Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T20:55:12.530Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  27 July 2023

Claude Fabre
Affiliation:
Sorbonne Université, Paris
Rodrigo G. Cortiñas
Affiliation:
Yale University, Connecticut
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quantum Processes and Measurement
Theory and Experiment
, pp. 289 - 300
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, Scott and Arkhipov, Alex. “The computational complexity of linear optics.” In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing. 2011, pp. 333342.Google Scholar
Aasi, Junaid, Abadie, J., Abbott, B. P., et al.Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light.” In: Nature Photonics 7.8 (2013), pp. 613619.CrossRefGoogle Scholar
Adesso, Gerardo, Ragy, Sammy, and Lee, Antony R.. “Continuous variable quantum information: Gaussian states and beyond.” In: Open Systems & Information Dynamics 21.01n02 (2014), p. 1440001.Google Scholar
Aharonov, Yakir, Albert, David Z., and Vaidman, Lev. “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100.” In: Physical Review Letters 60 (1988), pp. 13511354.Google Scholar
Albarelli, Francesco, Genoni, Marco, Paris, Matteo, and Ferraro, Alessandro. “Resource theory of quantum non-Gaussianity and Wigner negativity.” In: Physical Review A 98.5 (2018), p. 052350.Google Scholar
Arute, Frank. “Quantum supremacy using a programmable superconducting processor.” In: Nature 574.7779 (2019), pp. 505510.Google Scholar
Arute, Frank and Martinis, John M.. “Quantum supremacy using a programmable superconducting processor.” In: Nature 574.7779 (2019), pp. 505510.Google Scholar
Aspect, Alain. “Bell’s theorem: The naive view of an experimentalist.” In: Quantum [Un]Speakables. Springer, 2002, pp. 119153.CrossRefGoogle Scholar
Aspect, Alain, grangier, Philippe, and Roger, Gérard. “Experimental Realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities.” In: Physical Review Letters 49, (1982), pp. 9194.Google Scholar
Aspelmeyer, Markus, Kippenberg, Tobias J., and Marquardt, Florian. “Cavity optomechanics.” In: Reviews of Modern Physics 86.4 (2014), p. 1391.Google Scholar
Auletta, Gennaro, Fortunato, Mauro, and Parisi, Giorgio. Quantum Mechanics. Cambridge University Press, 2009.Google Scholar
Bamber, Charles and Lundeen, Jeff S.. “Observing Dirac’s classical phase space analog to the quantum state.”In: Physical Review Letters 112.7 (2014), p. 070405.Google Scholar
Barnett, Stephen. Quantum Information. Oxford University Press, 2009.CrossRefGoogle Scholar
Barnett, Stephen M., Jeffers, John, and Pegg, David T.. “Quantum retrodiction: Foundations and controversies.” In: Symmetry 13.4 (2021), p. 586.Google Scholar
Bell, John. “On the Einstein Podolsky Rosen paradox.”In: Physics 1.3 (1964), pp. 195200.Google Scholar
Bell, John. “On the problem of hidden variables in quantum mechanics.” In: Reviews of Modern Physics 38 (1966), pp. 447452.Google Scholar
Beugnon, Jérôme, Jones, M. P. A., Dingjan, J., et al.Quantum interference between two single photons emitted by independently trapped atoms.” In: Nature 440.7085 (2006), pp. 779782.Google Scholar
Björk, Gunnar, Söderholm, Jonas, Sánchez-Soto, Luis L., et al.Quantum degrees of polarization.” In: Optics Communications 283.22 (2010), pp. 44404447.Google Scholar
Blais, Alexandre Grimsmo, Arne L., Girvin, S. M., and Wallraff, Andreas. “Circuit quantum electrodynamics.” In: Reviews of Modern Physics 93 (2021), p. 025005.Google Scholar
Blatt, Rainer and Wineland, David. “Entangled states of trapped atomic ions.” In: Nature 453.7198 (2008), pp. 10081015.Google Scholar
Bohm, David. Quantum Theory. Prentice Hall, 1951.Google Scholar
Bohr, Niels. “On the constitution of atoms and molecules. Part I -Binding of electrons by positive nuclei.” In: Philosophical Magazine 26 (1913), pp. 124.Google Scholar
Born, Max. “Statistical interpretation of quantum mechanics.” In: Science 122.3172 (1955), pp. 675679.Google Scholar
