Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T05:15:09.820Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2013

Daniel A. Lidar
Affiliation:
University of Southern California
Todd A. Brun
Affiliation:
University of Southern California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[ADH+09] A., Abeyesinghe, I., Devetak, P., Hayden, and A., Winter. 2009. The mother of all protocols: Restructuring quantum information's family tree. Proc. R. Soc. London Ser. A, 465, 2537.Google Scholar
[A61] A., Abragam. 1961. The Principles of Nuclear Magnetism. International Series of Monographs on Physics. London: Oxford University Press.Google Scholar
[AL91] I., Affleck and A. W. W., Ludwig. 1991. Critical theory of overscreened Kondo fixed points. Nucl. Phys. B, 360, 641.Google Scholar
[A00a] G., Agarwal. 2000. Control of decoherence and relaxation by frequency modulation of a heat bath. Phys. Rev. A, 61, 013809.Google Scholar
[A10] G. S., Agarwal. 2010. Saving entanglement via a nonuniform sequence of π pulses. Phys. Scr., 82, 038103.Google Scholar
[AC08] V., Aggarwal and A. R., Calderbank. 2008. Boolean functions, projection operators and quantum error correcting codes. IEEE Trans. Inf. Theory, 54, 1700.Google Scholar
[A00b] D., Aharonov. 2000. Quantum to classical phase transition in noisy quantum computers. Phys. Rev. A, 6206, 062311.Google Scholar
[AB.-O08] D., Aharonov and M., Ben-Or. 2008. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput., 38, 1207.Google Scholar
[AB.-OI+96] D., Aharonov, M., Ben-Or, R., Impagliazzo, and N., Nisan. 1996. Limitations of noisy reversible computation. eprint arXiv:quant-ph/9611028.Google Scholar
[AKP06] D., Aharonov, A., Kitaev, and J., Preskill. 2006. Fault-tolerant quantum computation with long-range correlated noise. Phys. Rev. Lett., 96, 050504.Google Scholar
[AV89] Y., Aharonov and L., Vaidman. 1989. Aharonov and Vaidman reply. Phys. Rev. Lett., 62, 2327.Google Scholar
[AV90] Y., Aharonov and L., Vaidman. 1990. Properties of a quantum system during the time interval between two measurements. Phys.Rev. A, 41, 11.Google Scholar
[AAV88] Y., Aharonov, D. Z., Albert, and L., Vaidman. 1988. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 60, 1351.Google Scholar
[ADL02] C., Ahn, A. C., Doherty, and A. J., Landahl. 2002. Continuous quantum error correction via quantum feedback control. Phys.Rev. A, 65, 042301.Google Scholar
[AWM03] C., Ahn, H. W., Wiseman, and G. J., Milburn. 2003. Quantum error correction for continuously detected errors. Phys.Rev. A, 67, 052310.Google Scholar
[AM00] S., Aji and R., McEliece. 2000. The generalized distributive law. IEEE Trans. Inf. Theory, 46, 325.Google Scholar
[AAS11] A., Ajoy, G. A., Álvarez, and D., Suter. 2011. Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath. Phys.Rev. A, 83, 032303.Google Scholar
[A.-HDD+06] K. A., Al-Hassanieh, V. V., Dobrovitski, E., Dagotto, and B. N., Harmon. 2006. Numerical modeling of the central spin problem using the spin-coherent-state P representation. Phys. Rev. Lett., 97, 037204.Google Scholar
[A88] R., Alicki. 1988. Limited thermalization for the Markov mean-field model of N atoms in thermal field. Physica A, 150, 455.Google Scholar
[A06] R., Alicki. 2006. Quantum error correction fails for Hamiltonian models. Fluct. Noise Lett., 6, C23.Google Scholar
[A09] R., Alicki. 2009. Quantum memory as a perpetuum mobile of the second kind. eprint arXiv:0901.0811.Google Scholar
[AF01] R., Alicki and M., Fannes. 2001. Quantum Dynamical Systems. Oxford: Oxford University Press.Google Scholar
[AF09] R., Alicki and M., Fannes. 2009. Decay of fidelity in terms of correlation functions. Phys. Rev. A, 79, 012316.Google Scholar
[AL07] R., Alicki and K., Lendi. 2007. Quantum Dynamical Semigroups and Applications 2nd edn., Lecture Notes in Physics, Volume 717. Berlin: Springer.Google Scholar
[AHH+02] R., Alicki, M., Horodecki, P., Horodecki, and R., Horodecki. 2002. Dynamical description of quantum computing: Generic nonlocality of quantum noise. Phys. Rev. A, 65, 062101.Google Scholar
[AHH+04] R., Alicki, M. L., Horodecki, P. L., Horodecki, and R., Horodecki. 2004. Thermodynamics of quantum information systems. Hamiltonian description. Open Syst. Inf. Dyn., 11, 205.Google Scholar
[ALZ06] R., Alicki, D. A., Lidar, and P., Zanardi. 2006. Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit. Phys. Rev. A, 73, 052311.Google Scholar
[AFH07] R., Alicki, M., Fannes, and M., Horodecki. 2007. A statistical mechanics view on Kitaev's proposal for quantum memories. J. Phys. A, 40, 6451.Google Scholar
[AFH09] R., Alicki, M., Fannes, and M., Horodecki. 2009. On thermalization in Kitaev's 2D model. J. Phys. A, 42, 065303.Google Scholar
[AHH+10] R., Alicki, M., Horodecki, P., Horodecki, and R., Horodecki. 2010. On thermal stability of topological qubit in Kitaev's 4D model. Open Syst. Inf. Dyn., 17, 1.Google Scholar
[A07] P., Aliferis. 2007. Level Reduction and the Quantum Threshold Theorem. Ph.D. thesis, California Institute of Technology. eprint arXiv:quant-ph/0703230.Google Scholar
[AC07] P., Aliferis and A. W., Cross. 2007. Subsystem fault tolerance with the Bacon—Shor code. Phys. Rev. Lett., 98, 220502.Google Scholar
