Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T17:26:40.451Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  23 March 2018

John Gough
Affiliation:
Aberystwyth University
Joachim Kupsch
Affiliation:
Technische Universität Kaiserslautern, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quantum Fields and Processes
A Combinatorial Approach
, pp. 316 - 321
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrikosov, A. A., Gorkov, L. P., and Dzyaloshinski, I. E. 1963. Methods of Quantum Field Theory in Statistical Physics. New York: Dover Publications.Google Scholar
Accardi, L., Frigerio, A., and Lu, Y. G. 1989. On the Weak Coupling Limit Problem. Quantum Probability and Applications, IV (Rome, 1987), Lecture Notes in Math., 1396, 2058.Google Scholar
Accardi, L., Frigerio, A., and Lu, Y. G. 1990. Weak Coupling Limit as a Quantum Functional Central Limit Theorem. Commun. Math. Phys., 131, 537570.CrossRefGoogle Scholar
Accardi, L., Lu, Y. G., and Obata, N. 1996. Towards a Non-Linear Extension of Stochastic Calculus. Sūrikaisekikenkyūsho Kōkyūroku, 957, 115.Google Scholar
Accardi, L., Lu, Y. G., and Volovich, I. 2000. A White-Noise Approach to Stochastic Calculus. Acta Applicandae Mathematicae, 63, 325.Google Scholar
Accardi, L., Lu, Y. G., and Volovich, I. 2002. Quantum Theory and Its Stochastic Limit. Berlin: Springer-Verlag.Google Scholar
Araki, H., and Woods, E. J. 1963. Representations of the Canonical Commutation Relations Describing a Non-relativistic Infinite Bose Gas. J. Math. Phys., 4, 637642.CrossRefGoogle Scholar
Attal, S., and Pautrat, Y. 2006. From Repeated to Continuous Quantum Interactions. Annales H. Poincaré, 7(1), 59104.Google Scholar
Baez, J. C., Segal, I. E., and Zhou, Z. 1992. Introduction to Algebraic and Constructive Quantum Field Theory. Princeton: Princeton University Press.Google Scholar
Bargmann, V. 1961. On a Hilbert Space of Analytic Functions and an Associated Integral Transform, Part I. Comm. Pure Appl. Math., 14, 187214.CrossRefGoogle Scholar
Belavkin, V. P. 1988. A New Form and ⋆-algebraic Structure of Quantum Stochastic Integrals in Fock Space. Rend. Sem. Mat. Fis. Milano, 58, 177193.Google Scholar
Bogoliubov, N. N., and Shirkov, D. V. 1959. Introduction to the Theory of Quantized Fields. Interscience Monographs and Texts in Physics and Astronomy, Vol. 3. New York: Wiley-Interscience.Google Scholar
Bogoliubov, N. N., and Shirkov, D. V. 1983. Quantum Fields. Advanced book program. Reading, MA: Benjamin/Cummings.Google Scholar
Bogoliubov, N. N., Logunov, A. A., Oksak, A. I., and Todorov, I. T. 1990. General Principles of Quantum Field Theory. Dortrecht: Kluwer.CrossRefGoogle Scholar
Bourbaki, N. 1974. Elements of Mathematics: Algebra I, chap. 1-3. Paris: Hermann.Google Scholar
Bozejko, M., Kümmerer, B., and Speicher, R. 1997. q-Gaussian Processes: Non-commutative and Classical Aspects. Commun. Math. Phys., 185, 129154.Google Scholar
Bozejko, M., and Yoshida, H. 2006. Generalized q-deformed Gaussian Random Variables. Quantum Probability, Banach Center Publications, 73, 127140.Google Scholar
Bremermann, H. J., and Durand, L. III. 1961. On Analytic Continuation, Multiplication, and Fourier Transformations of Schwartz Distributions. J. Math. Phys., 2, 240258.CrossRefGoogle Scholar
Caianiello, E. R. 1973. Combinatorics and Renormalization in Quantum Field Theory. Frontiers in Physics. Reading, Mass.: W. A. Benjamin.Google Scholar
