambridge.Google Scholar
Mischo, B., Ribi, B., Seebass-Linggi, C. and Mauri, S. (2009) Influence of Labyrinth Seal Leakage on Centrifugal Compressor Performance. ASME Paper GT2009-59524, ASME Turbo Expo, 8–12 June, Orlando. DOI:10.1115/GT2009-59524Google Scholar
Mishina, H. and Gyobu, I. (1978) Performance Investigations of Large Capacity Centrifugal Compressors. ASME Paper 78-GT-3, ASME Gas Turbine Conference, 9–13 April, London. DOI:10.1115/78-GT-3Google Scholar
Moody, L. F. (1944) Friction Factors for Pipe Flow. Trans. ASME, 66(8):671684.Google Scholar
Moore, G. E. (1965) Cramming More Components onto Integrated Circuits. Electron. Mag., 38(8):114117. DOI:10.1109/N-SSC.2006.4785860Google Scholar
Moore, J. (1973) A Wake and an Eddy in a Rotating Radial Flow Passage – Part I: Experimental Observations; Part II: Flow Model. ASME J. Eng. Power, 95(3):205212. DOI:10.1115/1.3445724Google Scholar
Moore, J. (1976) Eckhardt’s Impeller – a Ghost from Ages Past. C.U.E.D./A-Turbo/TR83. Cambridge University Engineering Department.Google Scholar
Moore, J. and Moore, J. G. (1981) Calculations of Three-Dimensional, Viscous Flow and Wake Development in a Centrifugal Impeller. ASME J. Eng. Power, 103(2):367372. DOI:10.1115/1.3230730Google Scholar
Moore, J. and Moore, J. G. (1983) Entropy Production Rates from Viscous Flow Calculations: Part I – a Turbulent Boundary Layer Flow. ASME Paper 83-GT-70, ASME Gas Turbine Conference, 27–31 March, Phoenix. DOI:10.1115/83-GT-70Google Scholar
Moore, F. K. and Greitzer, E. M. (1986). A Theory of Post-Stall Transients in Axial Compression Systems: Part I – Development of Equations. ASME. J. Eng. Gas Turbines Power, 108(1):6876. DOI:10.1115/1.3239887Google Scholar
Moore, J., Moore, J. G. and Timmis, P. H. (1984). Performance Evaluation of Centrifugal Compressor Impellers Using Three-Dimensional Viscous Flow Calculations. ASME J. Eng. Power, 106(2):475481. DOI:10.1115/1.3239590Google Scholar
Moore, M. J. (2002) Micro-Turbine Generators. PEP, London.Google Scholar
Moran, M. J. and Shapiro, H. N. (2007) Fundamentals of Engineering Thermodynamics. John, Wiley & Sons Inc., New York.Google Scholar
Morandin, M., Mercangoz, M., Hemrle, J. et al. (2013) Thermoeconomic Design Optimization of a Thermo-Electric Energy Storage System Based on Transcritical CO2 Cycles. Energy, 58:571587 DOI:10.1016/j.energy.2013.05.038Google Scholar
Morris, R. E., and Kenny, D. P. (1968) High Pressure Ratio Centrifugal Compressors for Small Gas Turbine Engines. In Aircraft Propulsion Systems AGARD Conference Proceedings No 31, 10–14 June, Ottawa, Canada.Google Scholar
Mounier, V., Picard, C. and Schiffmann, J. (2018) Data-Driven Predesign Tool for Small-Scale Centrifugal Compressor in Refrigeration. ASME. J. Eng. Gas Turbines Power, 140(12):121011. DOI:10.1115/1.4040845Google Scholar
Neverov, V. and Liubimov, A. (2018) Design Optimization of a Multi-Stage Centrifugal Compressor. Res. J., 1(2018):3235.Google Scholar
Nichelson, B. J. (1988) Early Jet Engines and the Transition from Centrifugal to Axial Compressors. Ph.D. Thesis, University of Minnesota.Google Scholar
Nielsen, K. K., Childs, D. W. and Myllerup, C. M. (2001) Experimental and Theoretical Comparison of Two Swirl Brake Designs. ASME J. Turbomach., 123(2):353358. DOI:10.1115/1.1354140Google Scholar
Nikuradse, I. (1950) Laws of Flow in Rough Pipes. National Advisory Committee for Aeronautics. NACA TM1292.Google Scholar
Oakes, W. C., Lawless, P. B. and Fleeter, S. (1999) Instability Pathology of a High Speed Centrifugal Compressor. ASME Paper 99-GT-415, ASME Gas Turbine Congress, 7–10 June, Indianapolis. DOI:10.1115/99-GT-415Google Scholar
Oh, H. W., Yoon, E. S. and Chung, M. K. (1997) An Optimum Set of Loss Models for Performance Prediction of Centrifugal Compressors. I. Mech. E. Part A: J. Power Energy, 211(4):331338. DOI:10.1243/0957650971537231Google Scholar
Pacciani, R., Marconcini, M. and Arnone, A. (2017) A CFD-Based Throughflow Method with Three-Dimensional Flow Features Modelling. Int. J. Propuls. Power, 2(3):11. DOI:10.3390/ijtpp2030011Google Scholar
Paeng, K. S. and Chung, M. K. (2001) A New Slip Factor for Centrifugal Impellers. I. Mech. E. Part A: J. Power Energy, 215(5):645649. DOI:10.1243/0957650011538776Google Scholar
Pakle, S. and Jiang, K. (2018) Design of a High-Performance Centrifugal Compressor with New Surge Margin Improvement Technique for High Speed Turbomachinery. Journal of Propulsion and Power Research, 7(1):1929. DOI:10.1016/j.jppr.2018.02.004Google Scholar
Pampreen, R. C. (1972) The Use of Cascade Technology in Centrifugal Compressor Vaned Diffuser Design. ASME J. Eng. Power, 94(3): 187192. DOI:10.1115/1.3445671Google Scholar
Pampreen, R. C. (1973) Small Turbomachinery Compressor and Fan Aerodynamics. J. Eng. Power, 95(3):251256. DOI:10.1115/1.3445730Google Scholar
Patankar, S. (1980) Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Raton.Google Scholar
Peng, D. Y. and Robinson, D. B. (1976) A New Two Constant Equation of State. Ind. Eng. Chem. Fundam., 15(1):5964. DOI:10.1021/i160057a011Google Scholar
Peng, S., Li, T., Wang, X. et al. (2017) Toward a Sustainable Impeller Production: Environmental Impact Comparison of Different Impeller Manufacturing Methods. J. Ind. Ecol., 21(1):216229. DOI:0.1111/jiec.12628Google Scholar
Petry, N., Benra, F. K. and Koenig, S. (2010) Experimental Study of Acoustic Resonances in the Side Cavities of a High-Pressure Centrifugal Compressor Excited by Rotor/Stator Interaction. ASME Paper GT2010-22054, ASME Turbo Expo, 14–18 June, Glasgow. DOI:10.1115/GT2010-22054Google Scholar
Pfleiderer, C. and Petermann, H. (1986) Strömungsmaschinen, 5th Edition. Springer, Berlin.Google Scholar
