Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T07:52:46.819Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 November 2024

Jerome R. Busemeyer
Affiliation:
Indiana University
Peter D. Bruza
Affiliation:
Queensland University of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quantum Models of Cognition and Decision
Principles and Applications
, pp. 409 - 432
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, Samson, and Brandenburger, Adam. (2011). The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics, 13(11):113036.CrossRefGoogle Scholar
Accardi, L., Khrennikov, A., and Ohya, M.. (2009). Quantum Markov model for data from Shafir–Tversky experiments in cognitive psychology. Open Systems & Information Dynamics, 16(04):371385.CrossRefGoogle Scholar
Acín, Antonio, Fritz, Tobias, Leverrier, Anthony, and Sainz, Ana Belén. (2015). A combinatorial approach to nonlocality and contextuality. Communications in Mathematical Physics, 334(2):533628.CrossRefGoogle Scholar
Acuña, Pablo. (2021). Must hidden variables theories be contextual? Kochen & Specker meet von Neumann and Gleason. European Journal for Philosophy of Science, 11(2):41.CrossRefGoogle Scholar
Adlam, Emily. (2021). Contextuality, fine-tuning and teleological explanation. Foundations of Physics, 51(6):106.CrossRefGoogle Scholar
Aerts, Diederik. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53(5):314348.CrossRefGoogle Scholar
Aerts, Diederik. (2014). Quantum and concept combination, entangled measurements, and prototype theory. Topics in Cognitive Science, 6(1):129137.CrossRefGoogle Scholar
Aerts, Diederik, and Aerts, Sven. (1995). Applications of quantum statistics in psychological studies of decision processes. Foundations of Science, 1(1):8597.CrossRefGoogle Scholar
Aerts, Diederik, and Beltran, Lester. (2020). Quantum structure in cognition: Human language as a boson gas of entangled words. Foundations of Science, 25(3): 755802.CrossRefGoogle Scholar
Aerts, Diederik, and Beltran, Lester. (2022). Are words the quanta of human language? Extending the domain of quantum cognition. Entropy, 24(1):6.CrossRefGoogle Scholar
Aerts, Diederik, and Czachor, Marek. (2004). Quantum aspects of semantic analysis and symbolic artificial intelligence. Journal of Physics A: Mathematical and General, 37(12):L123L132.CrossRefGoogle Scholar
Aerts, Diederik, and Gabora, Liane. (2005a). A theory of concepts and their combinations I: The structure of the sets of contexts and properties. Kybernetes, 34(1/2): 167191.CrossRefGoogle Scholar
Aerts, Diederik, and Gabora, Liane. (2005b). A theory of concepts and their combinations II: A Hilbert space representation. Kybernetes, 34(1/2):192221.CrossRefGoogle Scholar
Aerts, Diederik, and de Bianchi, Massimiliano Sassoli. (2015). The unreasonable success of quantum probability I: Quantum measurements as uniform fluctuations. Journal of Mathematical Psychology, 67:5175.CrossRefGoogle Scholar
Aerts, Diederik, and de Bianchi, Massimiliano Sassoli. (2017). Beyond-quantum modeling of question order effects and response replicability in psychological measurements. Journal of Mathematical Psychology, 79:104120.CrossRefGoogle Scholar
Aerts, Diederik, and Sozzo, Sandro. (2011). Quantum structure in cognition: Why and how concepts are entangled. In Song, D. et al., editors, Quantum Interaction, pages 116127. Springer.CrossRefGoogle Scholar
Aerts, Diederik, and Sozzo, Sandro. (2016). From ambiguity aversion to a generalized expected utility: Modeling preferences in a quantum probabilistic framework. Journal of Mathematical Psychology, 74:117127.CrossRefGoogle Scholar
Aerts, Diederik, Broekaert, Jan, and Gabora, Liane. (2011). A case for applying an abstracted quantum formalism to cognition. New Ideas in Psychology, 29(2): 136146.CrossRefGoogle Scholar
Aerts, Diederik, Gabora, Liane, and Sozzo, Sandro. (2013). Concepts and their dynamics: A quantum-theoretic modeling of human thought. Topics in Cognitive Science, 5(4):737772.CrossRefGoogle Scholar
Aerts, Diederik, Sozzo, Sandro, and Veloz, Tomas. (2015). Quantum structure of negation and conjunction in human thought. Frontiers in Psychology, 6:1447.CrossRefGoogle Scholar
Aerts, Diederik, Aerts, Sven, Broekaert, Jan, and Gabora, Liane. (2000). The violation of Bell inequalities in the macroworld. Foundations of Physics, 30(9):13871414.CrossRefGoogle Scholar
Aerts, Diederik, Arguëlles, Jonito Aerts, Beltran, Lester, Geriente, Suzette, de Bianchi, Massimiliano Sassoli, Sozzo, Sandro, and Veloz, Tomas. (2018). Spin and wind directions I: Identifying entanglement in nature and cognition. Foundations of Science, 23(2):323335.CrossRefGoogle Scholar
Aerts, Diederik, Arguëlles, Jonito Aerts, Beltran, Lester, Geriente, Suzette, de Bianchi, Massimiliano Sassoli, Sozzo, Sandro, and Veloz, Tomas. (2019). Quantum entanglement in physical and cognitive systems: A conceptual analysis and a general representation. European Physical Journal Plus, 134(10):124.CrossRefGoogle Scholar
Aerts, Diederik, Beltran, Lester, Geriente, Suzette, and Sozzo, Sandro. (2021). Quantum-theoretic modeling in computer science: A complex Hilbert space model for entangled concepts in corpuses of documents. International Journal of Theoretical Physics, 60(2):710726.CrossRefGoogle Scholar
Aharonov, Y., Davidovich, L., and Zagury, N.. (1993). Quantum random walks. Physical Review A, 48(2):16871690.CrossRefGoogle Scholar
al Nowaihi, Ali, and Dhami, Sanjit. (2017). The Ellsberg paradox: A challenge to quantum decision theory? Journal of Mathematical Psychology, 78:4050.CrossRefGoogle Scholar
Alchieri, Leonardo, Badalotti, Davide, Bonardi, Pietro, and Bianco, Simone. (2021). An introduction to quantum machine learning: From quantum logic to quantum deep learning. Quantum Machine Intelligence, 3(2):28.CrossRefGoogle Scholar
Almeida, Felipe, and Xexéo, Geraldo. (2019). Word embeddings: A survey. arXiv preprint arXiv:1901.09069.Google Scholar
Anderson, J. R. (1993). Rules of the Mind. Psychology Press.Google Scholar
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., and Qin, Y.. (2004). An integrated theory of the mind. Psychological Review, 111(4):10361060.CrossRefGoogle Scholar
Asano, M., Ohya, M., Tanaka, Y., Basieva, I., and Khrennikov, A.. (2011a). Quantumlike model of brain’s functioning: Decision making from decoherence. Journal of Theoretical Biology, 281(1):5664.CrossRefGoogle Scholar
Asano, M., Ohya, M., Tanaka, Y., Khrennikov, A., and Basieva, I.. (2011b). On application of Gorini–Kossakowski–Sudarshan–Lindblad equation in cognitive psychology. Open Systems & Information Dynamics, 18(01):5569.CrossRefGoogle Scholar
Asano, M., Basieva, I., Khrennikov, A., Ohya, M., and Tanaka, Y.. (2012). Quantumlike generalization of the Bayesian updating scheme for objective and subjective mental uncertainties. Journal of Mathematical Psychology, 56(3):166175.CrossRefGoogle Scholar
Asano, M., Hashimoto, T., Khrennikov, A., Ohya, M., and Tanaka, Y.. (2014). Violation of contextual generalization of the Leggett–Garg inequality for recognition of ambiguous figures. Physica Scripta, 2014(T163):014006.CrossRefGoogle Scholar
Asano, M., Basieva, I., Khrennikov, A., Ohya, M., and Tanaka, Y.. (2016). A quantum-like model of selection behavior. Journal of Mathematical Psychology, 78:212.CrossRefGoogle Scholar
Ashtiani, M., and Azgomi, M. A.. (2015). A survey of quantum-like approaches to decision making and cognition. Mathematical Social Sciences, 75:4980.CrossRefGoogle Scholar
Atmanspacher, Harald. (2024). Quantum approaches to consciousness. In Zalta, Edward N. and Nodelman, Uri, editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.Google Scholar
Atmanspacher, Harald (forthcoming). Varieties of experiencing nothingness. In Rickles, Dean and Stein, Leslie, editors, Varieties of Nothingness. Chiron.Google Scholar
Atmanspacher, Harald, and Fach, Wolfgang. (2019). Exceptional experiences of stable and unstable mental states, understood from a dual-aspect point of view. Philosophies, 4(1):7.CrossRefGoogle Scholar
Atmanspacher, Harald, and Filk, Thomas. (2010). A proposed test of temporal nonlocality in bistable perception. Journal of Mathematical Psychology, 54(3):314321.CrossRefGoogle Scholar
Atmanspacher, Harald, and Filk, Thomas. (2013). The Necker–Zeno model for bistable perception. Topics in Cognitive Science, 5(4): 800817.CrossRefGoogle Scholar
Atmanspacher, Harald, and Filk, Thomas. (2019). Contextuality revisited: Signaling may differ from communicating. In de Barros, J. A. and Montemayor, C., editors, Quanta and Mind: Essays on the Connection between Quantum Mechanics and Consciousness, pages 117127. Springer.CrossRefGoogle Scholar
Atmanspacher, Harald, and Rickles, Dean. (2022). Dual-Aspect Monism and the Deep Structure of Meaning. Routledge.CrossRefGoogle Scholar
Atmanspacher, Harald, and Römer, Hartmann. (2012). Order effects in sequential measurements of non-commuting psychological observables. Journal of Mathematical Psychology, 56(4):274280.CrossRefGoogle Scholar
Atmanspacher, Harald, Römer, Hartmann, and Walach, Harald. (2002). Weak quantum theory: Complementarity and entanglement in physics and beyond. Foundations of Physics, 32(3):379406.CrossRefGoogle Scholar
Atmanspacher, Harald, Filk, Thomas, and Römer, Hartmann. (2004). Quantum Zeno features of bistable perception. Biological Cybernetics, 90:3340.CrossRefGoogle Scholar
Baaquie, B. E. (2004). Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates. Cambridge University Press.CrossRefGoogle Scholar