[AL04] P., Aliferis and D. W., Leung. 2004. Computation by measurements: A unifying picture. Phys. Rev. A, 70, 062314.Google Scholar
[AL06] P., Aliferis and D. W., Leung. 2006. Simple proof of fault tolerance in the graph-state model. Phys.Rev.A, 73, 032308.Google Scholar
[AP08] P., Aliferis and J., Preskill. 2008. Fault-tolerant quantum computation against biased noise. Phys. Rev. A, 78, 052331.Google Scholar
[AP09] P., Aliferis and J., Preskill. 2009. The Fibonacci scheme for fault-tolerant quantum computation. Phys. Rev. A, 79, 012332.Google Scholar
[AT07] P., Aliferis and B. M., Terhal. 2007. Fault-tolerant quantum computation for local leakage faults. Quant. Inf. Comput., 7, 139.Google Scholar
[AGP06] P., Aliferis, D., Gottesman, and J., Preskill. 2006. Quantum accuracy threshold for concatenated distance-3 codes. Quant. Inf. Comput., 6, 97.Google Scholar
[AGP08] P., Aliferis, D., Gottesman, and J., Preskill. 2008. Accuracy threshold for postselected quantum computation. Quant. Inf. Comput., 8, 181.Google Scholar
[AS11] G. A., Alvarez and D., Suter. 2011. Dynamical decoupling noise spectroscopy. eprint arXiv:1106.3463.Google Scholar
[AAP+10] G. A., Álvarez, A., Ajoy, X., Peng, and D., Suter. 2010. Performance comparison of dynamical decoupling sequences for a qubit in a rapidly fluctuating spin bath. Phys. Rev. A, 82, 042306.Google Scholar
[A08] S., Aly. 2008. A class of quantum LDPC codes constructed from finite geometries. IEEE Global Telecommunications Conference, p.1.Google Scholar
[A54] P. W., Anderson. 1954. A mathematical model for the narrowing of spectral lines by exchange or motion. J. Phys. Soc. Jpn., 9, 316.Google Scholar
[ADD+07] K. S., Andrews, D., Divsalar, S., Dolinar, J., Hamkins, C. R., Jones, and F., Pollara. 2007. The development of turbo and LDPC codes for deep space applications. Proc. IEEE, Special Issue on “Technical Advances in Deep Space Communications and Tracking”, 95, 2142.Google Scholar
[ATK+09] T., Aoki, G., Takahashi, T., Kajiya, J., Yoshikawa, S. L., Braunstein, P., van Loock, and A., Furusawa. 2009. Quantum error correction beyond qubits. Nature Phys., 5, 541.Google Scholar
[AL70] H., Araki and E. H., Lieb. 1970. Entropy inequalities. Commun. Math. Phys., 18, 160.Google Scholar
[AK01] A., Ashikhmin and E., Knill. 2001. Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory, 47, 3065.Google Scholar
[AD02] K., Audenaert and B., De Moor. 2002. Optimizing completely positive maps using semidefinite programming. Phys. Rev. A, 65, 030302(R).Google Scholar
[B06] D., Bacon. 2006. Operator quantum error-correcting subsystems for self-correcting quantum memories. Phys. Rev. A, 73, 12340.Google Scholar
[BC06] D., Bacon and A., Casaccino. 2006. Quantum error correcting subsystem codes from two classical linear codes. 44th Annual Alerton Conferences. eprint arXiv:quant-ph/0610088.Google Scholar
[BL+99] D., Bacon, D. A., Lidar, and K., Whaley. 1999. Robustness of decoherence-free subspaces for quantum computation. Phys. Rev. A, 60, 1944.Google Scholar
[BKL+00] D., Bacon, J., Kempe, D. A., Lidar, and K. B., Whaley. 2000. Universal fault-tolerant computation on decoherence-free subspaces. Phys. Rev. Lett., 85, 1758.Google Scholar
[BBW01] D., Bacon, K., Brown, and K., Whaley. 2001. Coherence-preserving quantum bits. Phys. Rev. Lett., 87, 247902.Google Scholar
[BLW83] R. D., Baker, vJ. H., Lint, and R. M., Wilson. 1983. On the Preparata and Goethals codes. IEEE Trans. Inf. Theory, 29, 342.Google Scholar
[BW06] K., Banaszek and W., Wasilewski. 2006. Linear-optics manipulations of photon-loss codes. Proceedings of NATO Advanced Research Workshop “Quantum Communication and Security”. Institute of Theoretical Physics and Astrophysics, Gdansk, Poland.Google Scholar
[B82] F., Barahona. 1982. On the computational complexity of Ising spin glass models. J. Phys. A, 15, 3241.Google Scholar
[BBD+97] A., Barenco, A., Berthiaume, D., Deutsch, A., Eckert, R., Jozsa, and C., Macchiavello. 1997. Stabilization of quantum computations by symmetrization. SIAM J. Comput., 26, 1541.Google Scholar
[B04] R., Barnes. 2004. Stabilizer codes for continuous-variable quantum error correction. arXiv:quant-ph/0405064.Google Scholar
[BK02] H., Barnum and E., Knill. 2002. Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys., 43, 2097.Google Scholar
[BKN00] H., Barnum, E., Knill, and M. A., Nielsen. 2000. On quantum fidelities and channel capacities. IEEE Trans. Inf. Theory, 46, 1317.Google Scholar
[BMM+10] C., Barthel, J., Medford, C. M., Marcus, M. P., Hanson, and A. C., Gossard. 2010. Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. Phys. Rev. Lett., 105, 266808.Google Scholar
[BMR+06] J., Baugh, O., Moussa, C. A., Ryan, R., Laflamme, C., Ramanathan, T. F., Havel, and D. G., Cory. 2006. A solid-state NMR three-qubit homonuclear system for quantum information processing: Control and characterization. Phys. Rev. A, 73, 022305.Google Scholar
[B.-O02] M., Ben-Or. 2002. Security of BB84 QKD Protocol. MSRI: www.msri.org/publications/ln/msri/2002/quantumintro/ben-or/2/.Google Scholar