Callen, H. B. 1985. Thermodynamics and an Introduction to Thermostatics. New York: John Wiley and Sons.Google Scholar
Chebotarev, A. M. 1997. Symmetric Form of the Hudson–Parthasarathy Equation. Math. Notes, 61, 25102518.Google Scholar
Cook, J. M. 1961. Asymptotic Properties of a Boson Field with Given Source. J. Math. Phys., 2, 3345.CrossRefGoogle Scholar
Dembo, A., and Zeitouni, O. 1998. Large Deviations Techniques and Applications. Applications of Mathematics, Vol. 38. New York: Springer-Verlag.CrossRefGoogle Scholar
Dieudonné, J. 1972. Treatise on Analysis, Vol. III. New York: Academic Press. Appendix, pp. 347377.Google Scholar
Eckmann, J. P., and Epstein, H. 1979. Time-ordered Products and Schwinger Functions. Commun. Math. Phys., 64, 95130.CrossRefGoogle Scholar
Emch, G. G. 1972. Algebraic Methods in Statistical Mechanics and Quantum Field Theory. New York: Wiley-Interscience.Google Scholar
Emery, M. 1989. Stochastic Calculus in Manifolds, with an Appendix by P.A. Mayer. Universitext. Berlin: Springer-Verlag.Google Scholar
Evans, M., and Hudson, R. L. 1988. Multidimensional Quantum Diffusions. Quantum Probability III, Lecture Notes in Mathematics, 1303, 6988.Google Scholar
Eyink, G. L. 1996. Action Principle in Nonequilibrium Statistical Dynamics. Phys. Rev. E, 54(4), 34193435.CrossRefGoogle ScholarPubMed
Faris, W. G. 2009/11. Combinatorial Species and Feynman Diagrams. Sém. Lothar. Combin., 61A, 37.Google Scholar
Farré, M., Jolis, M., and Utzet, F. 2008. Multiple Stratonovich Integral and Hu-Meyer Formula for Lévy Processes. The Annals of Probability, 38, 21362169.Google Scholar
Feldman, J. S., and Osterwalder, K. 1976. The Wightman Axioms and the Mass Gap for Weakly Coupled (φ4)2 Quantum Field Theories. Ann. Phys., 97, 80135.Google Scholar
Feynman, R. P. 1949. The Theory of the Positron. Phys. Rev., 76, 749759.Google Scholar
Freidlin, M. I., and Wentzell, A. D. 1998. Random Perturbations of Dynamical Systems. Fundamental Principles of Mathematical Sciences, Vol. 260. 2nd edn. New York: Springer-Verlag.Google Scholar
Gallavotti, G. 1985. Renormalization Theory and Ultraviolet Stability for Scalar Fields via Renormalization Group Methods. Rev. Mod. Phys., 57, 471562.Google Scholar
Gelfand, I. M., and Shilov, G. E. 1964. Generalized Functions. Vol. 1: Properties and Operations. New York: Academic Press.Google Scholar
Gell-Mann, M., and Low, F. 1951. Bound States in Quantum Field Theory. Phys. Rev., 84, 350354.Google Scholar
Glimm, J., and Jaffe, A. 1987. Quantum Physics: A Functional Integral Point of View. 2nd edn. New York: Springer.CrossRefGoogle Scholar
Gorini, V., Kossakowski, A., and Sudarshan, E. C. G. 1976. Completely Positive Dynamical Semigroups on N-level Systems. Journ. Math. Phys., 17, 821825.Google Scholar
Gough, J. E. 1997. Non-Commutative Ito and Stratonovich Noise and Stochastic Evolutions. Theor. Math. Phys., 113, 276284.Google Scholar
Gough, J. E. 2004. Holevo-Ordering and the Continuous-Time Limit for Open Floquet Dynamics. Lett. Math. Phys., 67, 207221.Google Scholar
Gough, J. E. 2005. Quantum Flows as Markovian Limit of Emission, Absorption and Scattering Interactions. Commun. Math. Phys., 254, 489512.Google Scholar
Graham, R. L., Knuth, D. E., and Patashnik, O. 1988. Concrete Mathematics: A Foundation for Computer Science. Boston: Addison-Wesley.Google Scholar
Greub, W. 1978. Multilinear Algebra. 2nd edn. New York: Springer.Google Scholar