Bouchiat, V., Vion, D., Joyez, P., Esteve, D., and Devoret, M. H.. “Quantum coherence of charge states in the single electron box.” In: Journal of Superconductivity 12.6 (1999), pp. 789797.Google Scholar
Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A.Experimental quantum teleportation.”In Nature 390.6660 (1997), pp. 575579 [Nature Publishing Group].Google Scholar
Bowen, Warwick P. et al.Polarization squeezing of continuous variable Stokes parameters.” In: Physical Review Letters 88.9 (2002), p. 093601.Google Scholar
Boyd, Robert W.. Nonlinear Optics, 4th ed. Academic Press, 2020.Google Scholar
Brod, Daniel J. et al.Photonic implementation of boson sampling: a review.” In: Advanced Photonics 1.3 (2019), p. 034001.Google Scholar
R. Hanbury Brown and Twiss, Richard Q.. “Correlation between photons in two coherent beams of light.” In: Nature 177.4497 (1956), pp. 2729.Google Scholar
Bužek, Vladimir and Hillery, M.. “Quantum copying: Beyond the no-cloning theorem.” In: Physical Review A 54.3 (1996), p. 1844.Google Scholar
Cai, Y., Roslund, J., Thiel, V., Fabre, C., and Treps, N.. “Quantum enhanced measurement of an optical frequency comb.” In: npj Quantum Information 7.1 (2021), pp. 18.CrossRefGoogle Scholar
Cantat-Moltrecht, Tigrane, Cortiñas, Rodrigo, Ravon, Brice, et al.Long-lived circular Rydberg states of laser-cooled rubidium atoms in a cryostat.” In: Physical Review Research 2.2 (2020), p. 022032.Google Scholar
Carmichael, Howard. An Open Systems Approach to Quantum Optics. Springer, 1991.Google Scholar
Case, William B.. “Wigner functions and Weyl transforms for pedestrians.” In: American Journal of Physics 76.10 (2008), pp. 937946.Google Scholar
Caves, Carlton M.. “Quantum-mechanical noise in an interferometer.” In: Physical Review D 23.8 (1981), p. 1693.Google Scholar
Chabaud, Ulysse, Markham, Damian, and Grosshans, Frédéric. “Stellar representation of non-Gaussian quantum states.” In: Physical Review Letters 124 (2020), p. 063605.Google Scholar
Chamberland, Christopher, Zhu, Guanyu, Yoder, Theodore J., Hertzberg, Jared B., and Cross, Andrew W.. “Topological and subsystem codes on low-degree graphs with flag qubits.” In: Physical Review X 10 (2020), p. 011022.Google Scholar
Chesca, Boris, Kleiner, Reinhold, and Koelle, Dieter. “SQUID theory.” In: Clarke, John and Braginski, Alex I. (eds.) The SQUID Handbook. John Wiley and Sons, Ltd, 2004, pp. 2992.Google Scholar
Clarke, John. “SQUIDs.” In: Scientific American 271.2 (1994), pp. 4653.Google Scholar
Clauser, J. F. Shimony and Shimony, Abner. “Bell’s theorem: Experimental tests and implications.” In: Reports on Progress in Physics 41.12 (1978), p. 1881.Google Scholar
Clauser, J. F., Horne, Michael, Shimony, Abner, and Holt, R.. “Proposed experiment to test local hidden variable theories.” In: Physical Review Letters 23 (1969), p. 880.Google Scholar
Clerk, Aashish A.. “Optomechanics and quantum measurement.” In: Lecture notes, Les Houches Summer School on Optomechanics (2015).CrossRefGoogle Scholar
Cohadon, Pierre-Francois, Harris, Jack, Marquardt, Florian, and Cugliandolo, Leticia (eds.) Quantum Optomechanics and Nanomechanics: Lecture Notes of the Les Houches Summer School: Volume 105, August 2015. Vol. 105. Oxford University Press, 2020.Google Scholar
Cohen-Tannoudji, Claude, Diu, Bernard, and Laloe, Franck. Quantum Mechanics, Vol. 3. Wiley, 2019.Google Scholar
Cohen-Tannoudji, Claude, Diu, Bernard, and Laloe, Frank. Quantum Mechanics, Vols. 1 and 2. Wiley-Interscience, 2006.Google Scholar
Cohen-Tannoudji, Claude and Guery-Odelin, David. Advances in Atomic Physics: An Overview. World Scientific, 2011.Google Scholar
Curtright, Thomas L., Fairlie, David B., and Zachos, Cosmas K.. A Concise Treatise on Quantum Mechanics in Phase Space. World Scientific Publishing Company, 2013.Google Scholar
Dalibard, Jean, Castin, Yvan, and Mølmer, Klaus. “Wave-function approach to dissipative processes in quantum optics.” In: Physical Review Letters 68 (1992), pp. 580583.Google Scholar