Pianko, M. and Wazelt, F. (1983) Propulsion and Energetics Panel Working Group 14 on Suitable Averaging Techniques in Non-Uniform Internal Flows. AGARD Advisory Report No 182, Advisory Group for Aerospace Research and Development, Neuilly Sur Seine, France.Google Scholar
Pierret, S. and Van den Braembussche, R. A. (1999) Turbomachinery Blade Design Using a Navier–Stokes Solver and Artificial Neural Network. ASME. J. Turbomach., 121(2):326332. DOI:10.1115/1.2841318Google Scholar
Pitot, H. (1732) Description d’une machine pour mesurer la vitesse des eaux et le sillage des vaisseaux. Histoire de l'Académie royale des sciences avec les mémoires de mathématique et de physique tirés des registres de cette Académie, 1732, 363–376.Google Scholar
Plöcker, U. and Knapp, H. (1978) Calculation of High-Pressure Vapor–Liquid Equilibria from a Corresponding-States Correlation with Emphasis on Asymmetric Mixtures. Ind. Eng. Chem. Process Des. Dev., 17:324332. DOI:10.1021/i260067a020Google Scholar
Podeur, M., Vogt, D. M., Mauri, S. and Jenny, P. (2019) Impeller Design and Multi-Stage Architecture Optimisation for Turbocompressors Operating with a Helium-Neon Gas Mixture. Paper IGTC-2019-153, International Gas Turbine Congress, 17–22 November, Tokyo.Google Scholar
Poling, B. E., Prausnitz, J. M. and O’Connell, J. P. (1977) Properties of Gases and Liquids, 5th Edition. McGraw-Hill Education, New York.Google Scholar
Polishuk, I. (2009) Generalized Cubic Equation of State Adjusted to the Virial Coefficients of Real Gases and Its Prediction of Auxiliary Thermodynamic Properties. Ind. Eng. Chem. Res., 48(23):1070810717. DOI:10.1021/ie900905pGoogle Scholar
Prandtl, L. (1938) Zur Berechnung der Grenzschichten. J. Appli. Math. Mech., 18(1):7782.Google Scholar
Pullan, G. (2017) A Web-Based Database Approach to CFD Post-Processing. AIAA 2017-0814. DOI:10.2514/6.2017-0814Google Scholar
Pullan, G., Young, A. M., Day, I. J., Greitzer, E. M. and Spakovszky, Z. S. (2015). Origins and Structure of Spike-Type Rotating Stall. ASME. J. Turbomach., 137(5):051007. DOI:10.1115/1.4028494Google Scholar
Qiu, X., Japikse, D. and Anderson, M .R. (2008) A Meanline Model for Impeller Flow Recirculation. ASME Turbo Expo, 9–13 June, Berlin. DOI:10.1115/GT2008-51349Google Scholar
Qiu, X., Japikse, D., Zhao, J. and Anderson, M. R. (2011) Analysis and Validation of a Unified Slip Factor Model for Impellers at Design and Off-Design Conditions. ASME J. Turbomach., 133(4):041018. DOI:10.1115/1.4003022Google Scholar
Radgen, P. and Blaustein, E. (2001) Compressed Air Systems in the European Union. Rondo Druck, Ebersbach-Röswälden.Google Scholar
Rahman, M. A., Chiba, A. and Tukao, T. (2004) Super High-Speed Electrical Machines. Summary. Power Engineering Society General Meeting, 2004. IEEE, 10 June, 2:12721275.Google Scholar
Rains, D. A. (1954) Tip Clearance Flows in Axial Flow Compressors and Pumps. California Institute of Technology Hydrodynamics Laboratory Report 5.Google Scholar
Raitor, T. and Neise, W. (2008) Sound Generation in Centrifugal Compressors. J. Sound Vib., 314:738756. DOI:10.1016/j.jsv.2008.01.034Google Scholar
Rankine, W. J. (1869) Centrifugal Whirling of Shafts. Engineer, XXVI, California Tech.Google Scholar
Raw, J. A. (1986) Surge Margin Enhancement by a Porous Throat Diffuser. Can. Aeronaut. Space J., 32(1):5460.Google Scholar
Raw, J. A. and Weir, G. C. (1980) The Prediction of Off-Design Characteristics of Axial and Axial/Radial Compressors. SAE Paper 800628, Turbine Powered Executive Aircraft Meeting, Phoenix. DOI:10.4271/800628Google Scholar
Reddy, T. C. S., Murty, G. V. R., Mukkavilli, P. and Reddy, D. N. (2004). Effect of the Setting Angle of a Low-Solidity Vaned Diffuser on the Performance of a Centrifugal Compressor Stage. P I Mech. Eng. A -J Pow, 218(8):637646. DOI:10.1243/0957650042584294Google Scholar
Redlich, O. and Kwong, J. N. S. (1949) On the Thermodynamics of Solutions, an Equation of State. Chem. Rev., 44:233244. DOI:10.1021/cr60137a013Google Scholar
Reeves, G. B. (1977) Design and Performance of Selected Pipe-Type Diffusers. ASME Paper 77-GT-104, ASME Gas Turbine Conference, 27–31 March, Philadelphia. DOI:10.1115/77-GT-104Google Scholar
Reneau, L. R., Johnston, J. P. and Kline, S. J. (1967) Performance and Design of Straight, Two-Dimensional Diffusers. ASME J. Basic Eng., 89(1):141150. DOI:10.1115/1.3609544Google Scholar
Reynolds, O. (1895) On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Phil. Trans R. Soc. London. 186:123164. DOI:10.1098/rsta.1895.0004Google Scholar
Ribaud, Y. (1987) Experimental Aerodynamic Analysis Relative to Three High Pressure Ratio Centrifugal Compressors. ASME Gas Turbine Conference, 31 May–4 June, Anaheim. DOI:10.1115/87-GT-153Google Scholar
Ribaut, M. (1968) Three-Dimensional Calculation of Flow in Turbomachines with the Aid of Singularities. ASME J. Eng. Power, 90(3):258264. DOI:10.1115/1.3609184Google Scholar
Ribaut, M. (1977) On the Calculation of Three-Dimensional Divergent and Rotational Flow in Turbomachines. ASME J. Fluids Eng., 99(1):187196. DOI:10.1115/1.3448522Google Scholar
Ribaut, M. (1988) A Full Quasi-Three-Dimensional Calculation of Flow in Turbomachines. ASME J. Turbomach., 110(3):401404. DOI:10.1115/1.3262210Google Scholar
Ribi, B. (1966) Radialverdichter im Instabilitätsbereich. Dissertation ETH Nr. 11717, Zürich.Google Scholar
Ribi, B. (1996) Flow in Radial Turbomachines, VKI Lecture Series 1996–01. Von Karman Institute, Brussels.Google Scholar
Ribi, B. and Dalbert, P. (2000) One-Dimensional Performance Prediction of Subsonic Vaned Diffusers. ASME J. Turbomach., 122(3):494504. DOI:10.1115/1.1303816Google Scholar