[B.-OHL+05] M. Ben-Or, M., Horodecki, D. W., Leung, D., Mayers, and J., Oppenheim. 2005. The universal composable security of quantum key distribution. Theory of Cryptography: Second Theory of Cryptography Conference. Lecture Notes in Computer Science, Vol. 3378, p. 387. Berlin: Springer Verlag.Google Scholar
[BH01] S. C., Benjamin and P. M., Hayden. 2001. Multiplayer quantum games. Phys. Rev. A, 64, 030301.Google Scholar
[B92] C. H., Bennett. 1992. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett., 68, 3121.Google Scholar
[BB84] C. H., Bennett and G., Brassard. 1984. Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computers Systems and Signal Processing, p. 175.Google Scholar
[BBM92] C. H., Bennett, G., Brassard, and N. D., Mermin. 1992. Quantum cryptography without Bell's theorem. Phys. Rev. Lett., 68, 557.Google Scholar
[BBC+93] C. H., Bennett, G., Brassard, C., Crépeau, R., Jozsa, A., Peres, and W. K., Wootters. 1993. Teleporting an unknown quantum state via dual classical and Einstein—Podolsky—Rosen channels. Phys. Rev. Lett., 70, 1895.Google Scholar
[BBP+96a] C. H., Bennett, H. J., Bernstein, S., Popescu, and B., Schumacher. 1996. Concentrating partial entanglement by local operations. Phys. Rev. A, 53, 2046.Google Scholar
[BDS+96] C. H., Bennett, D. P., DiVincenzo, J. A., Smolin, and W. K., Wootters. 1996. Mixed state entanglement and quantum error correction. Phys. Rev. A, 54, 3824.Google Scholar
[BBP+96b] C. H., Bennett, G., Brassard, S., Popescu, B., Schumacher, J. A., Smolin, and W. K., Wootters. 1996. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 76, 722.Google Scholar
[BCL+02] C. H., Bennett, J. I., Cirac, M. S., Leifer, D. W., Leung, N., Linden, S., Popescu, and G., Vidal. 2002. Optimal simulation of two-qubit Hamiltonians using general local operations. Phys.Rev.A, 66, 012305.Google Scholar
[BKK07a] C., Beny, A., Kempf, and D. W., Kribs. 2007. Generalization of quantum error correction via the Heisenberg picture. Phys. Rev. Lett., 98, 100502.Google Scholar
[BKK07b] C., Beny, A., Kempf, and D. W., Kribs. 2007. Quantum error correction of observables. Phys. Rev. A, 76, 042303.Google Scholar
[BKK09] C., Beny, A., Kempf, and D. W., Kribs. 2009. Quantum error correction on infinite-dimensional Hilbert spaces. J. Math. Phys., 50, 062108.Google Scholar
[B01] A. J., Berglund. 2001. Quantum coherence and control in one- and two-photon optical systems. eprint arXiv:quant-ph/0010001.Google Scholar
[BMT78] E. R., Berlekamp, R. J., McEliece, and H. C., A. Van Tilborg. 1978. On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory, 24, 384.Google Scholar
[BV97] E., Bernstein and U., Vazirani. 1997. Quantum complexity theory. SIAM J. Comput., 26, 11.Google Scholar
[BGT93] C., Berrou, A., Glavieux, and P., Thitimajshima. 1993. Near Shannon limit error-correcting coding and decoding. ICC'93, p. 1064.Google Scholar
[B84] M., Berry. 1984. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London Ser. A, 392, 45.Google Scholar
[BJL99] T., Beth, D., Jungnickel, and H., Lenz. 1999. Design Theory. Encyclopedia of Mathematics and Its Applications, Vol. I. Cambridge: Cambridge University Press.Google Scholar
[B97] R., Bhatia. 1997. Matrix Analysis. Graduate Texts in Mathematics. New York: Springer-Verlag.Google Scholar
[BUV+09a] M. J., Biercuk, H., Uys, A. P., VanDevender, N., Shiga, W. M., Itano, and J. J., Bollinger. 2009. Optimized dynamical decoupling in a model quantum memory. Nature, 458, 996.Google Scholar
[BUV+09b] M. J., Biercuk, H., Uys, A. P., VanDevender, N., Shiga, W. M., Itano, and J. J., Bollinger. 2009. Experimental Uhrig dynamical decoupling using trapped ions. Phys. Rev. A, 79, 062324.Google Scholar
[BDU11] M. J., Biercuk, A. C., Doherty, and H., Uys. 2011. Dynamical decoupling as a filter design problem. J. Phys. B, 44, 154002.Google Scholar
[BIZ+00] E., Biolatti, R., Iotti, P., Zanardi, and F., Rossi. 2000. Quantum information processing with semiconductor macroatoms. Phys. Rev. Lett., 85, 5647.Google Scholar
[BHW+04] A., Blais, R.-S., Huang, A., Wallraff, S. M., Girvin, and R. J., Schoelkopf. 2004. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 69, 062320.Google Scholar
[BCO+09] S., Blanes, F., Casas, J., Oteo, and J., Ros. 2009. The Magnus expansion and some of its applications. Phys. Rep., 470, 151.Google Scholar
[BFN+11] H., Bluhm, S., Foletti, I., Neder, M., Rudner, D., Mahalu, V., Umansky, and A., Yacoby. 2011. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys., 7, 109.Google Scholar
[B.-KNP+08] R., Blume-Kohout, H. K., Ng, D., Poulin, and L., Viola. 2008. Characterizing the structure of preserved information in quantum processes. Phys. Rev. Lett., 100, 030501.Google Scholar
[B98a] B., Bollobás. 1998. Modern Graph Theory. New York: Springer-Verlag.Google Scholar
[B10a] H., Bombin. 2010. Topological order with a twist: Ising anyons from an Abelian model. Phys. Rev. Lett., 105, 030403.Google Scholar
[B10b] H., Bombin. 2010. Topological subsystem codes. Phys. Rev. A, 81, 032301.Google Scholar
[B11a] H., Bombin. 2011. Clifford gates by code deformation. New J. Phys., 13, 043005.Google Scholar
[B11b] H., Bombin. 2011. Structure of 2D topological stabilizer codes. eprint arXiv:1107.2707.Google Scholar