Davidovich, Luis. “Towards the ultimate precision limits: An introduction to quantum metrology.” In: Invited lecture at College de France (2016).Google Scholar
Dehmelt, H. G.. “Radiofrequency Spectroscopy of Stored Ions”. In: Advances in Atomic and Molecular Physics 3, (1968), pp. 5372.Google Scholar
Delaubert, Vincent, Treps, Nicolas, Lassen, Mikael, et al.TEM 10 homodyne detection as an optimal small-displacement and tilt-measurement scheme.” In: Physical Review A 74.5 (2006), p. 053823.Google Scholar
Deleglise, Samuel, Dotsenko, I., Sayrin, C., et al.Reconstruction of non-classical cavity field states with snapshots of their decoherence.” In: Nature 455.7212 (2008), pp. 510514.Google Scholar
Demkowicz-Dobrzański, Rafal, Jarzyna, Marcin, and Kolodyński, Jan. “Quantum limits in optical interferometry.” In: Wolf, E.. (ed.), Progress in Optics, Vol. 60. Elsevier, 2015, pp. 345435.Google Scholar
Devoret, M., Esteve, Daniel, Urbina, C., et al.Macroscopic quantum effects in the current-biased Josephson junction”. In: Kagan, Yu and Leggett, A. J. (eds.) Modern Problems in Condensed Matter Science, Elsevier, 1992, pp. 313345.Google Scholar
Devoret, M. H. and Schoelkopf, R. J.. “Superconducting circuits for quantum information: An outlook.” In: Science 339.6124 (2013), pp. 11691174.Google Scholar
Devoret, Michel H.. “Does Brian Josephson’s gauge-invariant phase difference live on a line or a circle?” In: Journal of Superconductivity and Novel Magnetism 34.6 (2021), pp. 16331642.Google Scholar
Dirac, Paul. The Principles of Quantum Mechanics. Oxford University Press, 1981.Google Scholar
Dirac, Paul A. M.. “On the analogy between classical and quantum mechanics.” In: Reviews of Modern Physics 17.2–3 (1945), p. 195.Google Scholar
Dousse, Adrien, Suffczyński, Jan, Beveratos, Alexios, et al.Ultra-bright source of entangled photon pairs.”In: Nature 466.7303 (2010), pp. 217220.Google Scholar
Duan, Lu-Ming, Giedke, G., Cirac, J. I., and Zoller, P.. “Inseparability criterion for continuous variable systems.”In: Physical Review Letters 84.12 (2000), p. 2722.CrossRefGoogle ScholarPubMed
Dutta, Biswadeb, Mukunda, Narasimhaiengar, Simon, Rajiah, et al.The real symplectic groups in quantum mechanics and optics.” In: Pramana 45.6 (1995), pp. 471497.Google Scholar
Einstein, A., Podolsky, B., and Rosen, N.. “Can quantum-mechanical description of physical reality be considered complete?” In: Physical Review 47 (1935), p. 777.Google Scholar
Einstein, Albert. “On a heuristic point of view concerning the production and transformation of light.” In: Annalen der Physik (1905), pp. 118.Google Scholar
Einstein, Albert. “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt.” In: Annalen der Physik 17 (1905), pp. 132148.Google Scholar
Escher, B. M., de Matos Filho, R. L., and Davidovich, Luiz. “General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology.” In: Nature Physics 7.5 (2011), pp. 406411.Google Scholar
Fabre, Claude and Treps, Nicolas. “Modes and states in quantum optics.” In: Reviews of Modern Physics 92.3 (2020), p. 035005.Google Scholar
Fabre, Claude, Sandoghdar, Vahid, Treps, Nicolas, and Cugliandolo, Leticia F. (eds). Quantum optics and nanophotonics. Vol. 101. Oxford University Press, 2017.Google Scholar
Fischer, Marc Kolachevsky, N., Zimmermann, M., et al.New limits on the drift of fundamental constants from laboratory measurements.” In: Physical Review Letters 92.23 (2004), p. 230802.CrossRefGoogle ScholarPubMed
Frattini, Nicholas. Three-wave Mixing in Superconducting Circuits: Stabilizing Cats with SNAILs. Yale University, PhD thesis, 2021.Google Scholar
Freedman, Stuart J. and Clauser, John F.. “Experimental test of local hidden-variable theories.” In: Physical Review Letters 28 (1972), pp. 938941.Google Scholar
Furusawa, Akira, Sørensen, J. L., Braunstein, S. L., et al.Unconditional quantum teleportation.” In: Science 282.5389 (1998), pp. 706709.Google Scholar
