Book contents
- Frontmatter
- Contents
- Foreword
- Preface
- Acknowledgments
- 1 Synopsis
- Part I Fundamental concepts of finance
- Part II Systems with finite number of degrees of freedom
- Part III Quantum field theory of interest rates models
- A Mathematical background
- Brief glossary of financial terms
- Brief glossary of physics terms
- List of main symbols
- References
- Index
Preface
Published online by Cambridge University Press: 22 February 2010
- Frontmatter
- Contents
- Foreword
- Preface
- Acknowledgments
- 1 Synopsis
- Part I Fundamental concepts of finance
- Part II Systems with finite number of degrees of freedom
- Part III Quantum field theory of interest rates models
- A Mathematical background
- Brief glossary of financial terms
- Brief glossary of physics terms
- List of main symbols
- References
- Index
Summary
Financial markets have undergone tremendous growth and dramatic changes in the past two decades, with the volume of daily trading in currency markets hitting over a trillion US dollars and hundreds of billions of dollars in bond and stock markets. Deregulation and globalization have led to large-scale capital flows; this has raised new problems for finance as well as has further spurred competition among banks and financial institutions.
The resulting booms, bubbles and busts of the global financial markets now directly affect the lives of hundreds of millions of people, as was witnessed during the 1998 East Asian financial crisis.
The principles of banking and finance are fairly well established and the challenge is to apply these principles in an increasingly complicated environment. The immense growth of financial markets, the existence of vast quantities of financial data and the growing complexity of the market, both in volume and sophistication, has made the use of powerful mathematical and computational tools in finance a necessity. In order to meet the needs of customers, complex financial instruments have been created; these instruments demand advanced valuation and risk assessment models and systems that quantify the returns and risks for investors and financial institutions.
The widespread use in finance of stochastic calculus and of partial differential equations reflects the traditional presence of probabilists and applied mathematicians in this field. The last few years has seen an increasing interest of theoretical physicists in the problems of applied and theoretical finance. In addition to the vast corpus of literature on the application of stochastic calculus to finance, concepts from theoretical physics have been finding increasing application in both theoretical and applied finance.
- Type
- Chapter
- Information
- Quantum FinancePath Integrals and Hamiltonians for Options and Interest Rates, pp. xiii - xivPublisher: Cambridge University PressPrint publication year: 2004