[BM.-D06] H., Bombin and M., Martin-Delgado. 2006. Topological quantum distillation. Phys. Rev. Lett., 97, 180501.Google Scholar
[BM.-D07a] H., Bombin and M., Martin-Delgado. 2007. Exact topological quantum order in D=3 and beyond: Branyons and brane-net condensates. Phys. Rev. B, 75, 75103.Google Scholar
[BM.-D07b] H., Bombin and M., Martin-Delgado. 2007. Topological computation without braiding. Phys. Rev. Lett., 98, 160502.Google Scholar
[BM.-D09] H., Bombin and M., Martin-Delgado. 2009. Quantum measurements and gates by code deformation. J. Phys. A, 42, 095302.Google Scholar
[BCH+09] H., Bombin, R., Chhajlany, M., Horodecki, and M., Martin-Delgado. 2009. Self-correcting quantum computers. eprint arXiv:0907.5228.Google Scholar
[BD.-CP11] H., Bombin, G., Duclos-Cianci, and D., Poulin. 2011. Universal topological phase of 2D stabilizer codes. eprint arXiv:1103.4606.Google Scholar
[BCP97] W., Bosma, J. J., Cannon, and C., Playoust. 1997. The MAGMA algebra system I: The user language. J. Symb. Comput., 24, 235.Google Scholar
[BPF+02] N., Boulant, M. A., Pravia, E. M., Fortunato, T. F., Havel, and D. G., Cory. 2002. Experimental concatenation of quantum error correction with decoupling. Quant. Inf. Proc., 1, 135.Google Scholar
[BVF+05] N., Boulant, L., Viola, E. M., Fortunato, and D. G., Cory. 2005. Experimental implementation of a concatenated quantum error-correcting code. Phys. Rev. Lett., 94, 130501.Google Scholar
[B02a] G., Bowen. 2002. Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A, 66, 052313.Google Scholar
[BV04a] S., Boyd and L., Vandenberghe. 2004. Convex Optimization. Cambridge: Cambridge University Press.Google Scholar
[BMP+99] P. O., Boykin, T., Mor, M., Pulver, V., Roychowdhury, and F., Vatan. 1999. On universal and fault-tolerant quantum computing. Proceedings 40th FOCS. Society Press, p. 486.Google Scholar
[BV04b] F. G., S. L. Brandao and R. O., Vianna. 2004. Separable multipartite mixed states: Operational asymptotically necessary and sufficient conditions. Phys. Rev. Lett., 93, 220503.Google Scholar
[B98b] S. L., Braunstein. 1998. Error correction for continuous quantum variables. Phys. Rev. Lett., 80, 4084.Google Scholar
[B98c] S. L., Braunstein. 1998. Quantum error correction for communication with linear optics. Nature, 394, 47.Google Scholar
[B05] S. L., Braunstein. 2005. Squeezing as an irreducible resource. Phys.Rev.A, 71, 055801.Google Scholar
[BCJ+99] S. L., Braunstein, C. M., Caves, R., Jozsa, N., Linden, S., Popescu, and R., Schack. 1999. Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett., 83, 1054.Google Scholar
[B11c] S., Bravyi. 2011. Subsystem codes with spatially local generators. Phys. Rev. A, 83, 012320.Google Scholar
[BH11] S., Bravyi and J., Haah. 2011. On the energy landscape of 3D spin Hamiltonians with topological order. eprint arXiv:1105.4159.Google Scholar
[BK98] S., Bravyi and A., Kitaev. 1998. Quantum codes on a lattice with boundary. eprint arXiv:quant-ph/9811052.Google Scholar
[BK05] S., Bravyi and A., Kitaev. 2005. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A, 71, 022316.Google Scholar
[BT09] S., Bravyi and B., Terhal. 2009. A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes. New J. Phys., 11, 043029.Google Scholar
[BFG06] S., Bravyi, D., Fattal, and D., Gottesman. 2006. GHZ extraction yield for multipartite stabilizer states. J. Math. Phys., 47, 062106.Google Scholar
[BHM10] S., Bravyi, M., Hastings, and S., Michalakis. 2010. Topological quantum order: Stability under local perturbations. J. Math. Phys., 51, 093512.Google Scholar
[BPT10] S., Bravyi, D., Poulin, and B., Terhal. 2010. Tradeoffs for reliable quantum information storage in 2D systems. Phys. Rev. Lett., 104, 50503.Google Scholar
[BTL10] S., Bravyi, B. M., Terhal, and B., Leemhuis. 2010. Majorana fermion codes. New J. Phys., 12, 083039.Google Scholar
[BDN+04] M. J., Bremner, J. L., Dodd, M. A., Nielsen, and D., Bacon. 2004. Fungible dynamics: There are only two types of entangling multiple-qubit interactions. Phys. Rev. A, 69, 012313.Google Scholar
[BBN05] M. J., Bremner, D., Bacon, and M. A., Nielsen. 2005. Simulating Hamiltonian dynamics using many-qubit Hamiltonians and local unitary control. Phys. Rev. A, 71, 052312.Google Scholar
[BP02] H.-P., Breuer and F., Petruccione. 2002. The Theory of Open Quantum Systems. Oxford: Oxford University Press.Google Scholar
[BBP04] H.-P., Breuer, D., Burgarth, and F., Petruccione. 2004. Non-Markovian dynamics in a spin star system: Exact solution and approximation techniques. Phys. Rev. B, 70, 045323.Google Scholar
[BE93] H.-J., Briegel and B.-G., Englert. 1993. Quantum optical master equations: The use of damping bases. Phys. Rev. A, 47, 3311.Google Scholar
[B02b] T. A., Brun. 2002. A simple model of quantum trajectories. Am.J.Phys., 70, 719.Google Scholar
[BDH06a] T. A., Brun, I., Devetak, and M.-H. Hsieh. 2006. Catalytic quantum error correction. eprint arXiv:quant-ph/0608027.Google Scholar
[BDH06b] T. A., Brun, I., Devetak, and M.-H., Hsieh. 2006. Correcting quantum errors with entanglement. Science, 314, 436.Google Scholar
[BL07] D., Bruss and G., Leuchs (eds.). 2007. Lectures on Quantum Information. Berlin: Wiley-VCH.