Gao, Yan, Deng, Li, and Chen, Aixi. “Optical bistability in an optome-chanical system with N-type atoms under nonresonant conditions.” In: Photonics 7.4. (2020), p. 122.Google Scholar
García-Patrón, Raúl, Renema, Jelmer J., and Shchesnovich, Valery. “Simulating boson sampling in lossy architectures.” In: Quantum 3 (2019), p. 169.CrossRefGoogle Scholar
Gard, Bryan T., Motes, Keith R., Olson, Jonathan P., Rohde, Peter P., and Dowling, Jonathan P.. “An introduction to boson-sampling.” In: From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities. World Scientific, 2015, pp. 167192.Google Scholar
Gardiner, Crispin and Zoller, Peter. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer Science & Business Media, 2004.Google Scholar
Girvin, Steven M.. “Superconducting qubits and circuits: Artificial atoms coupled to microwave photons.” In: Lectures delivered at Ecole d’Eté Les Houches. Oxford University Press, 2011.Google Scholar
Giustina, M., Versteegh, Marijn A. M., Wengerowsky, Sören, et al.Significant loophole-free tests of Bell’s theorem with entangled photons.” In: Physical Review Letters 115 (2015), p. 250401.Google Scholar
Grangier, Philippe, Aspect, Alain, and Vigue, Jacques. “Quantum interference effect for two atoms radiating a single photon.” In: Physical Review Letters 54 (1985), pp. 418421.Google Scholar
Grangier, Philippe, Levenson, Juan Ariel, and Poizat, Jean-Philippe. “Quantum non-demolition measurements in optics.” In: Nature 396.6711 (1998), pp. 537542.Google Scholar
Grimm, A., Frattini, N. E., Puri, S., et al.Stabilization and operation of a Kerrcat qubit.” In: Nature 584.7820 (2020), pp. 205209.Google Scholar
Grosshans, Frédéric and Grangier, Philippe. “Continuous variable quantum cryptography using coherent states.” In: Physical Review Letters 88.5 (2002), p. 057902.CrossRefGoogle ScholarPubMed
Grynberg, Gilbert, Aspect, Alain, and Fabre, Claude. Introduction to Quantum Optics, From the Semi-classical Approach to Quantized Light. Cambridge University Press, 2010.Google Scholar
Guerlin, C.. Mesure quantique non destructive répétée de la lumière: états de Fock et trajectoires quantiques. Université Pierre et Marie Curie Paris VI, PhD thesis, 2007.Google Scholar
Guha, Biswarup, Mariani, Silvia, Lemaître, Aristide, et al.High frequency optomechanical disk resonators in III–V ternary semiconductors.” In: Optics Express 25.20 (2017), pp. 2463924649.Google Scholar
Hammerer, Klemens, Sørensen, Anders S., and Polzik, Eugene S.. “Quantum interface between light and atomic ensembles.” In: Reviews of Modern Physics 82.2 (2010), p. 1041.CrossRefGoogle Scholar
Haroche, S., Brune, M., and Raimond, J. M.. “From cavity to circuit quantum electrodynamics.” In: Nature Physics 16.3 (2020), pp. 243246.Google Scholar
Haroche, Serge. “Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary.” In: Reviews of Modern Physics 85.3 (2013), p. 1083.Google Scholar
Haroche, Serge and Raimond, J.-M.. Exploring the Quantum: Atoms, Cavities, and Photons. Oxford University Press, 2006.Google Scholar
Harris, S. E., Oshman, M. K., and Byer, R. L.. “Observation of tunable optical parametric fluorescence.” In: Physical Review Letters 18.18 (1967), p. 732.Google Scholar
Heidmann, A., Horowicz, R. J., Reynaud, S., et al.Observation of quantum noise reduction on twin laser beams.” In: Physical Review Letters 59.22 (1987), p. 2555.Google Scholar
Hell, Stefan W.. “Nanoscopy with focused light (Nobel Lecture).” In: Angewandte Chemie International Edition 54.28 (2015), pp. 80548066.Google Scholar
Helstrom, C.. “The minimum variance of estimates in quantum signal detection.” In: IEEE Transactions on Information Theory 14.2 (1968), pp. 234242.Google Scholar
Helstrom, Carl W.. “Quantum detection and estimation theory.” In: Journal of Statistical Physics 1.2 (1969), pp. 231252.Google Scholar
Hensen, B., Bernien, H., Dréau, A., et al.Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres.” In: Nature 526 (2015), p. 682.Google Scholar
