Book contents
- Frontmatter
- Contents
- Preface
- 1 Quantum measurement theory
- 2 Quantum parameter estimation
- 3 Open quantum systems
- 4 Quantum trajectories
- 5 Quantum feedback control
- 6 State-based quantum feedback control
- 7 Applications to quantum information processing
- Appendix A Quantum mechanics and phase-space
- Appendix B Stochastic differential equations
- References
- Index
2 - Quantum parameter estimation
Published online by Cambridge University Press: 17 February 2011
- Frontmatter
- Contents
- Preface
- 1 Quantum measurement theory
- 2 Quantum parameter estimation
- 3 Open quantum systems
- 4 Quantum trajectories
- 5 Quantum feedback control
- 6 State-based quantum feedback control
- 7 Applications to quantum information processing
- Appendix A Quantum mechanics and phase-space
- Appendix B Stochastic differential equations
- References
- Index
Summary
Quantum limits to parameter estimation
Introduction
Many experiments can be thought of as comprising two steps: (i) a preparation procedure in which the system to be measured is isolated and prepared, and the apparatus is initialized; and (ii) a measurement step in which the system is coupled to an apparatus and the measurement result recorded. The preparation procedure can be specified by a set of classical parameters, or settings of a physical device. The measurement results are random classical variables that will be correlated with the preparation procedure. In this chapter we are concerned with the case in which the classical parameters specifying the preparation of the state are imperfectly known. Then, assuming that the physical system is well understood, these correlations allow the unknown parameters to be estimated from the measurement results.
As we saw in the last chapter, in quantum mechanics the results of measurements are generally statistical, even when one has complete knowledge of the preparation procedure. A single preparation step and measurement step might not be sufficient to estimate a parameter well. Thus it is common to repeat the two steps of preparation and measurement on a large number of systems, either all at one time or sequentially. Whether measuring one quantum system or many, one is faced with a number of questions. How should one prepare the system state? What sort of measurement should one make on the system?
- Type
- Chapter
- Information
- Quantum Measurement and Control , pp. 51 - 96Publisher: Cambridge University PressPrint publication year: 2009