Ribi, B. and Gyarmathy, G. (1993) Impeller Rotating Stall as a Trigger for the Transition from Mild to Deep Surge in a Subsonic Centrifugal Compressor. ASME Paper 93-GT-234, ASME Gas Turbine Congress, 24–27 May, Cincinnati. DOI:10.1115/93-GT-234Google Scholar
Riegels, F. W. (1961) Airfoil Sections. Butterworth, LondonGoogle Scholar
Roberts, S. K. and Sjolander, S. A. (2005) Effect of the Specific Heat Ratio on the Aerodynamic Performance of Turbomachinery. ASME J. Eng. Power. 127(4):773780. DOI:10.1115/1.1995767Google Scholar
Robinson, C. J. (1991) Endwall Flows and Blading Design for Axial Flow Compressors, Ph.D. Thesis, Cranfield Institute of Technology.Google Scholar
Robinson, C. J., Casey, M. V. and Woods, I. (2011) An Integrated Approach to the Aero-Mechanical Optimisation of Turbocompressors. In Current Trends in Design and Computation of Turbomachinery. CKD NoveEnergo and TechSoft Engineering, Prague.Google Scholar
Robinson, C. J., Casey, M. V., Hutchinson, B. and Steed, R. (2012) Impeller-Diffuser Interaction in Centrifugal Compressors. ASME Paper GT2012-69151, ASME Turbo Expo, 11–15 June, Copenhagen. DOI:10.1115/GT2012-69151Google Scholar
Roduner, C. H. (1999) Strömungsstrukturen in Radialverdichtern, untersucht mit schnellen Sonden. Dissertation ETH Nr. 13428. Zürich.Google Scholar
Rolls-Royce Plc. (1986) The Jet Engine. BPCC Ltd, Dorset.Google Scholar
Rodgers, C. (1961) Influence of Impeller and Diffuser Characteristics and Matching on Radial Compressor Performance. SAE Tech. Prog. Ser.Google Scholar
Rodgers, C. (1978) A Diffusion Factor Correlation for Centrifugal Impeller Stalling. ASME J. Eng. Power, 100(4):592601. DOI:10.1115/1.3446403.Google Scholar
Rodgers, C. (1980) Efficiency of Centrifugal Compressor Impellers. Paper 22 of AGARD Conference Proceedings No 282 Centrifugal Compressors, Flow Phenomena and Performance, Brussels, May.Google Scholar
Rodgers, C. (1982) The Performance of Centrifugal Compressor Channel Diffusers. ASME Paper 82-GT-10, ASME 1982 Gas Turbine Conference, 18–22 April, London. DOI:10.1115/82-GT-10Google Scholar
Rodgers, C. (1991) The Efficiencies of Single Stage Centrifugal Compressors for Aircraft Applications. ASME Paper 91-GT-77, ASME 1991 Gas Turbine Congress, 3–6 June, Orlando. DOI:10.1115/91-GT-077Google Scholar
Rodgers, C. (2000) Effects of Blade Number on the Efficiency of Centrifugal Compressor Impellers. ASME Turbo Expo, 8–11 May, Munich. DOI:10.1115/2000-GT-0455Google Scholar
Rodgers, C. (2001) Centrifugal Compressor Blade Trimming for a Range of Flows. ASME Turbo Expo, 4–7 June, New Orleans. DOI:10.1115/2001-GT-0316Google Scholar
Rodgers, C. (2005) Flow Ranges of 8.0:1 Pressure Ratio Centrifugal Compressor for Aviation Applications. ASME Paper GT2005-68041, ASME Turbo Expo, 6–9 June, Reno. DOI:10.1115/GT2005-68041Google Scholar
Roduner, C. H. (1999) Strömungsstrukturen in Radialverdichter, untersucht mit schnellen Sonden. Dissertation ETH Nr. 13428, Zürich.Google Scholar
Rohne, K. and Banzhaf, M. (1991) Investigation of the Flow at the Exit of an Unshrouded Centrifugal Impeller and Comparison with the ‘Classical’ Jet-Wake Theory. ASME J. Turbomach., 113(4):654659. DOI:10.1115/1.2929131Google Scholar
Rossbach, T., Rube, C., Wedeking, M. et al. (2015) Performance Measurements of a Full-Stage Centrifugal Process Gas Compressor Test Rig. Paper ETC2015-084, 11th European Turbomachinery Conference, 23–27 March, Madrid.Google Scholar
Rothe, P. H. and Johnston, J. P. (1979) Free Shear Layer Behaviour in Rotating Systems. ASME J. Fluids Eng., 101(1):117120. DOI:10.1115/1.3448721Google Scholar
Rube, C., Rossbach, T., Wedeking, M., Grates, D. R. and Jeschke, P. (2016) Experimental and Numerical Investigation of the Flow inside the Return Channel of a Centrifugal Process Compressor. ASME. J. Turbomach., 138(10):101006. DOI:10.1115/1.4032905Google Scholar
Runstadler, P. W. and Dean, R. C. Jr. (1969) Straight Channel Diffuser Performance at High Inlet Mach Numbers. ASME J. Basic Eng., 91(3):397412. DOI:10.1115/1.3571134Google Scholar
Runstadler, P. W. Jr., Dolan, F. X. and Dean, R. C. Jr. (1975) Diffuser Data Book. Technical Note TN-186. Creare Inc., Hanover.Google Scholar
Rusch, D. and Casey, M. V. (2013) The Design Space Boundaries for High Flow Capacity Centrifugal Compressors. ASME J. Turbomach., 135(3):031035. DOI:10.1115/1.4007548Google Scholar
Sadrehaghighi, I. (2018) Aerodynamic Design and Optimisation. CFD Open Series Rev. 1.85.7 DOI:10.13140/RG.2.2.11383.73127/7Google Scholar
SAE (1995) J1826_199503. Turbocharger gas stand test code. Society of Automotive Engineers (SAE) Pennsylvania.Google Scholar
Sandberg, M. R. (2016) Centrifugal Compressor Configuration, Selection and Arrangement: A User’s Perspective. 45th Turbomachinery Symposium, 12–15 September, Texas A&M, Houston. DOI:10.21423/R1QP46Google Scholar
Sandberg, M. R. and Colby, G. M. (2013) Limitations of ASME PTC 10 in Accurately Evaluating Centrifugal Compressor Thermodynamic Performance. 42nd Turbomachinery Symposium, 1–3 October, Texas A&M, Houston.Google Scholar
Sapiro, L. (1983) Effect of Impeller-Extended Shrouds on Centrifugal Compressor Performance as a Function of Specific Speed. ASME J. Eng. Power, 105(3):457465. DOI:10.1115/1.3227437Google Scholar
Saravanamuttoo, H. I. H., Rogers, G. F. C., Cohen, H. and Straznicky, P. (2009) Gas Turbine Theory, 6th Edition, Pearson Education Limited, London.Google Scholar
Schaeffler, A. (1980) Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors. ASME J. Eng. Power, 102(1):512. DOI:10.1115/1.3230232Google Scholar
Schiffmann, J. (2008) Integrated Design, Optimization and Experimental Investigation of a Direct Driven Turbocompressor for Domestic Heat Pumps. Thesis Nr. 4126 EPFL, Lausanne.Google Scholar