Hillary, M., O’Connell, R. F., Scully, M. O., and Wigner, E. P.. “Distribution functions in physics: Fundamentals.” In: Physics Reports 106.3 (1984), pp. 121167.Google Scholar
Hong, Chong-Ki, Ou, Zhe-Yu, and Mandel, Leonard. “Measurement of subpicosecond time intervals between two photons by interference.” In: Physical Review Letters 59.18 (1987), p. 2044.Google Scholar
Horodecki, Ryszard, Horodecki, Paweł, Horodecki, Michał, and Horodecki, Karol. “Quantum entanglement.” In: Reviews of Modern Physics 81.2 (2009), p. 865.Google Scholar
Hulet, Randall G., Hilfer, Eric S., and Kleppner, Daniel. “Inhibited spontaneous emission by a Rydberg atom.” In: Physical Review Letters 55 (1985), pp. 21372140.Google Scholar
Jaekel, Marc Thierry and Reynaud, Serge. “Quantum limits in interferometric measurements.” In: Europhysics Letters 13.4 (1990), p. 301.Google Scholar
Jaynes, E. T.. “Clearing up mysteries – The original goal.” In: Skilling, J. (ed.) Maximum Entropy and Bayesian Methods. Springer, 1989, pp. 127.Google Scholar
Jaynes, E. T.. Probability Theory: The Logic of Science. Edited by Bretthorst, G.. Cambridge University Press, 2003.Google Scholar
Kennard, Earle H.. “Zur quantenmechanik einfacher bewegungstypen.” In: Zeitschrift für Physik 44.4 (1927), pp. 326352.Google Scholar
Kirchmair, Gerhard, Vlastakis, B., Leghtas, Z., et al.Observation of quantum state collapse and revival due to the single-photon Kerr effect.” In: Nature 495.7440 (2013), pp. 205209.Google Scholar
Kleppner, Daniel. “Inhibited Spontaneous Emission.” In: Physical Review Letters 47 (1981), pp. 233236.Google Scholar
Koch, Jens, Yu, T. M., Gambetta, J., et al.Charge-insensitive qubit design derived from the Cooper pair box.” In: Physical Review A 76 (2007), p. 042319.Google Scholar
Kraus, K.. States, Effects, and Operations. Lecture Notes in Physics, vol. 190. Springer, 1983.Google Scholar
Laloë, Franck. Do We Really Understand Quantum Mechanics? Cambridge University Press, 2019.Google Scholar
Landau, Lev. “The damping problem in wave mechanics.” In: Zeitschrift für Physik 45 (1927), p. 430.Google Scholar
Lapaire, G. G., Kok, Pieter, Dowling, Jonathan P., and Sipe, J. E.. “Conditional linear-optical measurement schemes generate effective photon nonlinearities.” In: Physical Review A 68 (2003), p. 042314.Google Scholar
Laurat, Julien, Coudreau, T., Treps, N., Maître, A., and Fabre, C.. “Conditional preparation of a quantum state in the continuous variable regime: Generation of a sub-Poissonian state from twin beams.” In: Physical Review Letters 91.21 (2003), p. 213601.Google Scholar
Laurat, Julien, Choi, K. S., Deng, H., Chou, C. W., and Kimble, H. J.. “Heralded entanglement between atomic ensembles: Preparation, decoherence, and scaling.” In: Physical Review Letters 99.18 (2007), p. 180504.Google Scholar
Le Bellac, Michel. Quantum Physics. Cambridge University Press, 2011.Google Scholar
Leonhardt, Ulf. Measuring the Quantum State of Light. Vol. 22. Cambridge University Press, 1997.Google Scholar
Likharev, Konstantin K.. Quantum Mechanics: Lecture Notes. Vol. 5. IOP Publishing Ltd. 2019.Google Scholar
Loudon, Rodney. The Quantum Theory of Light. Oxford University Press, 2000.Google Scholar
Lutterbach, L. G. and Davidovich, L.. “Method for direct measurement of the Wigner function in cavity QED and ion traps.” In: Physical Review Letters 78.13 (1997), p. 2547.Google Scholar
Lvovsky, Alexander I. and Raymer, Michael G.. “Continuous-variable optical quantum-state tomography.” In: Reviews of Modern Physics 81.1 (2009), p. 299.Google Scholar
Magnard, P., Storz, S., Kurpiers, P., et al.Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems.” In: Physical Review Letters 125.26 (2020), p. 260502.Google Scholar
Majer, J., Chow, J., Gambetta, J., et al.Coupling superconducting qubits via a cavity bus.” In: Nature 449.7161 (2007), pp. 443447.Google Scholar
Mancini, Stefano, Giovannetti, V., Vitali, D., and Tombesi, P.. “Entangling macroscopic oscillators exploiting radiation pressure.”In: Physical Review Letters 88.12 (2002), p. 120401.Google Scholar