Bagarello, Fabio. (2014). Matrix computations for the dynamics of fermionic systems. International Journal of Theoretical Physics, 53(2):555565.CrossRefGoogle Scholar
Bagarello, Fabio. (2019). Quantum Concepts in the Social, Ecological, and Biological sciences. Cambridge University Press.CrossRefGoogle Scholar
Bagarello, Fabio, Basieva, Irina, Pothos, Emmanuel M., and Khrennikov, Andrei. (2018). Quantum like modeling of decision making: Quantifying uncertainty with the aid of Heisenberg–Robertson inequality. Journal of Mathematical Psychology, 84: 4956.CrossRefGoogle Scholar
Bagarello, Fabio, Gargano, Francesco, and Oliveri, Francesco. (2020). Spreading of competing information in a network. Entropy, 22(10):1169.CrossRefGoogle Scholar
Bago, Bence, and De Neys, Wim. (2020). Advancing the specification of dual process models of higher cognition: A critical test of the hybrid model view. Thinking & Reasoning, 26(1):130.CrossRefGoogle Scholar
Bai, Jing, Song, Dawei, Bruza, Peter, Nie, Jian-Yun, and Cao, Guihong. (2005). Query expansion using term relationships in language models for information retrieval. In Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pages 688–695.CrossRefGoogle Scholar
Barkan, Rachel, and Busemeyer, Jerome R.. (2003). Modeling dynamic inconsistency with a changing reference point. Journal of Behavioral Decision Making, 16(4): 235255.CrossRefGoogle Scholar
Barnum, Howard, Caves, Carlton M., Finkelstein, Jerry, Fuchs, Christopher A., and Schack, Rüdiger. (2000). Quantum probability from decision theory? Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 456(1997):11751182.CrossRefGoogle Scholar
Basieva, Irina, Pothos, Emmanuel, Trueblood, Jennifer, Khrennikov, Andrei, and Busemeyer, Jerome. (2017). Quantum probability updating from zero priors (by-passing Cromwell’s rule). Journal of Mathematical Psychology, 77:5869.CrossRefGoogle Scholar
Basieva, Irina, Cervantes, Victor, Dzhafarov, Ehtibar, and Khrennikov, Andrei. (2019). True contextuality beats direct influences in human decision making. Journal of Experimental Psychology: General, 148(11):19251937.CrossRefGoogle Scholar
beim Graben, Peter, and Atmanspacher, Harald. (2006). Complementarity in classical dynamical systems. Foundations of Physics, 36(2):291306.CrossRefGoogle Scholar
Belinfante, Frederik Jozef. (2014). A Survey of Hidden-Variables Theories. Elsevier.Google Scholar
Bell, John. (1964). On the Einstein–Podolsky–Rosen–Bohm paradox. Physics, 1(3): 195200.CrossRefGoogle Scholar
Bender, Andrea. (2020). What is causal cognition? Frontiers in Psychology, 11:3.CrossRefGoogle Scholar
Bertotti, Bruno. (1985). The later work of E. Schrödinger. Studies in History and Philosophy of Science, 16(2):83100.CrossRefGoogle Scholar
Birnbaum, M. H. (2008). New paradoxes of risky decision making. Psychological Review, 115(2):463501.CrossRefGoogle Scholar
Bitbol, Michel. (1999). Schrödinger and Indian philosophy. In Cahiers du service culturel de l’ambassade de France en Inde.Google Scholar
Blacoe, William, Kashefi, Elham, and Lapata, Mirella. (2013). A quantum-theoretic approach to distributional semantics. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 847–857.Google Scholar
Blutner, Reinhard, and Graben, Peter beim. (2016). Quantum cognition and bounded rationality. Synthese, 193(10):32393291.CrossRefGoogle Scholar
Blutner, Reinhard, Pothos, Emmanuel M., and Bruza, Peter D.. (2013). A quantum probability perspective on borderline vagueness. Topics in Cognitive Science, 5(4): 711736.CrossRefGoogle Scholar
Boole, George. (1862). On the theory of probabilities. Philosophical Transactions of the Royal Society of London, 152:225252.Google Scholar
Bordley, R. F. (1998). Quantum mechanical and human violations of compound probability principles: Toward a generalized Heisenberg uncertainty principle. Operations Research, 46(6):923926.CrossRefGoogle Scholar
Bordley, R. F., and Kadane, J. B.. (1999). Experiment-dependent priors in psychology and physics. Theory and Decision, 47(3):213227.CrossRefGoogle Scholar
Boyer-Kassem, Thomas, Duchêne, Sébastien, and Guerci, Eric. (2016a). Quantum-like models cannot account for the conjunction fallacy. Theory and Decision, 81(4): 479510.CrossRefGoogle Scholar
Boyer-Kassem, Thomas, Duchêne, Sébastien, and Guerci, Eric. (2016b). Testing quantum-like models of judgment for question order effect. Mathematical Social Sciences, 80:3346.CrossRefGoogle Scholar
Bradley, Tai-Danae, Stoudenmire, E. Miles, and Terilla, John. (2020). Modeling sequences with quantum states: A look under the hood. Machine Learning: Science and Technology, 1(3):035008.Google Scholar
Brainerd, C. J., and Reyna, V. F.. (2008). Episodic over-distribution: A signature effect of familiarity without recognition. Journal of Memory and Language, 58(3):765786.CrossRefGoogle Scholar
Brainerd, C. J., Reyna, V. F., and Mojardin, A. H.. (1999). Conjoint recognition. Psychological Review, 106(1):160179.CrossRefGoogle Scholar
Brainerd, C. J., Wang, Z., and Reyna, V.. (2013). Superposition of episodic memories: Overdistribution and quantum models. Topics in Cognitive Science, 5(4): 773799.CrossRefGoogle Scholar
Brainerd, C. J., Wang, Z., Reyna, V. F., and Nakamura, K.. (2015). Episodic memory does not add up: Verbatim–gist superposition predicts violations of the additive law of probability. Journal of Memory and Language, 84:224245.CrossRefGoogle Scholar
Brandstätter, Eduard, Gigerenzer, Gerd, and Hertwig, Ralph. (2006). The priority heuristic: Making choices without trade-offs. Psychological Review, 113(2): 409432.CrossRefGoogle Scholar
Breuer, Heinz-Peter, and Petruccione, Francesco. (2007). The Theory of Open Quantum Systems. Oxford University Press on Demand.CrossRefGoogle Scholar
Brink, Dean Anthony. (2021). Philosophy of Science and The Kyoto School: An Introduction to Nishida Kitarō, Tanabe Hajime and Tosaka Jun. Publishing, Bloomsbury.CrossRefGoogle Scholar
Brockhaus, R. R. (1991). Realism and psychologism in 19th-century logic. Philosophy and Phenomenological Research, 51:493524.CrossRefGoogle Scholar
Broekaert, Jan B., and Busemeyer, Jerome R.. (2017). A Hamiltonian driven quantumlike model for overdistribution in episodic memory recollection. Frontiers in Physics, 5:23.CrossRefGoogle Scholar
Broekaert, Jan B., Busemeyer, Jerome R., and Pothos, Emmanuel M.. (2020). The disjunction effect in two-stage simulated gambles. An experimental study and comparison of a heuristic logistic, Markov and quantum-like model. Cognitive Psychology, 117:101262.CrossRefGoogle Scholar
Bruza, Peter D., and Cole, Richard J.. (2006). Quantum logic of semantic space: An exploratory investigation of context effects in practical reasoning. quantph/0612178.Google Scholar
Bruza, Peter D., and Fell, Lauren. (2019). Are decisions of image trustworthiness contextual? A pilot study. In Lambert-Mogiliansky, A. and Coecke, B., editors, Quantum Interaction: 11th International Conference (QI 2018), pages 3950. Springer.CrossRefGoogle Scholar
Bruza, Peter D., and Gibson, Andrew. (2022). Abduction beyond representation. In Handbook of Abductive Cognition, pages 117. Springer.Google Scholar
Bruza, Peter D., and Hoenkamp, Eduard C.. (2018). Reinforcing trust in autonomous systems: A quantum cognitive approach. In Abbass, Hussein A., Scholz, Jason, and Reid, Darryn J., editors, Foundations of Trusted Autonomy, pages 215224. Springer.CrossRefGoogle Scholar
Bruza, Peter D., and Ramm, Brentyn J.. (2019). Absolute present, Zen and Schrödinger’s One Mind. In de Barros, J. Acacio and Montemayor, Carlos, editors, Quanta and Mind: Essays on the Connection between Quantum Mechanics and Consciousness, pages 189200. Springer.CrossRefGoogle Scholar
Bruza, Peter, Kitto, Kirsty, Nelson, Douglas, and McEvoy, Cathy. (2008). Entangling words and meaning. In Quantum Interaction: Proceedings of the Second Quantum Interaction Symposium (QI-2008), pages. 118124. College Publications.Google Scholar
Bruza, Peter, Kitto, Kirsty, Nelson, Douglas, and McEvoy, Cathy. (2009). Is there something quantum-like about the human mental lexicon? Journal of Mathematical Psychology, 53(5):362377.CrossRefGoogle Scholar
Bruza, Peter D., Wang, Zheng, and Busemeyer, Jerome R.. (2015a). Quantum cognition: A new theoretical approach to psychology. Trends in Cognitive Sciences, 19(7): 383393.CrossRefGoogle Scholar
Bruza, Peter D., Kitto, Kirsty, Ramm, Brentyn J., and Sitbon, Laurianne. (2015b). A probabilistic framework for analysing the compositionality of conceptual combinations. Journal of Mathematical Psychology, 67:2638.CrossRefGoogle Scholar
Bruza, Peter D., Lawless, W., van Rijsbergen, Cornelis J., and Sofge, D., editors. (2007). Quantum Interaction. Association for the Advancement of Artificial Intelligence, AAAI Press.Google Scholar
Bruza, Peter D., Fell, Lauren, Hoyte, Pamela, Dehdashti, Shahram, Obeid, Abdul Karim, Gibson, Andrew, and Moreira, Catarina. (2023). Contextuality and contextsensitivity in probabilistic models of cognition. Cognitive Psychology, 140: 101529.CrossRefGoogle Scholar
Burgess, Curt, Livesay, Kay, and Lund, Kevin. (1998). Explorations in context space: Words, sentences, discourse. Discourse Processes, 25(2–3):211257.CrossRefGoogle Scholar
Busemeyer, Jerome R., and Bruza, Peter D.. (2012). Quantum Models of Cognition and Decision. Cambridge University Press.CrossRefGoogle Scholar
Busemeyer, Jerome R., and Wang, Yi-Min. (2000). Model comparisons and model selections based on generalization criterion methodology. Journal of Mathematical Psychology, 44(1):171189.CrossRefGoogle Scholar
Busemeyer, Jerome R., and Wang, Zheng. (2017). Is there a problem with quantum models of psychological measurements? PLOS ONE, 12(11):e0187733.CrossRefGoogle Scholar