Guichardet, G. 1970. Symmetric Hilbert Spaces and Related Topics. Lect. Notes Math., Vol. 261. Berlin and Heidelberg: Springer-Verlag.Google Scholar
Haag, R. 1958. Quantum Field Theories with Composite Particles and Asymptotic Conditions. Phys. Rev., 112, 669673.CrossRefGoogle Scholar
Hegerfeldt, G. C. 1974. Remark on Causality and Particle Localization. Phys. Rev. D, 10, 33203321.Google Scholar
Hegerfeldt, G. C., and Ruijsenaars, S. N. M. 1980. Remarks on Causality, Localization, and Spreading of Wave Packets. Phys. Rev. D, 22, 377384.Google Scholar
Heisenberg, W., and Pauli, W. 1929. Zur Quantendynamik der Wellenfelder. Z. Physik, 56, 161.Google Scholar
Heisenberg, W., and Pauli, W. 1930. Zur Quantendynamik der Wellenfelder II. Z. Physik, 59, 168190.Google Scholar
Hepp, K. 1965. On the Connection between the LSZ and Wightman Quantum Field Theory. Commun. Math. Phys., 1, 95111.Google Scholar
Hida, T. 2008. Lectures on White Noise Functionals. Singapore: World Scientific Publishing Company.CrossRefGoogle Scholar
Hille, E., and Phillips, R. S. 1957. Functional Analysis and Semigroups. Providence: American Math Society.Google Scholar
Holevo, A. S. 1989. Stochastic Representation of Quantum Dynamical Semigroups. Trudy Mat. Inst. Steklov, ed. L. Accardi. 191, 130139.Google Scholar
Holevo, A. S. 1992. Time-ordered Exponentials in Quantum Stochastic Calculus. Quantum Probability and Related Topics VII, ed. L. Accardi. 175–202.Google Scholar
Holevo, A. S. 1996. Exponential Formula in Quantum Stochastic Calculus. Proc. Roy. Soc. Edinburgh, section A Math., 126, 375389.Google Scholar
Hudson, R. L., and Streater, R. F. 1981. Ito’s Formula Is the Chain Rule with Wick Ordering. Phys. Lett. A, 86, 277279.CrossRefGoogle Scholar
Hudson, R. L., and Parthasarathy, K. R. 1984. Quantum Itō’s Formula and Stochastic Evolutions. Commun. Math. Phys., 93, 301323.Google Scholar
Hudson, R. L. 2012. The Early Years of Quantum Stochastic Calculus. Commun. Stoch. Anal., 6, 111123.Google Scholar
Itô, K. 1951. Multiple Wiener Integral. J. Math. Soc. Japan, 3, 157169.Google Scholar
Itzykson, C., and Zuber, J.-B. 1980. Quantum Field Theory. New York: McGraw-Hill.Google Scholar
Jona-Lasinio, G. 1983. Large Fluctuations of Random Fields and Renormalization Group: Some Perspectives. Scaling and Self-Similarity in Physics, ed. J. Frölich, 7, 1128.Google Scholar
Joyal, A. 1981. Une théorie combinatoire des séries formelles. Advances in Mathematics, 42, 182.Google Scholar
Kastler, D. 1961. Introduction à l’Électrodynamique Quantique. Travaux et Recherches Mathématiques. Paris: Dunod.Google Scholar
Kupsch, J., and Smolyanov, O. G. 1998. Functional Representations for Fock Superalgebras. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1(2), 285324.CrossRefGoogle Scholar
Kupsch, J., and Smolyanov, O. G. 2000. Hilbert Norms for Graded Algebras. Proc. Amer. Math. Soc., 128, 16471653.CrossRefGoogle Scholar
Landsman, N. P., and Weert, Ch. G.. 1987. Real- and Imaginary-time Field Theory at Finite Temperature and Density. Phys. Rep., 145, 141249.Google Scholar
Lehmann, H., Symanzik, K., and Zimmermann, W. 1955. Zur Formulierung quantisierter Felder. Nuovo Cimento, 1(1), 205225.CrossRefGoogle Scholar
Lehmann, H., Symanzik, K., and Zimmermann, W. 1957. On the Formulation of Quantized Field Theories II. Nuovo Cimento, 6(2), 319333.CrossRefGoogle Scholar
Lindblad, G. 1976. On the Generators of Completely Positive Semi-groups. Commun. Math. Phys., 48, 119130.Google Scholar