Martinis, John M. and Osborne, Kevin. “Superconducting qubits and the physics of Josephson junctions.” In: ArXiv cond-mat/0402415 (2004).Google Scholar
Martynov, Denis V., Hall, E. D., Abbott, B. P., et al.Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy.” In: Physical Review D 93.11 (2016), p. 112004.Google Scholar
McGuire, J. H. and Fry, E. S.. “Restrictions on nonlocal hidden-variable theory.” In: Physical Review D 7 (1973), pp. 555557.Google Scholar
Meekhof, D. M., Monroe, C., King, B. E., Itano, W. M., and Wineland, D. J.. “Generation of nonclassical motional states of a trapped atom [Phys. Rev. Lett. 76, 1796 (1996)].” In: Physical Review Letters 77.11 (1996), p. 2346.Google Scholar
Mermin, N. David. “Commentary: Quantum mechanics: Fixing the shifty split.” In: Physics Today 65.7 (2012), p. 8.Google Scholar
Miller, Aaron J, Nam, Sae Woo, Martinis, John M., and Sergienko, Alexander V.. “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination.” In: Applied Physics Letters 83.4 (2003), pp. 791793.Google Scholar
Minev, Z. K. Mundhada, S. O., Shankar, S., et al.To catch and reverse a quantum jump mid-flight.” In: Nature 570.7760 (June 2019), pp. 200204.Google Scholar
Mitchell, Morgan W and Alvarez, Silvana Palacios. “Colloquium: Quantum limits to the energy resolution of magnetic field sensors.” In: Review of Modern Physics 92.2 (2020), p. 021001.Google Scholar
Moerner, W. E. and Fromm, David P.. “Methods of single-molecule fluorescence spectroscopy and microscopy.” In: Review of Scientific Instruments 74.8 (2003), pp. 35973619.Google Scholar
Monroe, Christopher, Meekhof, D. M., King, B. E., and Wineland, D. J.. “A “Schrödinger cat” superposition state of an atom.” In: Science 272.5265 (1996), pp. 11311136.Google Scholar
Morin, Olivier, D’Auria, V., Fabre, C., and Laurat, J.. “High-fidelity single-photon source based on a Type II optical parametric oscillator.” In: Optics Letters 37.17 (2012), pp. 37383740.CrossRefGoogle ScholarPubMed
Nagourney, Warren, Sandberg, Jon, and Dehmelt, Hans. “Shelved optical electron amplifier: Observation of quantum jumps.” In: Physical Review Letters 56.26 (1986), p. 2797.Google Scholar
Nakamura, Y., Pashkin, Yu A., and Tsai, J. S.. “Coherent control of macroscopic quantum states in a single-Cooper-pair box.” In: Nature 398.6730 (1999), pp. 786788.Google Scholar
Narla, A., Shankar, S., Hatridge, M., et al.Robust concurrent remote entanglement between two superconducting qubits.” In: Physical Review X 6 (2016), p. 031036.Google Scholar
Neuhauser, W., Hohenstatt, M., Toschek, P. E., and Dehmelt, H. G.. “Visual observation and optical cooling of electrodynamically contained ions.” In: Applied Physics 17.2 (1978), pp. 123129.Google Scholar
Nielsen, Michael and Chuang, Isaac. Quantum Computation and Quantum Information. Cambridge University Press, 2010.Google Scholar
Ou, ZY, Pereira, S. F., Kimble, H. J., and Peng, K. C.. “Realization of the Einstein–Podolsky–Rosen paradox for continuous variables.” In: Physical Review Letters 68.25 (1992), p. 3663.Google Scholar
Ozawa, Masanao. “Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement.” In: Physical Review A 67.4 (2003), p. 042105.Google Scholar
Paris, Matteo G. A.. “The modern tools of quantum mechanics.” In: The European Physical Journal Special Topics 203.1 (2012), pp. 6186.Google Scholar
Paul, Wolfgang. “Electromagnetic traps for charged and neutral particles.” In: Reviews of Modern Physics 62 (1990), pp. 531540.Google Scholar
Pegg, David T., Phillips, Lee S., and Barnett, Stephen M.. “Optical state truncation by projection synthesis.” In: Physical Review Letters 81.8 (1998), p. 1604.Google Scholar
Peres, A.. Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, 1993.Google Scholar
Peshkin, Murray and Tonomura, Akira. The Aharonov–Bohm Effect. Vol. 340. Springer, 1989.Google Scholar
Pinel, Olivier, Fade, Julien, Braun, Daniel, et al.Ultimate sensitivity of precision measurements with intense Gaussian quantum light: A multimodal approach.” In: Physical Review A 85.1 (2012), p. 010101.Google Scholar