Busemeyer, Jerome R., Wang, Zheng, and Townsend, James T.. (2006). Quantum dynamics of human decision making. Journal of Mathematical Psychology, 50(3):220241.CrossRefGoogle Scholar
Busemeyer, Jerome R., Wang, Zheng, and Lambert-Mogiliansky, A.. (2009). Empirical comparison of Markov and quantum models of decision making. Journal of Mathematical Psychology, 53(5):423433.CrossRefGoogle Scholar
Busemeyer, Jerome R., Pothos, Emmanuel M., Franco, Riccardo, and Trueblood, Jennifer S.. (2011). A quantum theoretical explanation for probability judgment errors. Psychological Review, 118(2):193218.CrossRefGoogle Scholar
Busemeyer, Jerome R., Wang, Zheng, and Shiffrin, Richard M.. (2015). Bayesian model comparison favors quantum over standard decision theory account of dynamic inconsistency. Decision, 2:112.CrossRefGoogle Scholar
Busemeyer, Jerome R., Fakhari, Pegah, and Kvam, Peter. (2017). Neural implementation of operations used in quantum cognition. Progress in Biophysics and Molecular Biology, 130:5360.CrossRefGoogle Scholar
Busemeyer, Jerome R., Kvam, Peter D., and Pleskac, Timothy J.. (2019). Markov versus quantum dynamic models of belief change during evidence monitoring. Scientific Reports, 9(1):110.CrossRefGoogle Scholar
Busemeyer, Jerome R., Kvam, Peter D., and Pleskac, Timothy J.. (2020a). Comparison of Markov versus quantum dynamical models of human decision making. WIREs, e1576.CrossRefGoogle Scholar
Busemeyer, Jerome R., Zhang, Qizi, Balakrishnan, Sivasubramanya N., and Wang, Zheng. (2020b). Application of quantum Markov open system models to human cognition and decision. Entropy, 22(9):990.CrossRefGoogle Scholar
Camparo, J. (2013). A geometrical approach to the ordinal data of Likert scaling and attitude measurements: The density matrix in psychology. Journal of Mathematical Psychology, 57(1):2942.CrossRefGoogle Scholar
Carlson, B. W., and Yates, J. F.. (1989). Disjunction errors in qualitative likelihood judgment. Organizational Behavior and Human Decision Processes, 44:368379.CrossRefGoogle Scholar
Cavalcanti, Eric G. (2018). Classical causal models for Bell and Kochen–Specker inequality violations require fine-tuning. Physical Review X, 8(2):021018.CrossRefGoogle Scholar
Cereceda, J. L. (2000). Quantum mechanical probabilities and general probabilistic constraints for Einstein–Podolsky–Rosen–Bohm experiments. Foundations of Physics Letters, 13(5):427442.CrossRefGoogle Scholar
Chichilnisky, Graciela. (2022). The topology of quantum theory and social choice. Quantum Reports, 4(2):201220.CrossRefGoogle Scholar
Chou, Yu-Liang, Moreira, Catarina, Bruza, Peter, Ouyang, Chun, and Jorge, Joaquim. (2022). Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications. Information Fusion, 81:5983.CrossRefGoogle Scholar
Clark, Stephen, Coecke, Bob, and Sadrzadeh, Mehrnoosh. (2008). A compositional distributional model of meaning. In Proceedings of the Second Quantum Interaction Symposium (QI-2008), pages 133140. College Publications.Google Scholar
Clauser, John F., Horne, Michael A., Shimony, Abner, and Holt, Richard A.. (1969). Proposed experiment to test local hidden-variable theories. Physical Review letters, 23(15):880.CrossRefGoogle Scholar
Coecke, Bob. (2023). Compositionality as we see it, everywhere around us. In The Quantum-Like Revolution: A Festschrift for Andrei Khrennikov, pages 247267. Springer.CrossRefGoogle Scholar
Coecke, Bob, and Lewis, Martha. (2015). A compositional explanation of the ‘pet fish’ phenomenon. In Atmanspacher, H., Filk, T., and Pothos, E., editors, Quantum Interaction: 9th International Conference (QI 2015), pages 179192. Springer.Google Scholar
Coecke, Bob, Sadrzadeh, Mehrnoosh, and Clark, Stephen. (2010). Mathematical foundations for a compositional distributional model of meaning. arXiv:1003.4394.Google Scholar
Coecke, Bob, de Felice, Giovanni, Meichanetzidis, Konstantinos, and Toumi, Alexis. (2020). Foundations for near-term quantum natural language processing. arXiv:2012.03755.Google Scholar
Colyvan, Mark. (2004). The philosophical significance of Cox’s theorem. International Journal of Approximate Reasoning, 37(1):7185.CrossRefGoogle Scholar
Conte, E., Todarello, O., Federici, A., Vitiello, F., Lopane, M., and Khrennikov, A.. (2007). Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and formulation of an abstract quantum mechanical formalism to describe cognitive entity and its dynamics. Chaos, Solitons, and Fractals, 31:10761088.CrossRefGoogle Scholar
Corti, Alberto. (2021). Yet again, quantum indeterminacy is not worldly indecision. Synthese, 199(3–4):56235643.CrossRefGoogle Scholar
Costa, F., and Shrapnel, S.. (2016). Quantum causal modeling. New Journal of Physics, 18:063032.CrossRefGoogle Scholar
Costello, Fintan J. (2009). Fallacies in probability judgments for conjunctions and disjunctions of everyday events. Journal of Behavioral Decision Making, 22(3): 235251.CrossRefGoogle Scholar
Costello, Fintan, and Watts, Paul. (2014). Surprisingly rational: Probability theory plus noise explains biases in judgments. Psychological Review, 121 (3):463480.CrossRefGoogle Scholar
Costello, Fintan, and Watts, Paul. (2016). People’s conditional probability judgments follow probability theory (plus noise). Cognitive Psychology, 89:106133.CrossRefGoogle Scholar
Costello, Fintan, and Watts, Paul. (2017). Explaining high conjunction fallacy rates: The probability theory plus noise account. Journal of Behavioral Decision Making, 30(2): 304321.CrossRefGoogle Scholar
Costello, Fintan, and Watts, Paul. (2018). Invariants in probabilistic reasoning. Cognitive Psychology, 100:116.CrossRefGoogle Scholar
Costello, Fintan, Watts, Paul, and Fisher, Christopher. (2018). Surprising rationality in probability judgment: Assessing two competing models. Cognition, 170:280297.CrossRefGoogle Scholar
Cox, David Roxbee, and Miller, Hilton David. (1977). The Theory of Stochastic Processes, volume 134. CRC Press.Google Scholar
Coyle, Brian, Mills, Daniel, Danos, Vincent, and Kashefi, Elham. (2020). The Born supremacy: Quantum advantage and training of an Ising–Born machine. Quantum Information, 6(1):60.CrossRefGoogle Scholar
Croson, R. (1999). The disjunction effect and reason-based choice in games. Organizational Behavior and Human Decision Processes, 80(2):118133.CrossRefGoogle Scholar
Crupi, Vincenzo, Elia, Fabrizio, Aprà, Franco, and Tentori, Katya. (2018). Double conjunction fallacies in physicians’ probability judgment. Medical Decision Making, 38(6):756760.CrossRefGoogle Scholar
Csikszentmihalyi, Mihaly. (2014). Applications of Flow in Human Development and Education. Springer.CrossRefGoogle Scholar
Dai, Jiongyu, and Deng, Yong. (2020). A new method to predict the interference effect in quantum-like Bayesian networks. Soft Computing, 24(14):1028710294.CrossRefGoogle Scholar
de Barros, J. Acacio. (2012). Quantum-like model of behavioral response computation using neural oscillators. Biosystems, 110(3):171182.CrossRefGoogle Scholar
de Barros, J. Acacio, and Montemayor, Carlos. (2019a). Quanta and Mind. Springer.CrossRefGoogle Scholar
de Barros, J. Acacio, and Montemayor, Carlos. (2019b). Where does quanta meet mind? In de Barros, J. Acacio and Montemayor, Carlos, editors, Quanta and Mind: Essays on the Connection between Quantum Mechanics and Consciousness, pages 5566. Springer Verlag.CrossRefGoogle Scholar
de Barros, J. Acacio, and Oas, Gary. (2015). Some examples of contextuality in physics: Implications to quantum cognition. arXiv:1512.00033.Google Scholar
de Barros, J. Acacio, and Suppes, Patrick. (2009). Quantum mechanics, interference, and the brain. Journal of Mathematical Psychology, 53:306313.CrossRefGoogle Scholar
de Barros, J. Acacio, Montemayor, Carlos, and De Assis, Leonardo P. G.. (2017). Contextuality in the integrated information theory. In Quantum Interaction: 10th International Conference, QI 2016, Revised Selected Papers 10, pages 5770. Springer.CrossRefGoogle Scholar
de Barros, J. Acacio, Montemayor, Carlos, De Assis, Leonardo P. G., Skokowsi, Paul, and Perry, John. (2022). Constraining meanings with contextuality. Foundations of Science, 29(2):521541.CrossRefGoogle Scholar
de Finetti, Bruno. (2017). Theory of Probability: A Critical Introductory Treatment, volume 6. John Wiley & Sons.CrossRefGoogle Scholar
Dehdashti, Shahram, Fell, Lauren, and Bruza, Peter. (2020a). On the irrationality of being in two minds. Entropy, 22(2):174.CrossRefGoogle Scholar
Dehdashti, Shahram, Fell, Lauren, Obeid, Abdul Karim, Moreira, Catarina, and Bruza, Peter. (2020b). Bistable probabilities: A unified framework for studying rationality and irrationality in classical and quantum games. Proceedings of the Royal Society A, 476(2237):20190839.Google Scholar
Dennett, Daniel. (2024). “Daniel Dennett’s Been Thinking About Thinking—and AI”: TuftsNow, accessed June 26, 2024.Google Scholar
Denolf, Jacob, and Lambert-Mogiliansky, Ariane. (2016). Bohr complementarity in memory retrieval. Journal of Mathematical Psychology, 73:2836.CrossRefGoogle Scholar
Diederich, Adele, and Busemeyer, Jerome R.. (2003). Simple matrix methods for analyzing diffusion models of choice probability, choice response time, and simple response time. Journal of Mathematical Psychology, 47(3):304322.CrossRefGoogle Scholar
Diederich, Adele, and Trueblood, Jennifer S.. (2018). A dynamic dual process model of risky decision making. Psychological Review, 125(2):270292.CrossRefGoogle Scholar
Dirac, Paul A. M. (1930/1958). The Principles of Quantum Mechanics. Oxford University Press.Google Scholar