Schleer, M. (2006) Flow Structure and Stability of a Turbocharger Centrifugal Compressor. Dissertation ETH Nr. 16605, Zürich.Google Scholar
Schleer, M., Song, S. J. and Abhari, R. S. (2008) Clearance Effects on the Onset of Instability in a Centrifugal Compressor. ASME J. Turbomach., 130(3):031002. DOI:10.1115/1.2776956Google Scholar
Schlichting, H. and Gersten, K. (2006) Grenzschicht-Theorie, 10th Edition. Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
Schobeiri, M. (2005) Turbomachinery Flow Physics and Dynamic Performance. Springer, Berlin.Google Scholar
Schodl, R. (1980) A Laser-Two-Focus (L2F) Velocimeter for Automatic Flow Vector Measurements in the Rotating Components of Turbomachines. ASME. J. Fluids Eng., 102(4):412419. DOI:10.1115/1.3240713Google Scholar
Schmied, J. (2019) Application of MADYN 2000 to Rotor Dynamic Problems of Industrial Machinery. SIRM 2019 – 13th International Conference on Dynamics of Rotating Machines, 13–15 February, Copenhagen.Google Scholar
Scholz, N (1977) Aerodynamics of Cascades. AGARD AG 220.Google Scholar
Schreiber, C. (2017) Inlet Recirculation in Radial Compressors. Ph.D. Thesis, Cambridge University.Google Scholar
Schultz, J. M. (1962) The Polytropic Analysis of Centrifugal Compressors. ASME J. Eng. Power, 84(1):6982. DOI:10.1115/1.3673381Google Scholar
Schweitzer, J. K. and Garberoglio, J. E. (1984) Maximum Loading Capability of Axial Flow Compressors. J. Aircr., 21(8):593600. DOI:10.2514/3.45028Google Scholar
Senoo, Y. and Ishida, M. (1986) Pressure Loss Due to the Tip Clearance of Impeller Blades in Centrifugal and Axial Blowers. ASME J. Eng. Power, 108(1):3237. DOI:10.1115/1.3239882Google Scholar
Senoo, Y. and Kinoshita, Y. (1978) Limits of Rotating Stall and Stall in Vaneless Diffuser of Centrifugal Compressors. ASME Paper 78-GT-19, ASME Gas Turbine Conference, 9–13 April, London. DOI:10.1115/78-GT-19Google Scholar
Senoo, Y., Hayami, H. and Ueki, H. (1983) Low-Solidity Tandem-Cascade Diffusers for Wide-Flow-Range Centrifugal Blowers. ASME Paper 83-GT-3, ASME Gas Turbine Conference, 27–31 March, Phoenix. DOI:10.1115/83-GT-3Google Scholar
Senoo, Y., Kinoshita, Y., and Ishida, M. (1977) Asymmetric Flow in Vaneless Diffusers of Centrifugal Blowers. ASME J. Fluids Eng., 99(1):104111. DOI:10.1115/1.3448501Google Scholar
Seralathan, S. and Chowdhury, D. G. (2013) Modification of Centrifugal Impeller and Effect of Impeller Extended Shrouds on Centrifugal Compressor Performance. Procedia Eng., 64:11191128. DOI:10.1016/j.proeng.2013.09.190Google Scholar
Serrano, J. R., Margot, X., Tiseira Izaguirre, A. O. and García-Cuevas González, L. M. (2013) Optimization of the Inlet Air Line of an Automotive Turbocharger. Int. J. Eng. Res., 14(1):92104. DOI:10.1177/1468087412449085.Google Scholar
Sheard, A. G. (2011) Blade by Blade Tip Clearance Measurement. Int. J. Rot. Mach., 2011:Article ID 516128. DOI:10.1155/2011/516128Google Scholar
Shen, F., Yu, L., Cousins, W. T. et al. (2016) Numerical Investigation of the Flow Distortion Impact on a Refrigeration Centrifugal Compressor. ASME Turbo Expo, 13–17 June, Seoul. DOI:10.1115/GT2016-57063Google Scholar
Shepherd, D. G. (1956) Principles of Turbomachinery. Macmillan, London.Google Scholar
Sherstyuk, A. N. and Kosmin, V. M. (1969) Determining the Losses and Optimum Velocities in Centrifugal Compressor Volutes. Therm. Eng., 2:7072.Google Scholar
Shibata, T., Yagi, M., Nishida, H., Kobayashi, H. and Tanaka, M. (2012) Effect of Impeller Blade Loading on Compressor Stage Performance in a High Specific Speed Range. ASME J. Turbomach., 134(4):041012. DOI:10.1115/1.4003659Google Scholar
Shum, Y. K. P., Tan, C. S. and Cumpsty, N. A. (2000) Impeller–Diffuser Interaction in a Centrifugal Compressor. ASME J. Turbomach., 122(4):777786. DOI:10.1115/1.1308570Google Scholar
Sieverding, C. H., Arts, T., Dénos, R. and Brouckaert, J. F. (2000) Measurement Techniques for Unsteady Flows in Turbomachines. Exp. Fluids, 28(2000):285321. DOI:10.1007/s003480050390Google Scholar
Simon, H. (1987) Design Concept and Performance of a Multistage Integrally Geared Centrifugal Compressor Series for Maximum Efficiencies and Operating Ranges. ASME Paper 87-GT-43, ASME Gas Turbine Conference, 31 May–4 June, Anaheim. DOI:10.1115/87-GT-43Google Scholar
Simon, H. and Bülskämper, A. (1984) On the Evaluation of Reynolds Number and Relative Surface Roughness Effects on Centrifugal Compressor Performance Based on Systematic Experimental Investigations. ASME J. Eng. Power, 106(2):489498. DOI:10.1115/1.3239592Google Scholar
Simon, H. and Rothstein, E. (1983) On the Development of Return Passages of Multi-Stage Centrifugal Compressors. In Return Passages of Multi-Stage Turbomachinery, ed. Nykorowytsch, P.. Applied Mechanics, Bioengineering and Fluids Engineering Conference, 20–22 June, Houston, 1–12Google Scholar
Simon, H., Wallmann, T. and Mönk, T. (1987) Improvements in Performance Characteristics of Single-Stage and Multistage Centrifugal Compressors by Simultaneous Adjustments of Inlet Guide Vanes and Diffuser Vanes. ASME. J. Turbomach., 109(1):4147. DOI:10.1115/1.3262068Google Scholar
Simpson, A., Aalburg, C., Schmitz, M. et al. (2008) Design, Validation and Application of a Radial Cascade for Centrifugal Compressors. ASME Paper GT2008-51262, ASME Turbo Expo, 9–13 June, Berlin. DOI:10.1115/GT2008-51262Google Scholar
Singh, M. P., Vargo, J. J., Schiffer, D. M. and Dello, J. D. (1988) Safe Diagram – a Design and Reliability Tool for Turbine Blading. 17th Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1B673Google Scholar
