Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 The observed properties of thermal unimolecular reactions
- 2 The master equation for internal relaxation in molecules
- 3 Reaction as a perturbation of the internal relaxation
- 4 The specific rate function k(E) as an inverse Laplace transform
- 5 Unimolecular fall-off in strong collision systems
- 6 A molecular dynamic approach to specific rate functions
- 7 Building in the randomisation processes
- 8 Weak collision processes
- 9 How well does it all work?
- Appendix 1 Units, symbols, and errata
- Appendix 2 Rate constants for the thermal isomerisation of cyclopropane and for the thermal decomposition of cyclobutane
- Appendix 3 Computer programs for thermal unimolecular reactions
- Exercises
- References
- Author index
- Subject index
Appendix 2 - Rate constants for the thermal isomerisation of cyclopropane and for the thermal decomposition of cyclobutane
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 The observed properties of thermal unimolecular reactions
- 2 The master equation for internal relaxation in molecules
- 3 Reaction as a perturbation of the internal relaxation
- 4 The specific rate function k(E) as an inverse Laplace transform
- 5 Unimolecular fall-off in strong collision systems
- 6 A molecular dynamic approach to specific rate functions
- 7 Building in the randomisation processes
- 8 Weak collision processes
- 9 How well does it all work?
- Appendix 1 Units, symbols, and errata
- Appendix 2 Rate constants for the thermal isomerisation of cyclopropane and for the thermal decomposition of cyclobutane
- Appendix 3 Computer programs for thermal unimolecular reactions
- Exercises
- References
- Author index
- Subject index
Summary
Because of an editorial policy discouraging the presentation of experimental results in both graphical and tabular form, the primary rate constant data for the thermal isomerisation of cyclopropane in the fall-off region [53.P2] are only available in thesis form. One might have expected these results to have been superseded by now, but that has not happened, and Sowden's rather inaccessible thesis [54. S] remains the only source of these key data. In view of their continuing importance in the testing of unimolecular reaction theories, I am reproducing those results here (and also those of the cyclobutane reaction) for the convenience of future users.
- Type
- Chapter
- Information
- The Quantum Theory of Unimolecular Reactions , pp. 130 - 134Publisher: Cambridge University PressPrint publication year: 1984