Dong, D., Chen, C., Li, H., and Tarn, T.-J.. (2008). Quantum reinforcement learning. IEEE Transactions Systems Man Cybernetics, B: Cybernetics, 38(5):12071220.CrossRefGoogle Scholar
Dong, D., Chen, C., Chu, J., and Tarn, T.-J.. (2010). Robust quantum-inspired reinforcement learning for robot navigation. IEEE/ASME Transactions on Mechatronics, 17(1): 8697.CrossRefGoogle Scholar
Dzhafarov, Ehtibar. (2021). Contents, contexts, and basics of contextuality. arXiv:2103.07954v1.Google Scholar
Dzhafarov, Ehtibar, and Cervantes, Victor H.. (2019). True contextuality in a psychophysical experiment. Journal of Mathematical Psychology, 19:119127.Google Scholar
Dzhafarov, Ehtibar, and Kujala, Janne V.. (2012). Selectivity in probabilistic causality: Where psychology runs into quantum physics. Journal of Mathematical Psychology, 56:5463.CrossRefGoogle Scholar
Dzhafarov, Ehtibar, and Kujala, Janne. (2014). On selective influences, marginal selectivity, and Bell/CHSH inequalities. Topics in Cognitive Science, 6(1): 121128.CrossRefGoogle Scholar
Dzhafarov, Ehtibar N., and Kujala, Janne V.. (2016). Context–content systems of random variables: The contextuality-by-default theory. Journal of Mathematical Psychology, 74:1133.CrossRefGoogle Scholar
Dzhafarov, Ehtibar, Zhang, R., and Kujala, Janne. (2016). Is there contextuality in behavioral and social systems? Philosophical Transactions of the Royal Society A, 374(20150099).Google Scholar
Einhorn, Hillel J., and Hogarth, Robin M.. (1978). Confidence in judgment: Persistence of the illusion of validity. Psychological Review, 85(5):395.CrossRefGoogle Scholar
Epperson, Michael. (2004). Quantum Mechanics and the Philosophy of Alfred North Whitehead. Fordham University Press.CrossRefGoogle Scholar
Epping, Gunnar P., Kvam, Peter D., Pleskac, Timothy J., and Busemeyer, Jerome R.. (2023). Open system model of choice and response time. Journal of Choice Modeling, 49:100453.Google Scholar
Fakhari, Pegah, Rajagopal, K., Balakrishnan, Sivasubramanya N., and Busemeyer, Jerome R.. (2013). Quantum inspired reinforcement learning in changing environments. New Mathematics and Natural Computation: Special Issue on Engineering of the Mind, Cognitive Science and Robotics, 9(3):273294.CrossRefGoogle Scholar
Farhi, Edward, and Gutmann, Sam. (1998). Quantum computation and decision trees. Physical Review A, 58(2):915.CrossRefGoogle Scholar
Favre, Maroussia, Wittwer, Amrei, Heinimann, Hans Rudolf, Yukalov, Vyacheslav I., and Sornette, Didier. (2016). Quantum decision theory in simple risky choices. PLOS ONE, 11(12):e0168045.CrossRefGoogle Scholar
Feenberg, Andrew, and Arisaka, Yoko. (1990). Experiential ontology: The origins of the Nishida philosophy in the doctrine of pure experience. International Philosophical Quarterly, 30(2):173205.CrossRefGoogle Scholar
Feldman, J. M., and Lynch, J. G.. (1988). Self-generated validity and other effects of measurement on belief, attitude, intention, and behavior. Journal of Applied Psychology, 73(3):421435.CrossRefGoogle Scholar
Fell, Lauren, Dehdashti, Shahram, Bruza, Peter D., and Moreira, Catarina. (2019). An experimental protocol to derive and validate a quantum model of decision-making. In Proceedings of the 41st Annual Meeting of the Cognitive Science Society (COGSCI’19).Google Scholar
Feynman, R. P., Leighton, R. B., and Sands, M.. (1965). Lectures on Physics: Quantum Mechanics. Volume III. Addison-Wesley.Google Scholar
Fiedler, Klaus. (2010). How to study cognitive decision algorithms: The case of the priority heuristic. Judgment and Decision Making, 5(1):2132.CrossRefGoogle Scholar
Filk, Thomas. (2013). Temporal non-locality. Foundations of Physics, 43(4):533547.CrossRefGoogle Scholar
Fisher, Matthew P. A. (2015). Quantum cognition: The possibility of processing with nuclear spins in the brain. Annals of Physics, 362:593602.CrossRefGoogle Scholar
Fisk, J. E., and Pidgeon, N.. (1998). Conditional probabilities, potential surprise, and the conjunction fallacy. Quarterly Journal of Experimental Psychology, 51A:655681.CrossRefGoogle Scholar
Fletcher, Samuel C., and Taylor, David E.. (2021). Two quantum logics of indeterminacy. Synthese, 199(5–6):1324713281.CrossRefGoogle Scholar
Franco, R. (2009). The conjunctive fallacy and interference effects. Journal of Mathematical Psychology, 53(5):415422.CrossRefGoogle Scholar
Friebe, Cord. (2018). Physical and mathematical foundations. In Friebe, Cord, Kuhlmann, Meinard, Lyre, Holger, Näger, Paul M., Passon, Oliver, and Stöckler, Manfred, editors, The Philosophy of Quantum Physics, pages 138. Springer.Google Scholar
Fuss, I. G., and Navarro, D. J.. (2008). Partially Coherent Quantum Models for Human Two-Choice Decisions, pages 7582. College Publications.Google Scholar
Fuss, I. G., and Navarro, D. J.. (2013). Open parallel cooperative and competitive decision processes: A potential provenance for quantum probability decision models. Topics in Cognitive Science, 5(4):818843.CrossRefGoogle Scholar
Gabbay, Dov M., and Woods, John. (2003). Normative models of rational agency: The theoretical disutility of certain approaches. Logic Journal of the IGPL, 11(6): 597613.CrossRefGoogle Scholar
Gabora, Liane, and Aerts, Diederik. (2002). Contextualizing concepts using a mathematical generalization of the quantum formalism. Journal of Experimental Theoretical Artificial Intelligence, 14:327358.CrossRefGoogle Scholar
Gabora, Liane, Rosch, Eleanor, and Aerts, Diederik. (2008). Toward an ecological theory of concepts. Ecological Psychology, 20(1):84116.CrossRefGoogle Scholar
Galea, David, Bruza, Peter, Kitto, Kirsty, and Nelson, Douglas. (2012). Modelling word activation in semantic networks: Three scaled entanglement models compared. In Quantum Interaction: 6th International Symposium, QI 2012, Paris, France, June 27–29, 2012, Revised Selected Papers 6, pages 172183. Springer.CrossRefGoogle Scholar
Galloway, G. (2000). Direct realism and the analysis of perceptual error. Theory & Psychology, 10(5):605613.CrossRefGoogle Scholar
Gavanski, I., and Roskos-Ewoldsen, D. R.. (1991). Representativeness and conjoint probability. Journal of Personality and Social Psychology, 61:181194.CrossRefGoogle Scholar
Genin, Konstantin, and Huber, Franz. (2022). Formal representations of belief. In Zalta, Edward N. and Nodelman, Uri, editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2022 edition.Google Scholar
Gigerenzer, Gerd, and Goldstein, Daniel G.. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103(4):650669.CrossRefGoogle Scholar
Gilboa, I. (2009). Theory of Decision under Uncertainty. Cambridge University Press.CrossRefGoogle Scholar
Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space. Journal of Mathematical Mechanics, 6:885893.Google Scholar
Goldberg, Yoav, and Levy, Omer. (2014). word2vec explained: Deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv:1402.3722.Google Scholar
Gray, Wayne D. (2013). Introduction to Volume 5, Issue 4 of TopiCS. Topics in Cognitive Science, 5(4):671671.CrossRefGoogle Scholar
Griffiths, Robert B. (2003). Consistent Quantum Theory. Cambridge University Press.Google Scholar
Griffiths, Robert B. (2014). The new quantum logic. Foundations of Physics, 44: 610640.CrossRefGoogle Scholar
Griffiths, Thomas L., Kemp, Charles, and Tenenbaum, Joshua B.. (2008). Bayesian Models of Cognition, pages 59100. Cambridge University Press.Google Scholar
Griffiths, Thomas L., Chater, Nick, Kemp, Charles, Perfors, Amy, and Tenenbaum, Joshua B.. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14:357364.CrossRefGoogle Scholar
Gronchi, Giorgio, and Strambini, Elia. (2017). Quantum cognition and Bell’s inequality: A model for probabilistic judgment bias. Journal of Mathematical Psychology, 78: 6575.CrossRefGoogle Scholar
Grossberg, S. (1982). Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition, and Motor Control. D. Reidel.CrossRefGoogle Scholar
Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79(2):325327.CrossRefGoogle Scholar
Gudder, S. P. (1988). Quantum Probability. Academic Press.Google Scholar
Hagmayer, York. (2016). Causal Bayes nets as psychological theories of causal reasoning: Evidence from psychological research. Synthese, 193:11071126.CrossRefGoogle Scholar
Halmos, Paul R. (1993). Finite-Dimensional Vector Spaces. Undergraduate Texts in Mathematics. Springer.Google Scholar
Hameroff, S. R. (1998). Quantum computation in brain microtubules? The Penrose-Hameroff ‘Orch OR’ model of consciousness. Philosophical Transactions Royal Society London (A), 356:18691896.Google Scholar
Hameroff, S. R. (2007). The brain is both neurocomputer and quantum computer. Cognitive Science, 31:10351045.CrossRefGoogle Scholar
Hameroff, S. R. (2013). Quantum mechanical cognition requires quantum brain biology: The “Orch OR” theory. Behavioral and Brain Sciences, 36(3):287290.CrossRefGoogle Scholar
Hampton, J. A. (1988a). Disjunction of natural concepts. Memory and Cognition, 16: 579591.CrossRefGoogle Scholar
Hampton, J. A. (1988b). Overextension of conjunctive concepts: Evidence for a unitary model of concept typicality and class inclusion. Journal of Experimental Psychology: Learning Memory and Cognition, 14:1232.Google Scholar
Hassin, Ran R., Bargh, John A., and Uleman, James S.. (2002). Spontaneous causal inferences. Journal of Experimental Social Psychology, 38(5):515522.CrossRefGoogle Scholar
Haven, E., and Khrennikov, A.. (2013). Quantum Social Science. Cambridge University Press.CrossRefGoogle Scholar
He, Zichang, and Jiang, Wen. (2018). An evidential Markov decision making model. Information Sciences, 467:357372.CrossRefGoogle Scholar