Sirakov, B. and Casey, M. V. (2013). Evaluation of Heat Transfer Effects on Turbocharger Performance. ASME J. Turbomach., 135(2):021011. DOI:10.1115/1.4006608Google Scholar
Sirakov, B., Gong, Y., Epstein, A. and Tan, Ch. (2004) Design and Characterization of Micro-Compressor Impellers. ASME Paper GT2004-53332, ASME Turbo Expo, 14–17 June, Vienna. DOI:10.1115/GT2004-53332Google Scholar
Sitaram, N. (2017) Survey of Available Techniques for High Speed Turbomachinery Testing. Paper ICTACEM-2017/360, Proc International Conference on Theoretical, Applied, Computational and Experimental Mechanics, 28–30 December, IIT Kharagpur, India.Google Scholar
Sivagnanasundaram, S., Spence, S., Early, J. and Nikpour, B. (2010) An Investigation of Compressor Map Width Enhancement and the Inducer Flow Field Using Various Configurations of Shroud Bleed Slot. ASME Paper GT2010-22154, ASME Turbo Expo, 14–18 June, Glasgow. DOI:10.1115/GT2010-22154Google Scholar
Skoch, G. J. (2003) Experimental Investigation of Centrifugal Compressor Stabilization Techniques. ASME J. Turbomach., 125(4):704713. DOI:10.1115/1.1624846Google Scholar
Smirnov, P. E., Hansen, T. and Menter, F. R. (2007) Numerical Simulation of Turbulent Flows in Centrifugal Compressor Stages with Different Radial Gaps. ASME Paper GT2007-27376, ASME Turbo Expo, 14–17 May, Montreal. DOI:10.1115/GT2007-27376Google Scholar
Smith, L. H. Jr. (1955) Secondary Flow in Axial-Flow Turbomachinery. Trans. ASME, 77:10651076.Google Scholar
Smith, L. H. Jr. (1958) Recovery Ratio – a Measure of the Loss Recovery Potential of Compressor Stages. Trans. ASME, 80:517524.Google Scholar
Smith, L. H. Jr. (1966) The Radial-Equilibrium Equation of Turbomachinery. ASME J. Eng. Power, 88:112. DOI:10.1115/1.3678471Google Scholar
Smith, L. H. Jr. (1970) Casing Boundary Layers in Multistage Axial-Flow Compressors. Brown Boueri Symposium. In Flow Research in Blading, ed. Dzung., L. S. Elsevier, Amsterdam. 275300.Google Scholar
Smith, L. H. Jr. (2002) Axial Compressor Aerodesign Evolution at General Electric. ASME J. Turbomach., 124(3):321330. DOI:10.1115/1.1486219Google Scholar
Smith, S. F. (1965) A Simple Correlation of Turbine Efficiency. J. Roy. Aeronaut. Soc., 69(655):467470. DOI:10.1017/S0001924000059108Google Scholar
Smith, D. J. L. and Merryweather, H. (1973) Representation of the Geometry of Centrifugal Impeller Vanes by Analytic Surfaces. Intl. J. Num. Meth. Eng., 7:137154.Google Scholar
Spakovszky, Z. S. and Roduner, C. H. (2009) Spike and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor. ASME. J. Turbomach., 131(3):031012. DOI:10.1115/1.2988166Google Scholar
Spasov, M. (2009) Private communication from Gamma technologies.Google Scholar
Spurr, A. (1980) The Prediction of 3D Transonic Flow in Turbomachinery Using a Combined Throughflow and Blade-to-Blade Time Marching Method. Int. J. Heat Fluid Flow, 2(4):189199. DOI:10.1016/0142-727X(80)90013-2Google Scholar
Soave, G. (1972) Equilibrium Constants from a Modified Redlich–Kwong Equation of State. Chem. Eng. Sci., 72:11971203. DOI:10.1016/0009-2509(72)80096-4Google Scholar
Sorokes, J. M. and Welch, J. P. (1992) Experimental Results on a Rotatable Low Solidity Vaned Diffuser. ASME Paper G92-GT-019, ASME Gas Turbine Congress, 1–4 June, Cologne. DOI:10.1115/92-GT-019Google Scholar
Sorokes, J. M. (1993) The Practical Application of CFD in the Design of Industrial Centrifugal Impellers. 22nd Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R1P074Google Scholar
Sorokes, J. M. (1994) A CFD Assessment of Entrance Area Distributions in a Centrifugal Compressor Vaneless Diffuser. ASME Paper 94-GT-090, ASME Gas Turbine Congress, 13–16 June, The Hague. DOI:10.1115/94-GT-090Google Scholar
Sorokes, J. M., Marshall, F. and Kuzdzal, M. (2018) A Review of Aerodynamically Induced Forces Acting on Centrifugal Compressors and Resulting Vibration Characteristics of Rotors. 47th Turbomachinery Symposium, Texas A&M, Houston. DOI:10.21423/R12366Google Scholar
Sovran, G. and Klomp, E. D. (1967) Experimentally Determined Optimum Geometries for Rectilinear Diffusers with Rectangular, Conical, or Annular Cross Section. In Fluid Mechanics of Internal Flows, ed. Sovran, G. Elsevier, Amsterdam, 270319.Google Scholar
Sozer, E., Brehm, C. and Kiris, C. C. (2014) Gradient Calculation Methods on Arbitrary Polyhedral Unstructured Meshes for Cell-Centered CFD Solvers. AIAA Paper 2014-1440, 52nd Aerospace Sciences Meeting, 13–17 January, National Harbor. DOI:10.2514/6.2014-1440Google Scholar
Spalart, P. R. and Allmaras, S. R. (1992) A One-Equation Turbulence Model for Aerodynamic Flows. AIAA Paper 92-0439. DOI:10.2514/6.1992-439Google Scholar
Spalding, B. (1998) Fluid Structure Interaction in the Presence of Heat Transfer and Chemical Reaction. Keynote lecture, ASME/JSME Joint Pressure Vessels and Piping Conference, July, Boston.Google Scholar
Span, R. and Wagner, W. (2003) Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids. Int. J. Thermophys., 24, 139. DOI/10.1023/A:1022390430888Google Scholar
Squire, H. B. and Winter, K. G. (1951) The Secondary Flow in a Cascade of Airfoils in a Nonuniform Stream. J. Aero. Sci., 18(4):271275. DOI:10.2514/8.1925Google Scholar
Stahlecker, D. (1999) Untersuchung der instationären Strömung eines beschaufelten Radialverdichterdiffusors mit einem Laser-Doppler-Anemometer. Dissertation ETH Nr. 13228. Zürich.Google Scholar
Stanitz, J. D. and Prian, V. D. (1951) A Rapid Approximate Method for Determining Velocity Distribution on Impeller Blades of Centrifugal Compressors. NACA TN 2421.Google Scholar
Starling, K. E. (1973) Fluid Thermodynamic Properties for Light Petroleum Systems. Gulf Publ., Houston.Google Scholar