Lindsay, J. M., and Maassen, H. 1988. An Integral Kernel Approach to Noise. Quantum Probability III, Eds. L. Accardi and W. von Waldenfels, Lecture Notes in Mathematics, 1303, 192208.Google Scholar
Maassen, H. 1987. Quantum Markov processes on Fock space described by integral kernels. Quantum Probability II, eds. L. Accardi and W. von Waldenfels, Lecture Notes in Mathematics, 1136, 361374.Google Scholar
Magnus, W., Oberhettinger, F., and Soni, R. P. 1966. Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edn. New York: Springer.CrossRefGoogle Scholar
Maurin, K. 1968. General Eigenfunction Expansions and Unitary Representations of Topological Groups. Warszawa: PWN – Polish Scientific Publishers.Google Scholar
Methée, P. D. 1954. Sur les distributions invariantes dans la groupe des rotations de Lorentz. Comment. Math. Helv., 28, 225.Google Scholar
Meyer, Paul-André. 1993. Quantum Probability for Probabilists. Lecture Notes in Mathematics, 1538. Berlin: Springer-Verlag.Google Scholar
Nakano, T. 1959. Quantum Field Theory in Terms of Euclidean Parameters. Prog. Theor. Phys., 21, 241259.Google Scholar
Nelson, E. 1973. The Free Markoff Fields. J. Funct. Anal., 12, 211.CrossRefGoogle Scholar
Nica, A., and Speicher, R. 2006. Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, Vol. 335. Cambridge: Cambridge University Press.Google Scholar
Obata, N. 1994. White Noise Calculus and Fock Space. Lecture Notes in Math., Vol. 1577. Berlin: Springer.CrossRefGoogle Scholar
Øksendal, B. 1992. Stochastic Differential Equations. Universitext. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Osterwalder, K., and Schrader, R. 1973. Axioms for Euclidean Green’s Functions. Commun. Math. Phys., 31, 83112.CrossRefGoogle Scholar
Osterwalder, K., and Schrader, R. 1975. Axioms for Euclidean Green’s Functions II. Commun. Math. Phys., 42, 281305.Google Scholar
Parthasarathy, K. R. 1992. An Introduction to Quantum Stochastic Calculus. Basel: Birkhäuser.Google Scholar
Peccati, G., and Taqqu, M. S. 2011. Wiener Chaos: Moments, Cumulants and Diagrams. Universitext. Milano: Bocconi and Springer.Google Scholar
Pulé, J. V. 1974. The Bloch Equations. Commun. Math. Phys., 38, 241256.CrossRefGoogle Scholar
Reed, M., and Simon, B. 1972. Methods of Modern Mathematical Physics I: Functional Analysis. New York: Academic Press.Google Scholar
Reed, M., and Simon, B. 1975. Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. New York: Academic Press.Google Scholar
Rivers, R. J. 1987. Path Integral Methods in Quantum Field Theory. Cambridge: Cambridge University Press.Google Scholar
Rota, G.-C., and Wallstrom, T. C. 1997. Stochastic Integrals: A Combinatorial Approach. Annals of Probability, 25, 12571283.CrossRefGoogle Scholar
Saitoh, N., and Yoshida, H. 2000a. A q-deformed Poisson Distribution Based on Orthogonal Polynomials. Journal of Physics A: Mathematical and General, 33(7), 14351444.CrossRefGoogle Scholar
Saitoh, N., and Yoshida, H. 2000b. q-deformed Poisson Random Variables on q-Fock Space. Journal of Mathematical Physics, 41(8), 57675772.Google Scholar
Schweber, S. S. 1961. An Introduction to Relativistic Quantum Field Theory. NewYork: Harper & Row.Google Scholar
Schwinger, J. 1958. On the Euclidean Structure of Relativistic Field Theories. Proc. N. A. S., 44, 956965.Google Scholar
Segal, I. E. 1956. Tensor Algebras over Hilbert Spaces. I. Trans. Amer. Math. Soc., 81, 106134.CrossRefGoogle Scholar