Hecht, Selig, Shlaer, Simon, and Pirenne, Maurice Henri. (1942). Energy, quanta, and vision. The Journal of General Physiology, 25(6):819840.CrossRefGoogle Scholar
Heisig, James W. (2001). Philosophers of Nothingness: An Essay on the Kyoto School. University of Hawaii Press.Google Scholar
Held, Carsten. (2022). The Kochen–Specker Theorem. In Zalta, Edward N. and Nodelman, Uri, editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2022 edition.Google Scholar
Hermens, Ronnie. (2011). The problem of contextuality and the impossibility of experimental metaphysics thereof. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 42(4):214225.CrossRefGoogle Scholar
Heunen, Chris, Sadrzadeh, Mehrnoosh, and Grefenstette, Edward. (2013). Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse. Oxford University Press.CrossRefGoogle Scholar
Horn, Roger A., and Johnson, Charles R.. (2012). Matrix Analysis. Cambridge University Press.CrossRefGoogle Scholar
Hōyer, P. (2000). Arbitrary phases in quantum amplitude amplification. Physical Review A, 62:052304.CrossRefGoogle Scholar
Huang, Jiaqi, Busemeyer, Jerome, Ebelt, Zo, and Pothos, Emmanuel. (2024). Bridging the gap between subjective probability and probability judgments: The quantum sequential sampler. Psychological Review. preprint.CrossRefGoogle Scholar
Huang, Zhiming, Yang, Lin, and Jiang, Wen. (2019). Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian networks. Applied Mathematics and Computation, 347:417428.CrossRefGoogle Scholar
Jaeger, G. (2016). Uncertainty relations and possible experience. Mathematics, 4(2):40.CrossRefGoogle Scholar
Jaeger, G. (2020). Quantum contextuality and indeterminacy. Entropy, 22(8):867.CrossRefGoogle Scholar
James, W. (1890). The Principles of Psychology. Dover.Google Scholar
Jibu, M., and Yasue, K.. (1995). Quantum Brain Dynamics and Consciousness. Benjamins.CrossRefGoogle Scholar
Johnson, Joseph G., and Busemeyer, Jerome R.. (2010). Decision making under risk and uncertainty. Wiley Interdisciplinary Reviews: Cognitive Science, 1(5):736749.Google Scholar
Jones, Nicholaos John. (2004). The Logic of soku in the Kyoto school. Philosophy East and West, 54(3):302321.CrossRefGoogle Scholar
Juslin, Peter, Nilsson, Håkan, and Winman, Anders. (2009). Probability theory, not the very guide of life. Psychological Review, 116(4):856.CrossRefGoogle Scholar
Kahneman, Daniel, and Frederick, Shane. (2002). Representativeness revisited: Attribute substitution in intuitive judgment. Heuristics and Biases: The Psychology of Intuitive Judgment, 49:81.Google Scholar
Kanai, Ryota, and Tsuchiya, Naotsugu. (2012). Qualia. Current Biology, 22(10):R392R396.CrossRefGoogle Scholar
Kartsaklis, Dimitri, Fan, Ian, Yeung, Richie, Pearson, Anna, Lorenz, Robin, Toumi, Alexis, de Felice, Giovanni, Meichanetzidis, Konstantinos, Clark, Stephen, and Coecke, Bob. (2021). lambeq: An efficient high-level Python library for quantum NLP. arXiv:2110.04236.Google Scholar
Kellen, David, Singmann, Henrik, and Batchelder, William H.. (2018). Classicprobability accounts of mirrored (quantum-like) order effects in human judgments. Decision, 5(4):323338.CrossRefGoogle Scholar
Kempe, Julia. (2003). Quantum random walks: An introductory overview. Contemporary Physics, 44(4):307327.CrossRefGoogle Scholar
Kennedy, M. (2010). Naive realism and experiential evidence. Proceedings of the Aristotelian Society, 110:77109.CrossRefGoogle Scholar
Khrennikov, Andrei Y. (1999). Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social, and anomalous phenomena. Foundations of Physics, 29:10651098.CrossRefGoogle Scholar
Khrennikov, Andrei Y. (2007). Can quantum information be processed by macroscopic systems? Quantum Information Processing, 6(6):401429.CrossRefGoogle Scholar
Khrennikov, Andrei Y. (2010). Ubiquitous Quantum Structure: From Psychology to Finance. Springer.CrossRefGoogle Scholar
Khrennikov, Andrei Y. (2015). Quantum-like model of unconscious–conscious dynamics. Frontiers in Psychology, 6:997.CrossRefGoogle Scholar
Khrennikov, Andrei Y. (2020). Contextuality versus incompatibility: Searching for physical meaning of contextuality peeled off incompatibility. arXiv:2005.051242.Google Scholar
Khrennikov, Andrei Y., and Alodjants, Alexander. (2019). Classical (local and contextual) probability model for Bohm–Bell type experiments: No-signaling as independence of random variables. Entropy, 21(2):157.CrossRefGoogle Scholar
Khrennikov, Andrei Y., and Basieva, Irina. (2014). Possibility to agree on disagree from quantum information and decision making. Journal of Mathematical Psychology, 62:115.CrossRefGoogle Scholar
Khrennikov, Andrei Y., Basieva, Irina, Dzhafarov, Emmanuel N., and Busemeyer, Jerome R.. (2014). Quantum models for psychological measurements: An unsolved problem. PLOS ONE, 9(10):e110909.CrossRefGoogle Scholar
Khrennikov, Andrei Y., Basieva, Irina, Pothos, Emmanuel M., and Yamato, I.. (2018). Quantum probability in decision making from quantum information representation of neuronal states. Scientific Reports, 8(1):18.CrossRefGoogle Scholar
Kolmogorov, A. N. (1933/1950). Foundations of the Theory of Probability. Chelsea Publishing Co.Google Scholar
Kouda, N., Matsui, N., Nishimura, H., and Peper, F.. (2005). Qubit neural network and its learning efficiency. Neural Computation and Applications, 14:114121.CrossRefGoogle Scholar
Kreutz, Adrian. (2021). Immediate negation. History and Philosophy of Logic, 42(4): 398410.CrossRefGoogle Scholar
Kreyszig, Erwin. (1989). Introductory Functional Analysis with Applications, volume 1. John Wiley & Sons.Google Scholar
Krummel, John W. M. (2018). On (the) nothing: Heidegger and Nishida. Continental Philosophy Review, 51(2):239268.CrossRefGoogle Scholar
Kvam, Peter D., and Pleskac, Timothy J.. (2017). A quantum information architecture for cue-based heuristics. Decision, 4(4):197233.CrossRefGoogle Scholar
Kvam, Peter D., Pleskac, Timothy J., Yu, S., and Busemeyer, Jerome R.. (2015). Interference effects of choice on confidence. Proceedings of the National Academy of Science, 112(34):1064510650.CrossRefGoogle Scholar
Kvam, Peter D., Busemeyer, Jerome R., and Pleskac, Timothy J.. (2021). Temporal oscillations in preference strength provide evidence for an open system model of constructed preference. Scientific Reports, 11(1):8169.CrossRefGoogle Scholar
La Mura, P. (2009). Projective expected utility. Journal of Mathematical Psychology, 53(5):408414.CrossRefGoogle Scholar
La Mura, P., and Swiatczak, L.. (2007). Markov Entanglement Networks. AAAI Press.Google Scholar
Laird, John E. (2012). The Soar Cognitive Architecture. MIT Press.CrossRefGoogle Scholar
Laird, John E., Newell, A., and Rosenbloom, P. S.. (1987). Soar: An architecture for general intelligence. Artificial Intelligence, 33:164.CrossRefGoogle Scholar
Lambert-Mogiliansky, A., Zamir, S., and Zwirn, H.. (2009). Type indeterminacy: A model of the ‘KT’ (Kahneman–Tversky)-man. Journal of Mathematical Psychology, 53(5):349361.CrossRefGoogle Scholar
Landauer, Thomas K., Foltz, Peter W., and Laham, Darrell. (1998). An introduction to latent semantic analysis. Discourse Processes, 25(2–3):259284.CrossRefGoogle Scholar
Laskey, Kathryn Blackmond. (2007). Quantum causal networks. In Proceedings of the AAAI Spring Symposium on Quantum Interaction, pages 142–149.Google Scholar
Lebedev, Aleksandr, and Khrennikov, Andrei. (2018). Quantum-like modeling of the order effect in decision making: POVM viewpoint on the Wang–Busemeyer qq-equality. arXiv:1811.00045.Google Scholar
Lee, M. D., and Wagenmakers, E. J.. (2014). Bayesian Cognitive Modeling: A Practical Course. Cambridge University Press.CrossRefGoogle Scholar
Leggett, A. J., and Garg, A.. (1985). Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Physical Review Letters, 54:857860.CrossRefGoogle Scholar
Leifer, Matthew S., and Poulin, David. (2008). Quantum graphical models and belief propagation. Annals of Physics, 323(8):18991946.CrossRefGoogle Scholar
Li, Ji-An, Dong, Daoyi, Wei, Zhengde, Liu, Ying, Pan, Yu, Nori, Franco, and Zhang, Xiaochu. (2020). Quantum reinforcement learning during human decision-making. Nature Human Behaviour, 4(3):294307.CrossRefGoogle Scholar
Li, Qiuchi, Gkoumas, Dimitris, Lioma, Christina, and Melucci, Massimo. (2021). Quantum-inspired multimodal fusion for video sentiment analysis. Information Fusion, 65:5871.CrossRefGoogle Scholar
Li, Yaoyong, and Cunningham, Hamish. (2008). Geometric and quantum methods for information retrieval. In ACM SIGIR Forum, volume 42, pages 2232. ACM.Google Scholar
Litt, A., Eliasmith, C., Kroon, F. W., Weinstein, S., and Thagard, P.. (2006). Is the brain a quantum computer? Cognitive Science, 30:593603.CrossRefGoogle Scholar
Liu, Yaochen, Li, Qiuchi, Wang, Benyou, Zhang, Yazhou, and Song, Dawei. (2023). A survey of quantum-cognitively inspired sentiment analysis models. ACM Computing Surveys, 56(1): Article 15.Google Scholar
Lord, Frederic M. (1965). A strong true-score theory, with applications. Psychometrika, 30(3):239270.CrossRefGoogle Scholar
Lorenz, Robin. (2022). Quantum causal models: The merits of the spirit of Reichenbach’s principle for understanding quantum causal structure. Synthese, 200(5):424.CrossRefGoogle Scholar
Luce, R. Duncan. (1986). Response Times: Their Role in Inferring Elementary Mental Organization. Oxford University Press.Google Scholar
Luenberger, David G. (1979). Dynamic Systems. John Wiley & Sons.Google Scholar
Lyons, John. (1968). Introduction to Theoretical Linguistics, volume 510. Cambridge University Press.CrossRefGoogle Scholar