[BF04] H., Bruus and K., Flensberg. 2004. Many-Body Quantum Theory in Condensed Matter Physics. Oxford: Oxford University Press.Google Scholar
[BLD99] G., Burkard, D., Loss, and D. P., DiVincenzo. 1999. Coupled quantum dots as quantum gates. Phys. Rev. B, 59, 2070.Google Scholar
[BL02a] M. S., Byrd and D. A., Lidar. 2002. Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. Phys. Rev. Lett., 89, 047901.Google Scholar
[BL02b] M., Byrd and D., Lidar. 2002. Bang-bang operations from a geometric perspective. Quant. Inf. Proc., 1, 19.Google Scholar
[BLN95] R. H., Byrd, P., Lu, and J., Nocedal. 1995. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Statist. Comput., 16, 1190.Google Scholar
[CS96] A. R., Calderbank and P. W., Shor. 1996. Good quantum error-correcting codes exist. Phys. Rev. A, 54, 1098.Google Scholar
[CRS+97] A. R., Calderbank, E. M., Rains, P. W., Shor, and N. J. A., Sloane. 1997. Quantum error correction and orthogonal geometry. Phys. Rev. Lett., 78, 405.Google Scholar
[CRS+98] A. R., Calderbank, E. M., Rains, P. W., Shor, and N. J. A., Sloane. 1998. Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory, 44, 1369.Google Scholar
[COT07] T., Camara, H., Ollivier, and J.-P., Tillich. 2007. A class of quantum LDPC codes: Construction and performances under iterative decoding. ISIT, p. 811.Google Scholar
[C93] H. J., Carmichael. 1993. An Open System Approach to Quantum Optics. Berlin: Springer.Google Scholar
[CP54] H. Y., Carr and E. M., Purcell. 1954. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev., 94, 630.Google Scholar
[C99] C. M., Caves. 1999. Quantum error correction and reversible operations. J. Super-conductivity, 12, 707.Google Scholar
[CLG08] B. A., Chase, A. J., Landahl, and J. M., Geremia. 2008. Efficient feedback controllers for continuous-time quantum error correction. Phys. Rev. A., 77, 032304.Google Scholar
[CL10] K., Chen and R.-B., Liu. 2010. Dynamical decoupling for a qubit in telegraphlike noises. Phys. Rev. A, 82, 052324.Google Scholar
[C07] P., Chen. 2007. Dynamical decoupling induced renormalization of the non-Markovian dynamics. Phys. Rev. A, 75, 062301.Google Scholar
[CZC08] X., Chen, B., Zeng, and I. L., Chuang. 2008. Nonbinary codeword-stabilized quantum codes. Phys. Rev. A, 78, 062315.Google Scholar
[CZZ+06] Y.-A., Chen, A.-N., Zhang, Z., Zhao, X.-Q., Zhou, and J.-W., Pan. 2006. Experimental quantum error rejection for quantum communication. Phys. Rev. Lett., 96, 220504.Google Scholar
[CLS+04] J., Chiaverini, D., Leibfried, T., Schaetz, M. D., Barrett, R. B., Blakestad, J., Britton, W. M., Itano, J. D., Jost, E., Knill, C., Langer, R., Ozeri, and D. J., Wineland. 2004. Realization of quantum error correction. Nature, 432, 602.Google Scholar
[CTS+05] L., Childress, J. M., Taylor, A. S., Sorensen, and M. D., Lukin. 2005. Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters. Phys. Rev. A, 72, 052330.Google Scholar
[CDT+06] L., Childress, M. G., Dutt, J., Taylor, A., Zibrov, F., Jelezko, J., Wrachtrup, P. R., Hemmer, and M. D., Lukin. 2006. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science, 314, 281.Google Scholar
[CLV04] A. M., Childs, D. W., Leung, and G., Vidal. 2004. Reversible simulation of bipartite product Hamiltonians. IEEE Trans. Inf. Theory, 50, 1189.Google Scholar
[CLN05] A. M., Childs, D. W., Leung, and M. A., Nielsen. 2005. Unified derivations of measurement-based schemes for quantum computation. Phys. Rev. A, 71, 032318.Google Scholar
[CLP07] A. M., Childs, A. J., Landahl, and P. A., Parrilo. 2007. Quantum algorithms for the ordered search problem via semidefinite programming. Phys. Rev. A, 75, 032335.Google Scholar
[CNH+03] I., Chiorescu, Y., Nakamura, C., Harmans, and J., Mooij. 2003. Coherent quantum dynamics of a superconducting flux qubit. Science, 299, 1869.Google Scholar
[C74] M.-D., Choi. 1974. A Schwarz inequality for positive linear maps on C*-algebras. Illinois J. Math., 18, 565.Google Scholar
[C75] M.-D., Choi. 1975. Completely positive linear maps on complex matrices. Lin. Alg. Appl., 10, 285.Google Scholar
[CK06] M.-D., Choi and D. W., Kribs. 2006. Method to find quantum noiseless subsystems. Phys. Rev. Lett., 96, 050501.Google Scholar
[CJK09] M.-D., Choi, N., Johnston, and D. W., Kribs. 2009. The multiplicative domain in quantum error correction. J. Phys. A, 42, 245303.Google Scholar
[CK10] D., Chruścináki and A., Kossakowski. 2010. Non-Markovian quantum dynamics: Local versus nonlocal. Phys. Rev. Lett., 104, 070406.Google Scholar
[CCS+09] I., Chuang, A., Cross, G., Smith, J., Smolin, and B., Zeng. 2009. Codeword stabilized quantum codes: Algorithms and structure. J. Math. Phys., 50, 042109.Google Scholar
[CEH+99] J. I., Cirac, A. K., Ekert, S. F., Huelga, and C., Macchiavello. 1999. Distributed quantum computation over noisy channels. Phys. Rev. A, 59, 4249.Google Scholar
[CBK10] J., Clausen, G., Bensky, and G., Kurizki. 2010. Bath-optimized minimal-energy protection of quantum operations from decoherence. Phys. Rev. Lett., 104, 040401.Google Scholar
[CSG.-B04] J. P., Clemens, S., Siddiqui, and J., Gea-Banacloche. 2004. Quantum error correction against correlated noise. Phys. Rev. A, 70, 069902.Google Scholar
[CB97] R., Cleve and H., Buhrman. 1997. Substituting quantum entanglement for communication. Phys. Rev. A, 56, 1201.Google Scholar
[CG97] R., Cleve and D., Gottesman. 1997. Efficient computations of encodings for quantum error correction. Phys.Rev.A, 56, 76.Google Scholar
[CGL99] R., Cleve, D., Gottesman, and H.-K., Lo. 1999. How to share a quantum secret. Phys. Rev. Lett., 83, 648.Google Scholar
[CEL99] G., Cohen, S., Encheva, and S., Litsyn. 1999. On binary constructions of quantum codes. IEEE Trans. Inf. Theory, 45, 2495.Google Scholar
[CD96] C. J., Colbourn and J. H., Dinitz (eds.). 1996. The CRC Handbook of Combinatorial Designs. Boca Raton: CRC Press.