Staubli, T., Gyarmathy, G. and Inderbitzen, A. (2001) Visualisation d'un décollement tournant dans un banc d'essais en eau d'un étage de compresseur centrifuge. La Houille Blanche, 2(4):3945.Google Scholar
Steiner, A. (2000) Techniques for Blade Tip Clearance Measurements with Capacitive Probes. Meas. Sci. Technol., 11 (7):865869. DOI:10.1088/0957-0233/11/7/303Google Scholar
Stephan, K. and Mayinger, F. (2000) Thermodynamik: Grundlagen und technische Anwendungen. Springer, Berlin.Google Scholar
Stodola, A. (1905) Steam Turbines: With an Appendix on Gas Turbines and the Future of Heat Engines. D. Van Nostrand Co., New York.Google Scholar
Storer, J. A. (1991) Tip Clearance Flow in Axial Compressors. Ph.D. Thesis, Cambridge University.Google Scholar
Storer, J. A. and Cumpsty, N. A. (1994) An Approximate Analysis and Prediction Method for Tip Clearance Loss in Axial Compressors. ASME J. Turbomach., 116(4):648656. DOI:10.1115/1.2929457Google Scholar
St. Peter, J. (1999) The History of Aircraft Gas Turbine Development in the United States. IGTI, Georgia.Google Scholar
Stranges, S. (2000) Germany’s Synthetic Fuel Industry, 1927–1945. Springer, Dordrecht.Google Scholar
Stratford, B. S. (1959). An Experimental Flow with Zero Skin Friction throughout Its Region of Pressure Rise. J. Fluid Mech., 5(1):1735. DOI:10.1017/S0022112059000027Google Scholar
Stratford, B. S. and Tubbs, H. (1965) The Maximum Pressure Rise Attainable in Subsonic Diffusers. J. Roy. Aeronauti. Soc., 69(652):275278. DOI:10.1017/S0001924000059911Google Scholar
Strazisar, A. J. and Denton, J. D. (1995) CFD Code Assessment in Turbomachinery: A Progress Report. Global Gas Turbine News, May/June:12–14.Google Scholar
Strub, R. A. (1974) A New Axial-Radial ‘Isotherm’ Compressor. ASME Paper 74-GT-141, ASME 1974 Gas Turbine Conference, 30 March–4 April, Zürich. DOI:10.1115/74-GT-141Google Scholar
Strub, R. A. (1984) Rotors of Turbomachines – Power and Elegance. Sulzer Tech. Revi., 1:2936.Google Scholar
Stuart, C., Spence, S., Filsinger, D., Starke, A. and Kim, S. (2019) A Three-Zone Modelling Approach for Centrifugal Compressor Slip Factor Prediction. ASME J. Turbomach., 141(3):031008. DOI:10.1115/1.4042248Google Scholar
Sturmayr, A. and Hirsch, C. (1999) Throughflow Model for Design and Analysis Integrated in a Three-Dimensional Navier–Stokes Solver. I. Mech. E. Part A: J. Power Energy, 213(4):263273. DOI:10.1243/0957650991537608Google Scholar
Su, G.-J. (1946) Modified Law of Corresponding States for Real Gases. Ind. Eng. Chem., 38(8):803806. DOI:10.1021/ie50440a018Google Scholar
Sun, Z., Sun, X., Zheng, X. and Linghu, Z. (2017) Flow Characteristics of a Pipe Diffuser for Centrifugal Compressors. J. Appl. Fluid Mech., 10(1):143155. DOI:10.18869/acadpub.jafm.73.238.26476Google Scholar
Swain, E. (2005) Improving a One-Dimensional Centrifugal Compressor Performance Prediction Method. I. Mech. E. Part A: J. Power Energy, 219(8):653659. DOI:10.1243/095765005X31351Google Scholar
Tain, L. and Cumpsty, N. A. (2000) Compressor Blade Leading Edges in Subsonic Compressible Flow. I. Mech. E. Part C: J. Mech. Eng., Sci., 214(1):221242. DOI:10.1243/0954406001522921Google Scholar
Tamaki, H. (2012) Effect of Recirculation Device with Counter Swirl Vane on Performance of High Pressure Ratio Centrifugal Compressor. ASME J. Turbomach., 134(5): 051036. DOI:10.1115/1.4004820Google Scholar
Tamaki, H. (2019) A Study on Matching between Centrifugal Compressor Impeller and Low Solidity Diffuser and Its Extension to Vaneless Diffuser. ASME. J. Eng. Gas Turbines Power, 141(4):041026. DOI:10.1115/1.4041003Google Scholar
Tamaki, H., Nakao, H. and Saito, M. (1999) The Experimental Study of Matching between Centrifugal Compressor Impeller and Diffuser. ASME J. Turbomach., 121(1):113118. DOI:10.1115/1.2841218Google Scholar
Teichel, S. H. (2018) Optimised Design of Mixed Flow Compressors for an Active High-Lift System. Ph.D. Thesis, Gottfried Wilhelm Leibniz Universität Hannover.Google Scholar
Thompson, R. G. (1979) Performance Correlations for Flat and Conical Diffusers. ASME Paper 79-GT-52, ASME Gas Turbine Conference, 12–15 March, San Diego. DOI:10.1115/79-GT-52Google Scholar
Thomson, W. (1996) Theory of Vibration with Applications. CRC Press, Boca Raton.Google Scholar
Tobin, J. (2004) To Conquer the Air: The Wright Brothers and the Great Race for Flight. Free Press, New York.Google Scholar
Tognola, S. and Paranjpe, P. (1960) Theoretische Strömungsberechnungen und Modellversuche für Radialverdichter. Escher-Wyss-Mitteilungen, 33:5866.Google Scholar
Traupel, W. (1962) Die Theorie der Strömung durch Radialmaschinen. G Braun, Karlsruhe.Google Scholar
Traupel, W. (1975) Grundzüge einer Theorie des radialen Verdichterlaufrades. FVV Radialverdichter Vorhaben, 83 and 115, Heft 237, FVV Frankfurt.Google Scholar
Traupel, W. (2000) Thermische Turbomaschinen, Springer, Berlin.Google Scholar
Trébinjac, I., Kulisa, P., Bulot, N. and Rochuon, N. (2009) Effect of Unsteadiness on the Performance of a Transonic Centrifugal Compressor Stage. ASME. J. Turbomach., 131(4):041011. DOI:10.1115/1.3070575Google Scholar
Tropea, C., Yarin, Y. L. and Foss, J. (2007) Springer Handbook of Experimental Fluid Mechanics. Springer, Berlin. DOI:10.1007/978-3-540-30299-5Google Scholar
Tsujimoto, Y., Hiroshi, T. and Doerfler, P. (2103) Effects of Acoustic Resonance and Volute Geometry on Phase Resonance in a Centrifugal Fan. Int. J. Fluid Machi. Sys., 6(2):112. DOI:10.5293/IJFMS.2013.6.2.075Google Scholar
Vadasz, P. and Weiner, D. (1992) The Optimal Intercooling of Compressors by a Finite Number of Intercoolers. ASME J. Energy Resour. Technol. 114:155260. DOI:10.1115/1.2905950Google Scholar