Segal, I. E. 1962. Mathematical Characterization of the Physical Vacuum for a Linear Bose–Einstein Field. Illinois J. Math., 6, 500523.Google Scholar
Spohn, H. 1980. Kinetic Equations from Hamiltonian Dynamics: Markovian Limits. Rev. Mod. Phys., 53, 569615.Google Scholar
Steinmann, O. 1968. A Rigorous Formulation of LSZ Field Theory. Commun. Math. Phys., 10, 245268.Google Scholar
Streater, R. F., and Wightman, A. S. 1964. PCT, Spin & Statistics, and All That. New York: W. A. Benjamin.Google Scholar
Stueckelberg, E. C. G., and Rivier, D. 1949. Causalité et structure de la matrice S. Helv. Phys. Acta, 23, 215222.Google Scholar
Summers, S. J. 2012. A Perspective on Constructive Quantum Field Theory. arXiv:1203.3991.Google Scholar
Symanzik, K. 1966. Euclidean Quantum Field Theory. I. Equations for a Scalar Model. J. Math. Phys., 7, 510525.CrossRefGoogle Scholar
Touchette, H. 2009. The Large Deviation Approach to Statistical Mechanics. Phys. Rep., 478, 169.Google Scholar
van Hove, L. 1952. Les difficultés de divergences pour un modèle particulier de champ quantifié. Physica, 18, 145159.CrossRefGoogle Scholar
van Hove, L. 1955. Quantum Mechanical Perturbations Giving Rise to a Statistical Transport Equation. Physica, 21, 617640.Google Scholar
Voiculescu, D., Dykema, K. J., and Nica, A. 1975. Free Random Variables. Vol. 1. Providence: American Math. Soc.Google Scholar
Waldenfels, W.. 1986. Itō Solution of the Linear Quantum Stochastic Differential Equation Describing Light Emission and Absorption. Lecture Notes in Mathematics, 1055, 384411.Google Scholar
Weinberg, S. 1964. Feynman Rules for Any Spin. Phys. Rev., 133, B1318B1332.Google Scholar
Weinberg, S. 1995. The Quantum Theory of Fields I. Foundations. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wick, G. C. 1950. The Evaluation of the Collision Matrix. Phys. Rev., 80(2), 268272.Google Scholar
Wick, G. C. 1954. Properties of Bethe–Salpeter Wave Functions. Phys. Rev., 96, 11241134.Google Scholar
Wiener, N. 1930. Generalized Harmonic Analysis. Acta Math., 55, 117258.CrossRefGoogle Scholar
Wightman, A. S. 1956. Quantum Field Theory in Terms of Vacuum Expectation Values. Phys. Rev., 101, 860866.CrossRefGoogle Scholar
Wightman, A. S., and Garding, L. 1964. Fields as Operator-valued Distributions in Relativistic Quantum Theory. Arkiv för Fysik, 28, 129184.Google Scholar
Yang, C. N., and Feldman, D. 1950. The S-matrix in the Heisenberg Representation. Phys. Rev., 79, 972978.Google Scholar
Zinoviev, Y. M. 1995. Equivalence of Euclidean and Wightman Field Theories. Commun. Math. Phys., 174, 127.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • John Gough, Aberystwyth University, Joachim Kupsch, Technische Universität Kaiserslautern, Germany
  • Book: Quantum Fields and Processes
  • Online publication: 23 March 2018
  • Chapter DOI: https://doi.org/10.1017/9781108241885.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • John Gough, Aberystwyth University, Joachim Kupsch, Technische Universität Kaiserslautern, Germany
  • Book: Quantum Fields and Processes
  • Online publication: 23 March 2018
  • Chapter DOI: https://doi.org/10.1017/9781108241885.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • John Gough, Aberystwyth University, Joachim Kupsch, Technische Universität Kaiserslautern, Germany
  • Book: Quantum Fields and Processes
  • Online publication: 23 March 2018
  • Chapter DOI: https://doi.org/10.1017/9781108241885.016
Available formats
×