Book contents
- Frontmatter
- Contents
- Introduction
- 1 Experiment: Detecting Single Quantum Objects
- 2 Description of Quantum Systems in Terms of the Density Matrix
- 3 Experiment: Quantum Processes
- 4 Evolution
- 5 Measurement
- 6 Experiment: Bipartite Systems
- 7 Entanglement
- 8 Experiment: Continuous Quantum Fluctuations
- 9 Continuous Variable Systems
- 10 Experiment: Parameter Estimation
- 11 Theory: Parameter Estimation
- A Basic Postulates of QuantumMechanics: a Reminder
- B Generalized Postulates of Quantum Mechanics
- C Description of Composite Systems
- D Qubits
- E Quantum Particle
- F Quantum Electromagnetic Field
- G Interaction between Light and Atoms
- H Interaction between Light Beams and Linear OpticalMedia
- I Interaction between Light Beams and Nonlinear OpticalMedia
- J Optomechanics
- K Basics of Circuit Quantum Electrodynamics
- References
- Index
I - Interaction between Light Beams and Nonlinear OpticalMedia
Published online by Cambridge University Press: 27 July 2023
- Frontmatter
- Contents
- Introduction
- 1 Experiment: Detecting Single Quantum Objects
- 2 Description of Quantum Systems in Terms of the Density Matrix
- 3 Experiment: Quantum Processes
- 4 Evolution
- 5 Measurement
- 6 Experiment: Bipartite Systems
- 7 Entanglement
- 8 Experiment: Continuous Quantum Fluctuations
- 9 Continuous Variable Systems
- 10 Experiment: Parameter Estimation
- 11 Theory: Parameter Estimation
- A Basic Postulates of QuantumMechanics: a Reminder
- B Generalized Postulates of Quantum Mechanics
- C Description of Composite Systems
- D Qubits
- E Quantum Particle
- F Quantum Electromagnetic Field
- G Interaction between Light and Atoms
- H Interaction between Light Beams and Linear OpticalMedia
- I Interaction between Light Beams and Nonlinear OpticalMedia
- J Optomechanics
- K Basics of Circuit Quantum Electrodynamics
- References
- Index
Summary
Appendix I: propagation of a light beam in a nonlinear parametric medium, inducing a medium-assisted energy transfer between the input beam and the generation of signal and idler beams, hence the name three-wave mixing given to this phenomenon, which is first treated classically, then in a fully quantum way. One finds that, as in the case of fluorescence by spontaneous emission, the phenomenon of spontaneous parametric down conversion (or parametric fluorescence) requires a full quantum treatment, whereas parametric gain can be calculated semiclassically. It gives rise to entangled signal and idler photons as well as twin beams when one inserts the nonlinear medium in a resonant optical cavity (optical parametric oscillator) and to squeezing when the signal and idler modes are identical.
Keywords
- Type
- Chapter
- Information
- Quantum Processes and MeasurementTheory and Experiment, pp. 259 - 267Publisher: Cambridge University PressPrint publication year: 2023