Van den Braembussche, R. A. (2006a) Flow and Loss Mechanisms in Volutes of Centrifugal Pumps. In Design and Analysis of High Speed Pumps. Educational Notes RTO-EN-AVT-143, Neuilly-sur-Seine, 12-112-26.Google Scholar
Van den Braembussche, R. A. (2006b) Optimization of Radial Impeller Geometry. In Design and Analysis of High Speed Pumps. Educational Notes RTO-EN-AVT-143, Neuilly-sur-Seine, 13:128.Google Scholar
Van den Braembussche, R. A. (2019) Design and Analysis of Centrifugal Compressors. ASME Press Series. ASME Press, Wiley, New York.Google Scholar
Van Gerner, H. J. (2014) Heat Pump Conceptual Study and Design, NLR-CR-2014-009, National Aerospace Laboratory, Netherlands.Google Scholar
Vance, J., Zeidan, F. and Murphy, B. (2010) Machinery Vibration and Rotordynamics. John Wiley & Sons, Inc., Hoboken.Google Scholar
Vavra, M. H. (1970a) Basic Elements for Advanced Designs of Radial Flow Compressors. In AGARD Lecture Series 39 on Advanced Compressors, June, Brussels.Google Scholar
Vavra, M. H. (1970b) Application of Throughflow to Radial Wheel Design. In AGARD Lecture Series 39 on Advanced compressors, June, Brussels.Google Scholar
VDI 2044 (2018) Acceptance and Performance Tests on Fans. VDI, Düsseldorf.Google Scholar
VDI 2045 Blatt 1 (1993) Acceptance and Performance Tests on Turbo Compressors and Displacement Compressors; Test Procedure and Comparison with Guaranteed Values. VDI, Düsseldorf.Google Scholar
VDI 2045 Blatt 2 (1993) Acceptance and Performance Test on Dynamic and Positive Displacement Compressors; Theory and Examples. VDI, Düsseldorf.Google Scholar
VDI 4675 (2012) Balance Based Averaging of Inhomogeneous Flow Fields. VDI, Düsseldorf.Google Scholar
Velasquez, E. I. G. (2017) Determination of a Suitable Set of Loss Models for Centrifugal Compressor Performance Prediction. Chin. J. Aeronaut., 30 (5):16441650. DOI:10.1016/j.cja.2017.08.002Google Scholar
Verstraete, T., Alsalihi, Z. and Van den Braembussche, R. A. (2010) Multidisciplinary Optimization of a Radial Compressor for Micro-Gas-Turbine Applications. ASME. J. Turbomach., 132(3):031004. DOI:10.1115/1.3144162Google Scholar
Von Backström, T. W. (2008) The Effect of Specific Heat Ratio on the Performance of Compressible Flow Turbomachines. ASME Paper GT2008-50183, ASME Turbo Expo 2008, 9–13 June, Berlin. DOI:10.1115/GT2008-50183Google Scholar
Von Ohain, H. P. (1989) The First Turbojet Flights and Other German Developments. In Celebration of the Golden Anniversary of Jet Powered Flight, ed. St. Peter, J. Dayton.Google Scholar
Voss, C., Aulich, M. and Raitor, T. (2014) Metamodel Assisted Aeromechanical Optimisation of a Transonic Centrifugal Compressor. 15th ISROMAC Symposium, Honolulu.Google Scholar
Wachter, J. and Woehrl, B. (1981) Aufwertungen des Wirkungsgrades von Turbomaschinen der radialen Bauart in Abhängigkeit von Reynoldszahl und Geometrie, Pfleiderer Gedächtnis Tagung, Braunschwieg, VDI 424:1928.Google Scholar
Wagner, W. et al. (2000) The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. ASME J. Eng. Gas Turbines Power, 122(1):150-184. DOI/10.1115/1.483186Google Scholar
Walreavens, R. E. and Cumpsty, N. A. (1995) Leading Edge Separation Bubbles on Turbomachine Blades. ASME J. Turbomach., 117(1):115125. DOI:10.1115/1.2835626Google Scholar
Walsh, P. P. and Fletcher, P. (2004) Gas Turbine Performance. Wiley, London.Google Scholar
Watson, N. and Janota, M. S. (1982) Turbocharging the Internal Combustion Engine. Macmillan, London.Google Scholar
Weber, C. R., and Koronowski, M. E. (1986) Meanline Performance Prediction of Volutes in Centrifugal Compressors. ASME Paper 86-GT-216, ASME Gas Turbine Conference, 8–12 June, Dusseldorf. DOI:10.1115/86-GT-216Google Scholar
Wheeler, A. P. S. and Miller, R. J. (2008) Compressor Wake/Leading-Edge Interactions at Off Design Incidences. ASME Paper GT2008-50177, ASME Turbo Expo, 9–13 June, Berlin. DOI:10.1115/GT2008-50177Google Scholar
Whitfield, A. (1978) Rationalization of Empirical Loss Coefficients and Their Application in One Dimensional Performance Prediction Procedures for Centrifugal Compressors. ASME Paper 78-GT-177, ASME Gas Turbine Conference, Wembley. DOI:10.1115/78-GT-177Google Scholar
Whitfield, A. and Baines, N. C. (1976) A General Computer Solution for Radial and Mixed Flow Turbomachine Performance Prediction. Int. J. Mech. Sci., 18(4):179184. DOI:10.1016/0020-7403(76)90023-0Google Scholar
Whitfield, A. and Baines, N. C. (1990) Design of Radial Turbomachines. Longman, John Wiley & Sons, London.Google Scholar
Whittle, F. (1945) The Early History of the Whittle Jet Propulsion Gas Turbine (the First James Clayton Lecture). I. Mech E., 152:419435.Google Scholar
Wiesner, F. J. (1960) Practical Stage Performance Correlations for Centrifugal Compressors. ASME Paper 60-HYD-17, Gas Turbine Power and Hydraulic Conference, March, Houston. DOI:10.1115/60-HYD-17Google Scholar
Wiesner, F. J. (1967) A Review of Slip Factors for Centrifugal Impellers. Trans. ASME. J. Eng. Power, 89:558566. DOI:10.1115/1.3616734Google Scholar
Wilkosz, B., Schmidt, J., Guenther, C. et al. (2013) Numerical and Experimental Comparison of a Tandem and Single Vane De-Swirler Used in an Aeroengine Centrifugal Compressor. ASME. J. Turbomach., 136(4):041005. DOI:10.1115/1.4024891Google Scholar
Wilcox, D. C. (1998) Turbulence Modelling for CFD. DCW Industries, Inc., Lake Arrowhead.Google Scholar
Wilson, D. G. and Korakianitis, T. (1998) The Design of High Efficiency Turbomachinery and Gas Turbines. Prentice Hall, Upper Saddle River.Google Scholar
Wittwer, D. and Küpfer, H. (1986) The New Radial Compressor Test Rig Super-Martin. Brown Boveri Rev., 73(4):177184.Google Scholar