Pirkkalainen, J.-M., Damskägg, E., Brandt, M., Massel, F., and Sillanpää, M. A.. “Squeezing of quantum noise of motion in a microme-chanical resonator.” In: Physical Review Letters 115.24 (2015), p. 243601.Google Scholar
Planck, Max. “On the theory of the energy distribution law of the normal spectrum.” In: Verhandl Deutsche Physikalische Gesellschaft 2 (1900), p. 237.Google Scholar
Preskill, John. “Lecture notes for physics 229: Quantum information and computation.California Institute of Technology (1998).Google Scholar
Puri, Shruti, Boutin, Samuel, and Blais, Alexandre. “Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving.” In: npj Quantum Information 3 (2017), article no. 18.Google Scholar
Raussendorf, Robert and Briegel, Hans J.. “A one-way quantum computer.” In: Physical Review Letters 86.22 (2001), p. 5188.Google Scholar
Raymer, M. G.. “Uncertainty principle for joint measurement of noncommuting variables.” In: American Journal of Physics 62.11 (1994), pp. 986993.Google Scholar
Reck, M., Zeilinger, A., Bernstein, H. J., and Bertani, P.. (1994). “Experimental realization of any discrete unitary operator.” In: Physical Review Letters 73.1 (1994), pp. 5861.Google Scholar
Réfrégier, Philippe. Noise Theory and Application to Physics: From Fluctuations to Information. Springer Science & Business Media, 2004.Google Scholar
Reid, Margaret D.. “Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification.” In: Physical Review A 40.2 (1989), p. 913.Google Scholar
Robertson, Howard Percy. “The uncertainty principle.” In: Physical Review 34.1 (1929), p. 163.Google Scholar
Roy, Ananda and Devoret, Michel. “Introduction to parametric amplification of quantum signals with Josephson circuits.” In: Comptes Rendus Physique 17.7 (2016), pp. 740755.Google Scholar
Rozema, Lee A., Darabi, Ardavan, Mahler, Dylan H., et al.Violation of Heisenberg’s measurement-disturbance relationship by weak measurements.” In: Physical Review Letters 109.10 (2012), p. 100404.Google Scholar
Schleich, Wolfgang P.. Quantum Optics in Phase Space. John Wiley and Sons, 2011.Google Scholar
Schrödinger, E.. “Discussion of probability relations between separated systems.” In: Proceedings of the Cambridge Philosophical Society 31.4 (1935), p. 555.Google Scholar
Schrödinger, Erwin. “An undulatory theory of the mechanics of atoms and molecules.” In: Physical Review 28.6 (1926), p. 1049.Google Scholar
Schrödinger, Erwin. “Are there quantum jumps? Part I.” In: The British Journal for the Philosophy of Science 3.10 (1952), p. 109123.Google Scholar
Scully, Marlan O. and Zubairy, M. Suhail. Quantum Optics. Cambridge University Press, 1999.Google Scholar
Shalm, Lynden K., Meyer-Scott, Evan, Christensen, Bradley G., et al.Strong loophole-free test of local realism.” In: Physical Review Letters 115 (2015), p. 250402.Google Scholar
Sherson, Jacob F, Weitenberg, Christof, Endres, Manuel, et al.Single-atom-resolved fluorescence imaging of an atomic Mott insulator.”In: Nature 467.7311 (2010), pp. 6872.Google Scholar
Simon, Rajiah. “Peres–Horodecki separability criterion for continuous variable systems.” In: Physical Review Letters 84.12 (2000), p. 2726.Google Scholar
Ribeiro, P. H. Souto, Schwob, C., Maître, A., and Fabre, C.. “Sub-shot-noise high-sensitivity spectroscopy with optical parametric oscillator twin beams.” In: Optics letters 22.24 (1997), pp. 18931895.Google Scholar
Takamoto, Masao, Hong, Feng-Lei, Higashi, Ryoichi, and Katori, Hidetoshi. “An optical lattice clock.” In: Nature 435.7040 (2005), pp. 321324.Google Scholar
Tapster, P. R., Rarity, J. G., and Satchell, J. S.. “Generation of sub-Poissonian light by high-efficiency light-emitting diodes.” In: Europhysics Letters 4.3 (1987), p. 293.Google Scholar
Tesche, Claudia and Clarke, John. “dc SQUID: Noise and optimization.” In: Journal of Low Temperature Physics 29.3 (1977), pp. 301331.Google Scholar