Macmillan, Neil A. (2002). Signal detection theory. Stevens’ Handbook of Experimental Psychology. John Wiley & Sons.Google Scholar
Malin, Shimon. (2012). Nature Loves to Hide: Quantum Physics and the Nature of Reality, a Western Perspective. World Scientific.CrossRefGoogle Scholar
Marinoff, Louis. (1993). Three pseudo-paradoxes in quantum decision theory: Apparent effects of observation on probability and utility. Theory and Decision, 35(1): 5573.CrossRefGoogle Scholar
Martín-Guerrero, José D., and Lamata, Lucas. (2022). Quantum machine learning: A tutorial. Neurocomputing, 470:457461.CrossRefGoogle Scholar
Martínez-Martínez, Ismael, and Sánchez-Burillo, Eduardo. (2016). Quantum stochastic walks on networks for decision-making. Scientific Reports, 6:23812.Google Scholar
Maruyama, Yoshihiro. (2021). Quantum contextuality and cognitive contextuality: The significance of violations of Bell-type inequalities. BioSystems, 208:104472.CrossRefGoogle Scholar
Massé, Gaël. (2021). From the problem of future contingents to Peres–Mermin square experiments: An introductory review to contextuality. arXiv:2105.13821.Google Scholar
Matute, H., Blanco, F., Yarritu, I., Diaz-Lago, M., Vadillo, M. A., and Barberia, I.. (2015). Illusions of causality: How they bias our everyday thinking and how they could be reduced. Frontiers in Psychology, 6:888.CrossRefGoogle Scholar
Melucci, Massimo. (2015). Introduction to Information Retrieval and Quantum Mechanics. Springer.CrossRefGoogle Scholar
Mermin, N. David. (1993). Hidden variables and the two theorems of John Bell. Reviews of Modern Physics, 65(3):803815.CrossRefGoogle Scholar
Meyer, D., and Kieres, D. E.. (1997). A computational theory of executive cognitive processes and multiple task performance. Part 1: Basic Processes. Psychological Review, 104:265.Google Scholar
Mistry, Percy K., Pothos, Emmanuel M., Vandekerckhove, Joachim, and Trueblood, Jennifer S.. (2018). A quantum probability account of individual differences in causal reasoning. Journal of Mathematical Psychology, 87:7697.CrossRefGoogle Scholar
Moore, D. W. (2002). Measuring new types of question-order effects. Public Opinion Quarterly, 66:8091.CrossRefGoogle Scholar
Moreira, Catarina. (2017). Quantum Probabilistic Graphical Models for Cognition and Decision. PhD thesis, Insittuto Superio Téchnico, Technical University of Lisbon.Google Scholar
Moreira, Catarina. (2021). QuLBIT: Quantum-like Bayesian Inference Technologies. https://github.com/catarina-moreira/QuLBiT.Google Scholar
Moreira, Catarina, and Wichert, Andreas. (2014). Interference effects in quantum belief networks. Applied Soft Computing, 25:6485.CrossRefGoogle Scholar
Moreira, Catarina, and Wichert, Andreas. (2016). Quantum-like Bayesian networks for modeling decision making. Frontiers in Psychology: Cognition, 7(11).CrossRefGoogle Scholar
Moreira, Catarina, and Wichert, Andreas. (2017). Exploring the relations between quantum-like Bayesian networks and decision-making tasks with regard to face stimuli. Journal of Mathematical Psychology, 78:8695.CrossRefGoogle Scholar
Moreira, Catarina, Tiwari, Prayag, Pandey, Hari Mohan, Bruza, Peter, and Wichert, Andreas. (2020). Quantum-like influence diagrams for decision-making. Neural Networks, 132:190210.CrossRefGoogle Scholar
Morier, D. M., and Borgida, E.. (1984). The conjunction fallacy: A task specific phenomenon? Personality and Social Psychology Bulletin, 10:243252.CrossRefGoogle Scholar
Narens, L. (2007). Theories of Probability: An Examination of Logical and Qualitative Foundations. World Scientific.CrossRefGoogle Scholar
Narens, L. (2015). Probabilistic Lattices with Applications to Psychology. World Scientific.CrossRefGoogle Scholar
Nelson, Douglas L., McEvoy, Cathy L., and Schreiber, Thomas A.. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36(3):402407.CrossRefGoogle Scholar
Nelson, Douglas L., Kitto, Kirsty, Galea, David, McEvoy, Cathy L., and Bruza, Peter D.. (2013). How activation, entanglement, and searching a semantic network contribute to event memory. Memory & Cognition, 41:797819.CrossRefGoogle Scholar
Nielsen, M. A., and Chuang, I. L.. (2000). Quantum Computation and Quantum Information. Cambridge University Press.Google Scholar
Nightingale, Sophie J., and Farid, Hany. (2022). AI-synthesized faces are indistinguishable from real faces and more trustworthy. Proceedings of the National Academy of Sciences, 119(8):e2120481119.CrossRefGoogle Scholar
Nosofsky, Robert M. (2015). An exemplar-model account of feature inference from uncertain categorizations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6):1929.Google Scholar
Obeid, Abdul Karim. (2021). Modelling Contextuality Amidst Causal Influences by Means of a Computationally Tractable Combinatorial Approach. PhD thesis, Queensland University of Technology. https://eprints.qut.edu.au/226105/Google Scholar
Obeid, Abdul Karim, Bruza, Peter, Moreira, Catarina, Bruns, Axel, and Angus, Daniel. (2022). An extension of combinatorial contextuality for cognitive protocols. Frontiers in Psychology, 13:871028.CrossRefGoogle Scholar
Ozawa, Masanao, and Khrennikov, Andrei. (2020). Application of theory of quantum instruments to psychology: Combination of question order effect with response replicability effect. Entropy, 22(1):37.CrossRefGoogle Scholar
Ozawa, Masanao, and Khrennikov, Andrei. (2021). Modeling combination of question order effect, response replicability effect, and qq-equality with quantum instruments. Journal of Mathematical Psychology, 100:102491.CrossRefGoogle Scholar
Ozawa, Masanao, and Khrennikov, Andrei. (2023). Nondistributivity of human logic and violation of response replicability effect in cognitive psychology. Journal of Mathematical Psychology, 112:102739.CrossRefGoogle Scholar
Padó, Sebastian, and Lapata, Mirella. (2007). Dependency-based construction of semantic space models. Computational Linguistics, 33(2):161199.CrossRefGoogle Scholar
Payne, J. W., Bettman, J. R., and Johnson, E. J.. (1993). The Adaptive Decision Maker. Cambridge University Press.CrossRefGoogle Scholar
Peacocke, Christopher. (1984). Are vague predicates incoherent? Synthese, 46: 121141.CrossRefGoogle Scholar
Pearl, Judea. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.Google Scholar
Pelletier, Francis Jeffry. (1994). The principle of semantic compositionality. Topoi, 13 (1):1124.CrossRefGoogle Scholar
Peres, A. (1998). Quantum Theory: Concepts and Methods. Kluwer Academic.Google Scholar
Pitowsky, I. (1989). Quantum Probability – Quantum Logic. Springer.Google Scholar
Pitowsky, I. (1994). George Boole’s ‘conditions of possible experience’ and the quantum puzzle. British Journal for the Philosophy of Science, 45:95125.CrossRefGoogle Scholar
Plotnitsky, Arkady. (2012). Niels Bohr and Complementarity: An Introduction. Springer Science & Business Media.CrossRefGoogle Scholar
Plotnitsky, Arkady. (2016). Spooky predictions at a distance: Reality, complementarity and contextuality in quantum theory. Philosophical Transactions of the Royal Society A, 377:20190089.Google Scholar
Plotnitsky, Arkady. (2021a). Nature has no elementary particles and makes no measurements or predictions: Quantum measurement and quantum theory, from Bohr to Bell and from Bell to Bohr. Entropy, 23(9):1197.CrossRefGoogle Scholar
Plotnitsky, Arkady. (2021b). Reality without Realism: Matter, Thought, and Technology in Quantum Physics. Springer.CrossRefGoogle Scholar
Pothos, Emmanuel M., and Busemeyer, Jerome R.. (2009). A quantum probability model explanation for violations of ‘rational’ decision making. Proceedings of the Royal Society B, 276(1665):21712178.CrossRefGoogle Scholar
Pothos, Emmanuel M., and Busemeyer, Jerome R.. (2011). A quantum probability explanation for violations of symmetry in similarity judgments. In Proceedings of the Cognitive Science Society.Google Scholar
Pothos, Emmanuel M., and Busemeyer, Jerome R.. (2013). Can quantum probability provide a new direction for cognitive modeling? Behavioral and Brain Sciences, 36:255274.CrossRefGoogle Scholar
Pothos, Emmanuel M., and Busemeyer, Jerome R.. (2022). Quantum cognition. Annual Review of Psychology, 73:749778.CrossRefGoogle Scholar
Pothos, Emmanuel M., and Trueblood, Jennifer S.. (2015). Structured representations in a quantum probability model of similarity. Journal of Mathematical Psychology, 6465:35–43.Google Scholar
Pothos, Emmanuel M., Busemeyer, Jerome R., and Trueblood, Jennifer S.. (2013). A quantum geometric model of similarity. Psychological Review, 120(3):679696.CrossRefGoogle Scholar
Pothos, Emmanuel M., Busemeyer, Jerome R., Shiffrin, Richard M., and Yearsley, James M.. (2017). The rational status of quantum cognition. Journal of Experimental Psychology: General, 146(7):968987.CrossRefGoogle Scholar
Pritchett, Bradley L. (1988). Garden path phenomena and the grammatical basis of language processing. Language, 64(3):539576.CrossRefGoogle Scholar
Quiggin, John. (1982). A theory of anticipated utility. Journal of Economic Behavior & Organization, 3(4):323343.CrossRefGoogle Scholar
Rajagopal, K., Zhang, Qizi, Balakrishnan, Sivasubramanya N., Fakhari, Pegah, and Busemeyer, Jerome R.. (2021). Quantum amplitude amplification for reinforcement learning. In Vamvoudakis, Kyriakos G., editor, Handbook of Reinforcement Learning and Control, pages 819833. Springer.CrossRefGoogle Scholar
Ramm, Brentyn J. (2023). Pure awareness experience. Inquiry, 66(3):394416.CrossRefGoogle Scholar
Rapp, Reinhard. (2022). The computation of word associations: Comparing syntagmatic and paradigmatic approaches. In COLING 2002: The 19th International Conference on Computational Linguistics, pages 1–7.Google Scholar