[CP02] D., Collins and S., Popescu. 2002. Classical analog of entanglement. Phys. Rev. A, 65, 032321.Google Scholar
[CR99] W., Cook and A., Rohe. 1999. Computing minimum-weight perfect matchings. INFORMS J. Comput., 11, 138.Google Scholar
[CMG90] D. G., Cory, J. B., Miller, and A. N., Garroway. 1990. Time-suspension multiple-pulse sequences: Applications to solid-state imaging. J. Magn. Reson., 90, 205.Google Scholar
[CFH97] D. G., Cory, A. F., Fahmy, and T. F., Havel. 1997. Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 94, 1634.Google Scholar
[CPM+98] D. G., Cory, M. D., Price, W., Maas, E., Knill, R., Laflamme, W. H., Zurek, T. F., Havel, and S. S., Somaroo. 1998. Experimental quantum error correction. Phys. Rev. Lett., 81, 2152.Google Scholar
[CLK+00] D. G., Cory, R., Laflamme, E., Knill, L., Viola, T. F., Havel, N., Boulant, G., Boutis, E. M., Fortunato, S., Lloyd, R., Martinez, C., Negrevergne, Y., Sharf, G., Teklemariam, Y. S., Weinstein, and W. H., Zurek. 2000. NMR based quantum information processing: Achievements and prospects. Fortschr. Phys., 48, 875.Google Scholar
[CT91] T. M., Cover and J. A., Thomas. 1991. Elements of Information Theory. New York: Wiley.Google Scholar
[CSS+09] A., Cross, G., Smith, J. A., Smolin, and B., Zeng. 2009. Codewords stabilized quantum codes. IEEE Trans. Inf. Theory, 55, 433.Google Scholar
[CPZ05] F. M., Cucchietti, J. P., Paz, and W. H., Zurek. 2005. Decoherence from spin environments. Phys. Rev. A, 72, 052113.Google Scholar
[CFK+87] H., Cycon, R., Froese, W., Kirsch, and B., Simon. 1987. Schrodinger Operators with Applications to Quantum Mechanics and Global Geometry. Berlin: Springer.Google Scholar
[CLN+08] L., Cywiński, R. M., Lutchyn, C. P., Nave, and S. Das, Sarma. 2008. How to enhance dephasing time in superconducting qubits. Phys. Rev. B, 77, 174509.Google Scholar
[DVB10] B., Dakić, V., Vedral, and Č., Brukner. 2010. Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett., 105, 190502.Google Scholar
[D07] D., D'Alessandro. 2007. Introduction to Quantum Control and Dynamics. Boca Raton: CRC Press.Google Scholar
[DCM92] J., Dalibard, Y., Castin, and K., Mølmer. 1992. Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett., 68, 580.Google Scholar
[DLG+09] S., Damodarakurup, M., Lucamarini, G. D., Giuseppe, D., Vitali, and P., Tombesi. 2009. Experimental inhibition of decoherence on flying qubits via bang-bang control. Phys. Rev. Lett., 103, 040502.Google Scholar
[DL01] G. M., D'Ariano and P. Lo, Presti. 2001. Optimal nonuniversally covariant cloning. Phys. Rev. A, 64, 042308.Google Scholar
[DKS+07] G., D'Ariano, D., Kretschmann, D., Schlingemann, and R., Werner. 2007. Reexamination of quantum bit commitment: The possible and the impossible. Phys. Rev. A, 76, 032328.Google Scholar
[D96] K. R., Davidson. 1996. C*-Algebras by Example. Providence: American Mathematical Society.Google Scholar
[D74] E., Davies. 1974. Markovian Master Equations. Commun. Math. Phys., 39, 91.Google Scholar
[dWR+10] G., de Lange, Z. H., Wang, D., Ristè, V. V., Dobrovitski, and R., Hanson. 2010. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science, 330, 60.Google Scholar
[dRD+11] G., de Lange, D., Ristè, V. V., Dobrovitski, and R., Hanson. 2011. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett., 106, 080802.Google Scholar
[d67] J., de Pillis. 1967. Linear transformations which preserve Hermitian and positive semidefinite operations. Pacific J. Math., 23, 129.Google Scholar
[D86] W., de Launey. 1986. A survey of generalized Hadamard matrices and difference matrices D(K, λ G) with large k. Utilitas Math., 30, 5.Google Scholar
[DKL+02] E., Dennis, A., Kitaev, A., Landahl, and J., Preskill. 2002. Topological quantum memory. J. Math. Phys., 43, 4452.Google Scholar
[D05] I., Devetak. 2005. The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory, 51, 44.Google Scholar
[DY08] I., Devetak and J., Yard. 2008. Exact cost of redistributing multipartite quantum states. Phys. Rev. Lett., 100, 230501.Google Scholar
[DHW04] I., Devetak, A. W., Harrow, and A., Winter. 2004. A family of quantum protocols. Phys. Rev. Lett., 93, 230504.Google Scholar
[DHW08] I., Devetak, A. W., Harrow, and A., Winter. 2008. A resource framework for quantum Shannon theory. IEEE Trans. Inf. Theory, 54, 4587.Google Scholar
[DGI+07] S. J., Devitt, A. D., Greentree, R., Ionicioiu, J. L., O'Brien, W. J., Munro, and L. C. L., Hollenberg. 2007. The photonic module: An on-demand resource for photonic entanglement. Phys. Rev. A, 76, 052312.Google Scholar
[DGR06] D., Dhar, L. K., Grover, and S. M., Roy. 2006. Preserving quantum states using inverting pulses: A super-Zeno effect. Phys. Rev. Lett., 96, 100405.Google Scholar
[D54] R., Dicke. 1954. Coherence in spontaneous radiation processes. Phys. Rev., 93, 99.Google Scholar
[D95] D. P., DiVincenzo. 1995. Quantum computation. Science, 270, 255.Google Scholar
[D00] D. P., DiVincenzo. 2000. The physical implementation of quantum computation. Fortschr. Phys., 48, 771.Google Scholar
[DA07] D. P., DiVincenzo and P., Aliferis. 2007. Effective fault-tolerant quantum computation with slow measurements. Phys. Rev. Lett., 98, 020501.Google Scholar
[DNB+02] J. L., Dodd, M. A., Nielsen, M. J., Bremner, and R. T., Thew. 2002. Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries. Phys. Rev. A, 65, 040301.Google Scholar
[DPS05] A. C., Doherty, P. A., Parrilo, and F. M., Spedalieri. 2005. Detecting multipartite entanglement. Phys.Rev.A, 71, 03233.Google Scholar
[DHR02] M. J., Donald, M., Horodecki, and O., Rudolph. 2002. The uniqueness theorem for entanglement measures. J. Math. Phys., 43, 4252.Google Scholar