Wilkinson, D. H. (1969) Streamline Curvature Methods for Calculating the Flow in Turbomachines, Report No W/M(3F), English Electric, Whetstone.Google Scholar
Wilkinson, D. H. (1970) Stability, Convergence, and Accuracy of Two-Dimensional Streamline Curvature Methods Using Quasi-Orthogonals. I. Mech. E. Convention, Glasgow, Paper 35.Google Scholar
Wittrock, D., Reutter, O., Nicke, E., Schmidt, T. and Klausmann, J. (2018) Design of a Transonic High Flow Coefficient Centrifugal Compressor by Using Advanced Design Methods. ASME Turbo Expo. 11–15 June, Oslo. DOI:10.1115/GT2018-75024Google Scholar
Wittrock, D., Junker, M., Beversdorff, M., Peters, A. and Nicke, E. (2019) A Deep Insight Into the Transonic Flow of an Advanced Centrifugal Compressor Design. ASME Turbo Expo, 17–21 June, Phoenix. DOI:10.1115/GT2019-90308.Google Scholar
Wolfe, T., Lee, Y. and Slipper, M. E. (2015) A Performance Prediction Model for Low-Speed Centrifugal Fans. ASME J. Fluids Eng., 137(5):051106. DOI:10.1115/1.4029397Google Scholar
Woods, I. (2018) Centrifugal Impeller Design Guidelines. PCA Internal Report, Lincoln.Google Scholar
Wright, P. I. and Miller, D. C. (1991) An Improved Compressor Performance Prediction Model. Paper C423/028, I. Mech. Eng. Conference 1991–3: Turbomachinery: Latest Developments in a Changing Scene. Mechanical Engineering Publications, London.Google Scholar
Wu, C. H. (1952) A General Theory of Three-Dimensional Flow in Subsonic, and Supersonic Turbomachines of Axial, Radial and Mixed-Flow Types. NASA TN2604Google Scholar
Yoon, S. Y., Lin, Z. and Allaire, P. E. (2013) Control of Surge in Centrifugal Compressors by Active Magnetic Bearings. Adv. Ind. Control. DOI:10.1007/978-1-4471-4240-9_2Google Scholar
Yoshinaga, Y., Gyobu, I., Mishina, H., Koseki, F. and Nishida, H. (1980) Aerodynamic Performance of a Centrifugal Compressor with Vaned Diffusers. ASME J. Fluids Eng., 102(4):486493. DOI:10.1115/1.3240730Google Scholar
Yoshinaka, T. (1977) Surge Responsibility and Range Characteristics of Centrifugal Compressors. Proc. Tokyo Joint Gas Turbine Conference, 381–390.Google Scholar
Young, A. D. (1951) A Review of Some Stalling Research. ARC R&M No 2609, HMSO.Google Scholar
Younglove, B. and Ely, J. (1987) Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane and Normal Butane. J. Phys. Chem. Ref. Data, 16(4):577798. DOI:10.1063/1.555785Google Scholar
Zachau, U., Niehuis, R., Hoenen, H. and Wisler, D. C. (2009). Experimental Investigation of the Flow in the Pipe Diffuser of a Centrifugal Compressor Stage under Selected Parameter Variations. ASME Paper GT2009-59320, ASME Turbo Expo, 8–12 June, Orlando. DOI:10.1115/GT2009-59320Google Scholar
Zangeneh, M. (1994) Inviscid-Viscous Interaction Method for Three-Dimensional Inverse Design of Centrifugal Impellers. ASME J. Turbomach., 116(2):280290. DOI:10.1115/1.2928362Google Scholar
Zangeneh, M., Goto, A. and Harada, H. (1998). On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed Flow Impellers. ASME J. Turbomach., 120(4):723735. DOI:10.1115/1.2841783Google Scholar
Zemp, A. (2012) Experimental Investigation and Validation of High Cycle Fatigue Design Systems for Centrifugal Compressors. Dissertation ETH No. 20670, ETH Zürich.Google Scholar
Zemp, A., Abhari, R. S. and Ribi, B. (2011) Experimental Investigation of Forced Response Impeller Blade Vibration in a Centrifugal Compressor with Variable Inlet Guide Vanes: Part 1 – Blade Damping. ASMETurbo Expo, 6–10 June, Vancouver. DOI:10.1115/GT2011-46289Google Scholar
Zemp, A., Kammerer, A. and Abhari, R. S. (2010) Unsteady Computational Fluid Dynamics Investigation on Inlet Distortion in a Centrifugal Compressor. ASME J. Turbomach., 132(3):031015. DOI:10.1115/1.3147104Google Scholar
Zhang, Y., Xu, Y., Zhou, X. et al. (2017) Compressed Air Energy Storage System with Variable Configuration for Wind Power Generation. Energy Proc., 142:33563362, DOI:10.1016/j.egypro.2017.12.470Google Scholar
Zheng, X., Jin, L., Du, T., Gan, B., Liu, F. and Qian, H. (2013) Effect of Temperature on the Strength of a Centrifugal Compressor Impeller for a Turbocharger. I. Mech. E. Part C: J. Mech. Eng., Sci., 227(5):896904. DOI:10.1177/0954406212454966Google Scholar
Zheng, X., Sun, Z., Kawakubo, T. and Tamaki, H. (2017) Experimental Investigation of Surge and Stall in a Turbocharger Centrifugal Compressor with a Vaned Diffuser. Exp. Therm. Fluid Sci., 82:493506. DOI:10.1016/j.expthermflusci.2016.11.036.Google Scholar
Ziada, S., Oengoeren, A. and Vogel, A. (2002) Acoustic Resonance in the Inlet Scroll of a Turbo-Compressor. J. Fluids Struct., 16(3):361373. DOI:10.1006/jfls.2001.0421Google Scholar
Ziegler, K. U., Gallus, H. E. and Niehuis, R. (2003a) A Study on Impeller–Diffuser Interaction – Part I: Influence on the Performance. ASME. J. Turbomach., 125(1):173182. DOI:10.1115/1.1516814Google Scholar
Ziegler, K. U., Gallus, H. E. and Niehuis, R. (2003b) A Study on Impeller–Diffuser Interaction – Part II: Detailed Flow Analysis. ASME. J. Turbomach., 125(1):183192. DOI:10.1115/1.1516815Google Scholar
Zucker, R. D. and Biblarz, O. (2002) Fundamentals of Gas Dynamics. Wiley, Hoboken.Google Scholar
Zweifel, O. (1941) The Determination of the Variation of State in Turbomachinery by Means of the Increase in Entropy. Brown Boveri Rev., 28 (8/9):232236.Google Scholar
Zweifel, O. (1945) The Spacing of Turbomachine Blading, Especially with Large Deflection. Brown Boveri Rev., 32(12):436444.Google Scholar
Zwyssig, C., Round, S. D. and Kolar, J. W. (2008) Ultra-High-Speed Low Power Electrical Drive Systems. IEEE Trans Ind. Electron., 55(2):577585. DOI:10.1109/TIE.2007.911950Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×