Ratcliff, Roger, and McKoon, Gail. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4):873922.CrossRefGoogle Scholar
Ratcliff, Roger, and Smith, Philip. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111:333367.CrossRefGoogle Scholar
Ratcliff, Roger, Smith, Philip L., Brown, Scott D., and McCoon, Gail. (2016). Diffusion decision model: Current history and issues. Trends in Cognitive Science, 20:260281.CrossRefGoogle Scholar
Regenwetter, M., Dana, J., and Davis-Stober, C. P.. (2011). Transitivity of preferences. Psychological Review, 118(1):4256.CrossRefGoogle Scholar
Rehder, Bob. (2014). Independence and dependence in human causal reasoning. Cognitive Psychology, 72:54107.CrossRefGoogle Scholar
Ricciardi, L. M., and Umezawa, H.. (1967). Brain and physics of many-bodied problems. Kybernetik, 4:4448.CrossRefGoogle Scholar
Rickles, Dean, and Stein, Leslie (forthcoming). Varieties of Nothingness. Chiron.Google Scholar
Rivas, Angel. (2019). On the role of joint probability distributions of incompatible observables in Bell and Kochen–Specker theorems. Annals of Physics, 411 :167939.CrossRefGoogle Scholar
Rivas, Angel, and Huelga, Susana F.. (2012). Open Quantum Systems. Springer.CrossRefGoogle Scholar
Roeder, Luisa, Hoyte, Pamela, van der Meer, Johan, Fell, Lauren, Johnston, Patrick, Kerr, Graham, and Bruza, Peter. (2023). A quantum model of trust calibration in human–AI interactions. Entropy, 25(9):1362.CrossRefGoogle Scholar
Rosendahl, Morgan, Bizyaeva, Anastasia, and Cohen, Jonathan. (2020). A novel quantum approach to the dynamics of decision making. In 42nd Annual Meeting of the Cognitive Science Society, Volume 1: Developing a Mind: Learning in Humans, Animals, and Machines. Cognitive Science Society.Google Scholar
Rotondo, P., Marcuzzi, M., Garrahan, J. P., Lesanovsky, I., and Müller, M.. (2018). Open quantum generalisation of Hopfield neural networks. Journal of Physics A, 51: 115301.CrossRefGoogle Scholar
Roy, Sisir, and Kafatos, Menas. (1999). Complementarity principle and cognition process. Physics Essays, 12(4):662668.CrossRefGoogle Scholar
Rumelhart, D. E., and McClelland, J. L.. (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press.CrossRefGoogle Scholar
Saeed, Waddah, and Omlin, Christian. (2023). Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowledge-Based Systems, 263:110273.CrossRefGoogle Scholar
Sanborn, Adam N., Griffiths, Thomas L., and Shiffrin, Richard M.. (2010). Uncovering mental representations with Markov chain Monte Carlo. Cognitive Psychology, 60(2):63106.CrossRefGoogle Scholar
Sanchez-Burillo, E., Duch, J., Gomez-Gardenes, J., and Zueco, D.. (2012). Quantum navigation and ranking in complex networks. Scientific Reports, 2:605.CrossRefGoogle Scholar
Savage, L. J. (1954). The Foundations of Statistics. John Wiley & Sons.Google Scholar
Scheibehenne, Benjamin, Rieskamp, Jörg, and Wagenmakers, Eric-Jan. (2013). Testing adaptive toolbox models: A Bayesian hierarchical approach. Psychological Review, 120(1):39.CrossRefGoogle Scholar
Schlicht, Tobias, and Starzak, Tobias. (2021). Prospects of enactivist approaches to intentionality and cognition. Synthese, 198(Suppl. 1):S89S113.CrossRefGoogle Scholar
Schmeidler, David. (1989). Subjective probability and expected utility without additivity. Econometrica: Journal of the Econometric Society, 57(3): 571587.CrossRefGoogle Scholar
Schrödinger, Erwin. (2012). The principle of objectivation. In What Is Life? With Mind and Matter and Autobiographical Sketches, pages 117127. Cambridge University Press.CrossRefGoogle Scholar
Schuld, Maria, Sinayskiy, Ilya, and Petruccione, Francesco. (2014). The quest for a quantum neural network. Quantum Information Processing, 13(11):25672586.CrossRefGoogle Scholar
Schwarz, N. (2007). Attitude construction: Evaluation in context. Social Cognition, 25: 638656.CrossRefGoogle Scholar
Searle, S. R. (1982). Matrix Algebra Useful for Statistics. John Wiley & Sons.Google Scholar
Selesnick, S. A., and Piccinini, G.. (2018). Quantum-like behavior without quantum physics II. A quantum-like model of neural network dynamics. Journal of Biological Physics, 44(4):501538.CrossRefGoogle Scholar
Selesnick, S. A., Rawling, J. P., and Piccinini, G.. (2017). Quantum-like behavior without quantum physics I: Kinematics of neural-like systems. Journal of Biological Physics, 43(3):415444.CrossRefGoogle Scholar
Shafir, Eldar, and Tversky, Amos. (1992). Thinking through uncertainty: Nonconsequential reasoning and choice. Cognitive Psychology, 24:449474.CrossRefGoogle Scholar
Slattery, Timothy J., Sturt, Patrick, Christianson, Kiel, Yoshida, Masaya, and Ferreira, Fernanda. (2013). Lingering misinterpretations of garden path sentences arise from competing syntactic representations. Journal of Memory and Language, 69(2): 104120.CrossRefGoogle Scholar
Sordoni, Alessandro, Nie, Jian-Yun, and Bengio, Yoshua. (2013). Modeling term dependencies with quantum language models for IR. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 653662. ACM.CrossRefGoogle Scholar
Sozzo, Sandro. (2014). A quantum probability explanation in Fock space for borderline contradictions. Journal of Mathematical Psychology, 58:112.CrossRefGoogle Scholar
Steyvers, M., and Tenenbaum, J. B.. (2005). Graph theoretic analysis of semantic networks: Small worlds in semantic networks. Cognitive Science, 29(1):4178.CrossRefGoogle Scholar
Stiegler, Bernard. (1998). Technics and Time, 1: The Fault of Epimetheus. Stanford University Press.CrossRefGoogle Scholar
Stolarz-Fantino, S., Fantino, E., Zizzo, D. J., and Wen, J.. (2003). The conjunction effect: New evidence for robustness. American Journal of Psychology, 116(1):1534.CrossRefGoogle Scholar
Sun, R., Merrill, E., and Peterson, T.. (2001). From implicit skills to explicit knowledge: A bottom-up model of skill learning. Cognitive Science, 25(2):203244.Google Scholar
Suppes, P., and Zanotti, M.. (1981). When are probabilistic explanations probable? Synthese, 48:191199.CrossRefGoogle Scholar
Surov, I. A., Semenenko, E., Platonov, A. V., Bessmertny, I. A., Galofaro, F., Toffano, Zeno, Khrennikov, Andrei Y., and Alodjants, A. P.. (2021). Quantum semantics of text perception. Scientific Reports, 11(1):4193.CrossRefGoogle Scholar
Sutton, R., and Barto, A. G.. (1998). Reinforcement Learning: An Introduction. MIT Press.Google Scholar
Takahashi, T., and Cheon, T.. (2012). A nonlinear neural population coding theory of quantum cognition and decision making. World Journal of Neuroscience, 2: 183186.CrossRefGoogle Scholar
Tanaka, Shigenori, Umegaki, Toshihito, Nishiyama, Akihiro, and Kitoh-Nishioka, Hirotaka. (2022). Dynamical free energy based model for quantum decision making. Physica A, 605:127979.CrossRefGoogle Scholar
Tegmark, M. (2000). Importance of quantum decoherence in brain processes. Physical Review E, 61(4):41944206.CrossRefGoogle Scholar
Tesar, J. (2020). A quantum model of strategic decision-making explains the disjunction effect in the prisoner’s dilemma game. Decision, 7(1):4354.CrossRefGoogle Scholar
Tiwari, Prayag, Dehdashti, Shahram, Obeid, Abdul Karim, Marttinen, Pekka, and Bruza, Peter. (2022). Kernel method based on non-linear coherent states in quantum feature space. Journal of Physics A, 55(35):355301.CrossRefGoogle Scholar
Tononi, Giulio, and Koch, Christof. (2015). Consciousness: Here, there and everywhere? Philosophical Transactions of the Royal Society B, 370:20140167.CrossRefGoogle Scholar
Toronto, N., and Ventura, D.. (2006). Learning quantum operators from quantum state pairs. In 2006 IEEE Congress on Evolutionary Computation, pages 2607–2612.CrossRefGoogle Scholar
Tourangeau, R., Rips, L. J., and Rasinski, K. A.. (2000). The Psychology of Survey Response. Cambridge University Press.CrossRefGoogle Scholar
Townsend, J. T., and Ashby, G. F.. (1983). Stochastic Modeling of Elementary Psychological Processes. Cambridge University Press.Google Scholar
Townsend, J. T., Silva, K. M., Spencer-Smith, J., and Wenger, M.. (2000). Exploring the relations between categorization and decision making with regard to realistic face stimuli. Pragmatics and Cognition, 8:83105.CrossRefGoogle Scholar
Trueblood, Jennifer S., and Hemmer, Pernille. (2017). The generalized quantum episodic memory model. Cognitive Science, 41(8):20892125.CrossRefGoogle Scholar
Trueblood, Jennifer S., Mistry, Percy K., and Pothos, Emmanuel M.. (2016). A quantum Bayes net approach to causal reasoning. In Dxhafarov, E., Jordan, S., Zhang, R., and Cervantes, V., editors, Contextuality from Quantum Physics to Psychology, pages 449463. World Scientific.CrossRefGoogle Scholar
Trueblood, Jennifer S., Yearsley, James M., and Pothos, Emmanuel M.. (2017). A quantum probability framework for human probabilistic inference. Journal of Experimental Psychology: General, 146(9):1307.Google Scholar
Tsuchiya, Naotsugu, Wilke, Melanie, Frässle, Stefan, and Lamme, Victor A. F.. (2015). No-report paradigms: Extracting the true neural correlates of consciousness. Trends in Cognitive Sciences, 19(12):757770.CrossRefGoogle Scholar
Tsuchiya, Naotsugu, Bruza, Peter D., Yamada, Makiko, Saigo, Hayato, and Pothos, Emmanuel. (in press). A Quantum-like hypothesis: From quantum cognition to quantum perception. Frontiers in Psychology.Google Scholar
Tucci, Robert R. (1995). Quantum Bayesian nets. International Journal of Modern Physics B, 9:295337.CrossRefGoogle Scholar
Tversky, Amos. (1977). Features of similarity. Psychological Review, 84(4):327.CrossRefGoogle Scholar
Tversky, Amos, and Gati, Itamar. (1982). Similarity, separability, and the triangle inequality. Psychological Review, 89(2):123.CrossRefGoogle Scholar