[DRZ+09] J., Du, X., Rong, N., Zhao, Y., Wang, J., Yang, and R.-B., Liu. 2009. Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature, 461, 1265.Google Scholar
[DG97] L. M., Duan and G. C., Guo. 1997. Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett., 79, 1953.Google Scholar
[DG98a] L.-M., Duan and G.-C., Guo. 1998. Optimal quantum codes for preventing collective amplitude damping. Phys. Rev. A, 58, 3491.Google Scholar
[DG98b] L. M., Duan and G. C., Guo. 1998. Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment. Phys. Rev. A, 57, 737.Google Scholar
[DG99] L.-M., Duan and G.-C., Guo. 1999. Suppressing environmental noise in quantum computation through pulse control. Phys. Lett. A, 261, 139.Google Scholar
[DCZ01] L.-M., Duan, J., Cirac, and P., Zoller. 2001. Geometric manipulation of trapped ions for quantum computation. Science, 292, 1695.Google Scholar
[D.-CP10] G., Duclos-Cianci and D., Poulin. 2010. Fast decoders for topological quantum codes. Phys. Rev. Lett., 104, 050504.Google Scholar
[DB03] W., Dür and H.-J., Briegel. 2003. Entanglement purification for quantum computation. Phys. Rev. Lett., 90, 067901.Google Scholar
[DB07] W., Dür and H. J., Briegel. 2007. Entanglement purification and quantum error correction. Rep. Prog. Phys., 70, 1381.Google Scholar
[DVC+01] W., Dür, G., Vidal, J. I., Cirac, N., Linden, and S., Popescu. 2001. Entanglement capabilities of non-local Hamiltonians. Phys. Rev. Lett., 87, 137901.Google Scholar
[DMO01] M., Durdevich, H. E., Makaruk, and R., Owczarek. 2001. Generalized noiseless quantum codes utilizing quantum enveloping algebras. J. Phys. A, 34, 1423.Google Scholar
[DCJ+07] M. V. G., Dutt, L., Childress, L., Jiang, E., Togan, J., Maze, F., Jelezko, A. S., Zibrov, P. R., Hemmer, and M. D., Lukin. 2007. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 316, 1312.Google Scholar
[E65] J., Edmonds. 1965. Paths, trees, and flowers. Can. J. Math., 17, 449.Google Scholar
[EP03] J., Eisert and M. B., Plenio. 2003. Introduction to the basics of entanglement theory in continuous-variable systems. Int. J. Quant. Inf., 1, 479.Google Scholar
[E91] A. K., Ekert. 1991. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett., 67, 661.Google Scholar
[EM96] A., Ekert and C., Macchiavello. 1996. Error correction in quantum communication. Phys. Rev. Lett., 77, 2585.Google Scholar
[E03a] Y. C., Eldar. 2003. Mixed-quantum-state detection with inconclusive results. Phys. Rev. A, 67, 042309.Google Scholar
[E03b] Y. C., Eldar. 2003. A semidefinite programming approach to optimal unambiguous discrimination of quantum states. IEEE Trans. Inf. Theory, 49, 446.Google Scholar
[EMV03] Y., Eldar, A., Megretski, and G., Verghese. 2003. Designing optimal quantum detectors via semidefinite programming. IEEE Trans. Inf. Theory, 49, 1007.Google Scholar
[ESH04] Y. C., Eldar, M., Stojnic, and B., Hassibi. 2004. Optimal quantum detectors for unambiguous detection of mixed states. Phys. Rev. A, 69, 062318.Google Scholar
[EBW94] R., Ernst, G., Bodenhausen, and A., Wokaun. 1994. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Oxford University Press.Google Scholar
[FLP04] P., Facchi, D. A., Lidar, and S., Pascazio. 2004. Unification of dynamical decoupling and the quantum zeno effect. Phys. Rev. A, 69, 032314.Google Scholar
[FI06] L., Faoro and L. B., Ioffe. 2006. Quantum two level systems and Kondo-like traps as possible sources of decoherence in superconducting qubits. Phys. Rev. Lett., 96, 047001.Google Scholar
[FI08] L., Faoro and L. B., Ioffe. 2008. Microscopic origin of low-frequency flux noise in Josephson circuits. Phys. Rev. Lett., 100, 227005.Google Scholar
[FV04] L., Faoro and L., Viola. 2004. Dynamical suppression of 1/f noise processes in qubit systems. Phys. Rev. Lett., 92, 117905.Google Scholar
[F01] D., Farenick. 2001. Algebras of Linear Transformations. New York: Springer-Verlag.Google Scholar
[FGG+00] E., Farhi, J., Goldstone, S., Gutmann, and M., Sipser. 2000. Quantum computation by adiabatic evolution. eprint arXiv:quant-ph/0001106.Google Scholar
[FCY+04] D., Fattal, T. S., Cubitt, Y., Yamamoto, S., Bravyi, and I. L., Chuang. 2004. Entanglement in the stabilizer formalism. eprint arXiv:quant-ph/0406168.Google Scholar
[FHB01] M., Fazel, H., Hindi, and S., Boyd. 2001. A rank minimization heuristic with application to minimum order system approximation. American Control Conference, 2001, 6, 4734.Google Scholar
[FHB03] M., Fazel, H., Hindi, and S., Boyd. 2003. Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. American Control Conference, 2003, 3, 2156.Google Scholar
[FHB04] M., Fazel, H., Hindi, and S., Boyd. 2004. Rank minimization and applications in system theory. American Control Conference, 2004, 4, 3273.Google Scholar
[F82] R. P., Feynman. 1982. Simulating physics with computers. Int. J. Theor. Phys., 21, 467.Google Scholar
[FMA05] R., Filip, P., Marek, and U. L., Andersen. 2005. Measurement-induced continuous-variable quantum interactions. Phys. Rev. A, 71, 042308.Google Scholar
[F00] S. D., Filippo. 2000. Quantum computation using decoherence-free states of the physical operator algebra. Phys. Rev. A, 62, 052307.Google Scholar
[FSW07] A. S., Fletcher, P. W., Shor, and M. Z., Win. 2007. Optimum quantum error recovery using semidefinite programming. Phys. Rev. A, 75, 012338.Google Scholar
[FSW08] A. S., Fletcher, P. W., Shor, and M. Z., Win. 2008. Structured near-optimal channel-adapted quantum error recovery. Phys.Rev.A, 77, 012320.Google Scholar