Vahlbruch, Henning, Mehmet, Moritz, Danzmann, Karsten, and Schnabel, Roman. “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency.” In: Physical Review Letters 117.11 (2016), p. 110801.Google Scholar
Venkatraman, Jayameenakshi Xiao, Xu, Cortiñas, Rodrigo G., Eickbusch, Alec, and Devoret, Michel H.. “Static effective Hamiltonian of a rapidly driven nonlinear system.” In: Physical Review Letters 129 (2022), p. 100601.Google Scholar
Vijay, R., Slichter, D. H., and Siddiqi, I.. “Observation of quantum jumps in a superconducting artificial atom.” In: Physical Review Letters 106 (2011), p. 110502.Google Scholar
von Neumann, John. Mathematical Foundations of Quantum Mechanics. Princeton University Press, 1955.Google Scholar
von Neumann, John. “Probability structure of quantum mechanics.” In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927 (1927), pp. 245272.Google Scholar
Walschaers, Mattia, Fabre, Claude, Parigi, Valentina, and Treps, Nicolas. “Entanglement and Wigner function negativity of multimode non-Gaussian states.” In: Physical Review Letters 119.18 (2017), p. 183601.Google Scholar
Weedbrook, Christian, Pirandola, Stefano, García-Patrón, Raúl, et al.Gaussian quantum information.” In: Reviews of Modern Physics 84.2 (2012), p. 621.Google Scholar
Wielinga, B. and Milburn, G. J.. “Quantum tunneling in a Kerr medium with parametric pumping.” In: Physical Review A 48 (1993), pp. 24942496.Google Scholar
Wigner, Eugene P.. “On the quantum correction for thermodynamic equilibrium.” In: Wightman, Arthur S. (ed.) Part I: Physical Chemistry. Part II: Solid State Physics. Springer, 1997, pp. 110120.Google Scholar
Wineland, David J.. “Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat.” In: Reviews of Modern Physics 85.3 (2013), p. 1103.Google Scholar
Wiseman, Howard M. and Milburn, Gerard J.. Quantum Measurement and Control. Cambridge University Press, 2009.Google Scholar
Wu, Ling-An, Kimble, H. J., Hall, J. L., and Wu, Huifa. “Generation of squeezed states by parametric down conversion.” In: Physical Review Letters 57.20 (1986), p. 2520.Google Scholar
Yang, Kai, Paul, William, Phark, Soo-Hyon, et al.Coherent spin manipulation of individual atoms on a surface.” In: Science 366.6464 (2019), pp. 509512.Google Scholar
Yurke, B. and Stoler, D.. “The dynamic generation of Schrödinger cats and their detection.” In: Physica B+C 151.1 (1988), pp. 298301.Google Scholar
Yurke, Bernard, McCall, Samuel L., and Klauder, John R.. “SU(2) and SU(1,1) interferometers.” In: Physical Review A 33 (1986), pp. 40334054.Google Scholar
Zhang, T-C, Poizat, Jean-Philippe, Grelu, Philippe, et al.Quantum noise of free-running and externally-stabilized laser diodes.” In: Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 7.4 (1995), p. 601.Google Scholar
Minev, Zlatko. Catching and Reversing a Quantum Jump Mid-Flight. Yale University, PhD thesis, 2019.Google Scholar
Zurek, W. H.. “Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?” In: Physical Review D 24 (1981), pp. 15161525.Google Scholar
Zurek, Wojciech Hubert. “Decoherence, einselection, and the quantum origins of the classical.” In: Reviews of Modern Physics 75.3 (2003), p. 715.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Claude Fabre, Sorbonne Université, Paris
  • With contributions by Rodrigo G. Cortiñas
  • Book: Quantum Processes and Measurement
  • Online publication: 27 July 2023
  • Chapter DOI: https://doi.org/10.1017/9781108774918.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Claude Fabre, Sorbonne Université, Paris
  • With contributions by Rodrigo G. Cortiñas
  • Book: Quantum Processes and Measurement
  • Online publication: 27 July 2023
  • Chapter DOI: https://doi.org/10.1017/9781108774918.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Claude Fabre, Sorbonne Université, Paris
  • With contributions by Rodrigo G. Cortiñas
  • Book: Quantum Processes and Measurement
  • Online publication: 27 July 2023
  • Chapter DOI: https://doi.org/10.1017/9781108774918.024
Available formats
×