Tversky, Amos, and Kahneman, Daniel. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90: 293315.CrossRefGoogle Scholar
Tversky, Amos, and Kahneman, Daniel. (1990). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5:297323.CrossRefGoogle Scholar
Tversky, Amos, and Shafir, Eldar. (1992). The disjunction effect in choice under uncertainty. Psychological Science, 3:305309.CrossRefGoogle Scholar
Uprety, Sagar, Dehdashti, Shahram, Fell, Lauren, Bruza, Peter, and Song, Dawei. (2019). Modelling dynamic interactions between relevance dimensions. In Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, pages 3542. ACM.CrossRefGoogle Scholar
van Rijsbergen, Cornelis J. (2004). The Geometry of Information Retrieval. Cambridge University Press.CrossRefGoogle Scholar
Varela, Francisco J., Thompson, Evan, Rosch, Eleanor, and Kabat-Zinn, Jon. (2016). The Embodied Mind: Cognitive Science and Human Experience. MIT Press.Google Scholar
Ventura, D., and Martinez, T.. (2000). Quantum associative memory. Information Sciences, 124:273296.CrossRefGoogle Scholar
Vinanzi, Samuele, Patacchiola, Massimiliano, Chella, Antonio, and Cangelosi, Angelo. (2019). Would a robot trust you? Developmental robotics model of trust and theory of mind. Philosophical Transactions of the Royal Society B, 374(1771):20180032.CrossRefGoogle Scholar
Vitiello, G. (2001). My Double Unveiled. Benjamins.CrossRefGoogle Scholar
von Neumann, John. (1932/1955). Mathematical Foundations of Quantum Mechanics. Princeton University Press.Google Scholar
von Neumann, John, and Morgenstern, Oskar. (1944). Theory of Games and Economic Behavior. Princeton University Press.Google Scholar
Waddup, Oliver J., Yearsley, James M., Blasiak, Pawel, and Pothos, Emmanuel M.. (2023). Temporal Bell inequalities in cognition. Psychonomic Bulletin & Review, 30(5):19461953.CrossRefGoogle Scholar
Wakker, P. P. (2010). Prospect Theory: For Risk and Ambiguity. Cambridge University Press.CrossRefGoogle Scholar
Wallsten, Thomas S., and Budescu, David V.. (1983). State of the art encoding subjective probabilities. A psychological and psychometric review. Management Science, 29 (2):151173.CrossRefGoogle Scholar
Wang, Benyou, Zhao, Donghao, Lioma, Christina, Li, Qiuchi, Zhang, Peng, and Simonsen, Jakob Grue. (2020). Encoding word order in complex embeddings. arXiv:1912.12333v2.Google Scholar
Wang, Daphne, and Sadrzadeh, Mehrnoosh. (2023). The causal structure of semantic ambiguities. arXiv:2206.06807.Google Scholar
Wang, Daphne, Sadrzadeh, Mehrnoosh, Abramsky, Samson, and Cervantes, Víctor. (2021a). Analysing ambiguous nouns and verbs with quantum contextuality tools. Journal of Cognitive Science, 22(3):391420.Google Scholar
Wang, Daphne, Sadrzadeh, Mehrnoosh, Abramsky, Samson, and Cevantes, Victor H.. (2021b). On the quantum-like contextuality of ambiguous phrases. arXiv:2107.14589v1.Google Scholar
Wang, Zheng, and Busemeyer, Jerome R.. (2016). Interference effects of categorization on decision making. Cognition, 150:133149.CrossRefGoogle Scholar
Wang, Zheng, Solloway, Tyler, Shiffrin, Richard M., and Busemeyer, Jerome R.. (2014). Context effects produced by question orders reveal quantum nature of human judgments. Proceedings of the National Academy of Sciences of the USA, 111 (26):94319436.CrossRefGoogle Scholar
Wargo, Robert J. J. (2005). The Logic of Nothingness: A Study of Nishida Kitarō. University of Hawaii Press.Google Scholar
Weinberger, Naftali. (2018). Faithfulness, coordination and causal coincidences. Erkenntnis, 83:113133.CrossRefGoogle Scholar
Weingarten, Carol P., Murali Doraiswamy, P., and Fisher, Matthew. (2016). A new spin on neural processing: Quantum cognition. Frontiers in Human Neuroscience, 10: 541.CrossRefGoogle Scholar
Weiskopf, D. A. (2007). Compound nominals, context and compositionality. Synthese, 156:161204.CrossRefGoogle Scholar
Wendt, Alexander. (2015). Quantum Mind and Social Science. Cambridge University Press.CrossRefGoogle Scholar
White, L. C., Pothos, E. M., and Busemeyer, J. R.. (2014). Sometimes it does hurt to ask: The constructive role of articulating impressions. Cognition, 133:4864.CrossRefGoogle Scholar
White, L. C., Pothos, E. M., and Jarrett, M.. (2020). The cost of asking: How evaluations bias subsequent judgments. Decision, 7(4):259286.CrossRefGoogle Scholar
Wichert, Andreas. (2014). Principles of Quantum Artificial Intelligence. World Scientific.Google Scholar
Wichert, Andreas, Moreira, Catarina, and Bruza, Peter. (2020). Balanced quantum-like Bayesian networks. Entropy, 22(2):170.CrossRefGoogle Scholar
Widdows, Dominic. (2004). Geometry and Meaning. Center for the Study of Language and Information.Google Scholar
Widdows, Dominic, and Peters, Stanley. (2003). Word vectors and quantum logic: Experiments with negation and disjunction. Mathematics of Language, 8:141154.Google Scholar
Widdows, Dominic, Alexander, Aaranya, Zhu, Daiwei, Zimmerman, Chase, and Majumder, Arunava. (2022). Near-term advances in quantum natural language processing. arXiv:2206.02171.Google Scholar
Wiebe, Nathan, Bocharov, Alex, Smolensky, Paul, Troyer, Matthias, and Svore, Krysta M.. (2019). Quantum language processing. arXiv preprint arXiv:1902.05162.Google Scholar
Wittgenstein, Ludwig. (1958). Philosophical Investigations. Basil Blackwell.Google Scholar
Wojciechowski, Bartosz W., and Pothos, Emmanuel M.. (2018). Is there a conjunction fallacy in legal probabilistic decision making? Frontiers in Psychology, 9:391.CrossRefGoogle Scholar
Wong, Kam-Fai, Song, Dawei, Bruza, Peter, and Cheng, Chun-Hung. (2001). Application of aboutness to functional benchmarking in information retrieval. ACM Transactions on Information Systems, 19(4):337370.CrossRefGoogle Scholar
Woods, John, and Rosales, Alirio. (2010). Virtuous distortion: Abstraction and idealization in model-based science. In Magnani, L., Carnielli, W., and Pizzi, C., editors, Model-Based Reasoning in Science and Technology, pages 330. Springer.CrossRefGoogle Scholar
Wu, Sixuan, Li, Jian, Zhang, Peng, and Zhang, Yue. (2021). Natural language processing meets quantum physics: A survey and categorization. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 31723182. Association for Computational Linguistics.CrossRefGoogle Scholar
Yearsley, James M. (2017). Advanced tools and concepts for quantum cognition: A tutorial. Journal of Mathematical Psychology, 78:2439.CrossRefGoogle Scholar
Yearsley, James M., and Busemeyer, Jerome R.. (2016). Quantum cognition and decision theories. Journal of Mathematical Psychology, 74:99116.CrossRefGoogle Scholar
Yearsley, James M., and Trueblood, Jennifer S.. (2018). A quantum theory account of order effects and conjunction fallacies in political judgments. Psychonomic Bulletin and Review, 25:15171525.CrossRefGoogle Scholar
Yukalov, Vyacheslav I., and Sornette, Didier. (2009a). Physics of risk and uncertainty in quantum decision making. European Physical Journal B, 71:533548.CrossRefGoogle Scholar
Yukalov, Vyacheslav I., and Sornette, Didier. (2009b). Processing information in quantum decision theory. Entropy, 11(4):10731120.CrossRefGoogle Scholar
Yukalov, Vyacheslav I., and Sornette, Didier. (2011). Decision theory with prospect interference and entanglement. Theory and Decision, 70:283328.CrossRefGoogle Scholar
Yukalov, Vyacheslav I., and Sornette, Didier. (2014). How brains make decisions. In Universe of Scales: From Nanotechnology to Cosmology, pages 3753. Springer.CrossRefGoogle Scholar
Zahavi, Dan. (2003). Intentionality and phenomenality: A phenomenological take on the hard problem. Canadian Journal of Philosophy Supplementary Volume, 29: 6392.CrossRefGoogle Scholar
Zak, M., and Williams, C. P.. (1998). Quantum neural nets. International Journal of Theoretical Physics, 37:651684.CrossRefGoogle Scholar
Zhang, Peng, Gao, Hui, Zhang, Jing, and Song, Dawei. (2023). Quantum-Inspired Neural Language Representation, Matching and Understanding. Now Publishers.CrossRefGoogle Scholar
Zhang, Qizi, Balakrishnan, Sivasubramanya N., and Busemeyer, Jerome. (2018). Fault detection and adaptive parameter estimation with quantum inspired techniques and multiple-model filters. In 2018 AIAA Guidance, Navigation, and Control Conference, page 1124.CrossRefGoogle Scholar
Zheng, Rong, Busemeyer, Jerome R., and Nosofsky, Robert M.. (2023). Integrating categorization and decision-making. Cognitive Science, 47(1):e13235.CrossRefGoogle Scholar
Zhong, Shengyang. (2023). Quantum entanglement: An analysis via the orthogonality relation. Foundations of Physics, 53(4):75.CrossRefGoogle Scholar
Zhu, Jian-Qiao, Sanborn, Adam N., and Chater, Nick. (2020). The Bayesian sampler: Generic Bayesian inference causes incoherence in human probability judgments. Psychological Review, 127(5):719748.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jerome R. Busemeyer, Indiana University, Peter D. Bruza, Queensland University of Technology
  • Book: Quantum Models of Cognition and Decision
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009205351.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jerome R. Busemeyer, Indiana University, Peter D. Bruza, Queensland University of Technology
  • Book: Quantum Models of Cognition and Decision
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009205351.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jerome R. Busemeyer, Indiana University, Peter D. Bruza, Queensland University of Technology
  • Book: Quantum Models of Cognition and Decision
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009205351.018
Available formats
×