[FC07] G., Forney and D., Costello. 2007. Channel coding: The road to channel capacity. Proc. IEEE, 95, 1150.Google Scholar
[FG05] G. D., Forney and S., Guha. 2005. Simple rate-1/3 convolutional and tail-biting quantum error-correcting codes. Proceedings of the IEEE International Symposium on Information Theory, p. 1028.Google Scholar
[FGG07] G. D., Forney, M., Grassl, and S., Guha. 2007. Convolutional and tail-biting quantum error-correcting codes. IEEE Trans. Inf. Theory, 53, 865.Google Scholar
[FVH+02] E. M., Fortunato, L., Viola, J., Hodges, G., Teklemariam, and D. G., Cory. 2002. Implementation of universal control on a decoherence-free qubit. New J. Phys., 4, 5.1.Google Scholar
[FPB+02] E., Fortunato, M., Pravia, N., Boulant, T., Havel, and D., Cory. 2002. Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing. J. Chem. Phys., 116, 7599.Google Scholar
[FG09] A. G., Fowler and K., Goyal. 2009. Topological cluster state quantum computing. Quant. Inf. Comput., 9, 721.Google Scholar
[FWM+12] A. G., Fowler, A. C., Whiteside, A. L., McInnes, and A., Rabbani. 2012. Topological code Autotune. eprint arXiv:1202.6111.Google Scholar
[FWH12a] A. G., Fowler, A. C., Whiteside, and L. C. L., Hollenberg. 2012. Towards practical classical processing for the surface code. Phys. Rev. Lett., 108, 180501.Google Scholar
[FWH12b] A. G., Fowler, A. C., Whiteside, and L. C. L., Hollenberg. 2012. Towards practical classical processing for the surface code: timing analysis. Phys. Rev. A, 86, 042313.Google Scholar
[FSL05] E., Fraval, M. J., Sellars, and J. J., Longdell. 2005. Dynamic decoherence control of a solid-state nuclear quadrupole qubit. Phys. Rev. Lett., 95, 030506.Google Scholar
[FM01] M., Freedman and D., Meyer. 2001. Projective plane and planar quantum codes. Found. Comp. Math., 1, 325.Google Scholar
[FKL+03] M., Freedman, A., Kitaev, M., Larsen, and Z., Wang. 2003. Topological quantum computation. Bull. Amer. Math. Soc., 40, 31.Google Scholar
[FKL80] R., Freeman, S. P., Kempsell, and M. H., Levitt. 1980. Radio-frequency pulse sequences which compensate their own imperfections. J. Magn. Reson, 38, 453.Google Scholar
[FKM+04] J., Furrer, F., Kramer, J. P., Marino, S. J., Glaser, and B., Luy. 2004. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCAXY16 multiple pulse sequence. J. Magn. Reson, 166, 39.Google Scholar
[G83] P., Gács. 1983. Reliable computation with cellular automata. Proceedings 15th Annual ACM Symposium on Theory of Computing. New York: ACM Press, p. 32.Google Scholar
[G01a] P., Gács. 2001. Reliable cellular automata with self-organization. J. Stat. Phys., 103, 45.Google Scholar
[G05] P., Gács. 2005. Reliable computation. Online at Gács' website at Boston University. www.cs.bu.edu/~gacs/.Google Scholar
[G08] F., Gaitan. 2008. Quantum Error Correction and Fault Tolerant Quantum Computing. Boca Raton: CRC Press.Google Scholar
[G63] R. G., Gallager. 1963. Low Density Parity Check Codes. Cambridge, MA: MIT Press.Google Scholar
[GFR+09] W., Gao, A. G., Fowler, R., Raussendorf, X., Yao, H., Lu, P., Xu, C., Lu, C., Peng, Y., Deng, Z., Chen, and J., Pan. 2009. Experimental demonstration of topological error correction. eprint arXiv:0905.1542.Google Scholar
[GZ04] C. W., Gardiner and P., Zoller. 2004. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. 3rd edn. Berlin, Heidelberg: Springer-Verlag.Google Scholar
[GJ79] M. R., Garey and D. S., Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman & Co.Google Scholar
[G76] M., Gaudin. 1976. Diagonalisation d'une classe d'hamiltoniens de spin. J. Physique, 37, 1087.Google Scholar
[GC97] N. A., Gershenfeld and I. L., Chuang. 1997. Bulk spin-resonance quantum computation. Science, 275, 350.Google Scholar
[G.-S02] S., Gheorghiu-Svirschevski. 2002. Suppression of decoherence in quantum registers by entanglement with a nonequilibrium environment. Phys. Rev. A, 66, 032101.Google Scholar
[GKL+03] R. M., Gingrich, P., Kok, H., Lee, F., Vatan, and J. P., Dowling. 2003. All linear optical quantum memory based on quantum error correction. Phys. Rev. Lett., 91, 217901.Google Scholar
[GLM+03] V., Giovannetti, S., Lloyd, L., Maccone, and P. W., Shor. 2003. Broadband channel capacities. Phys. Rev. A, 68, 062323.Google Scholar
[GGL+04] V., Giovannetti, S., Guha, S., Lloyd, L., Maccone, J. H., Shapiro, and H. P., Yuen. 2004. Classical capacity of the lossy bosonic channel: The exact solution. Phys. Rev. Lett., 92, 027902.Google Scholar
[G74] J.-M., Goethals. 1974. Two families of nonlinear binary codes. Electron. Lett., 10, 471.Google Scholar
[GNT98] A. O., Gogolin, A. A., Nersesyan, and A. M., Tsvelik. 1998. Bosonization and Strongly Correlated Systems. Cambridge: Cambridge University Press.Google Scholar
[GKL08] G., Gordon, G., Kurizki, and D., Lidar. 2008. Optimal dynamical decoherence control of a qubit. Phys. Rev. Lett., 101, 010403.Google Scholar
[GKS76] V., Gorini, A., Kossakowski, and E., Sudarshan. 1976. Completely positive dynamical semigroups of N-level systems. J. Math. Phys., 17, 821.Google Scholar
[G96a] D., Gottesman. 1996. Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A, 54, 1862.Google Scholar
[G97a] D., Gottesman. 1997. Stabilizer Codes and Quantum Error Correction. Ph.D. thesis, California Institute of Technology. eprint arXiv:quant-ph/9705052.Google Scholar
[G98] D., Gottesman. 1998. Theory of fault-tolerant quantum computation. Phys. Rev. A, 57, 127.Google Scholar
[G99] D., Gottesman. 1999. Fault-tolerant quantum computation with higher-dimensional systems. Chaos Solitons Fractals, 10, 1749.Google Scholar
[G00] D., Gottesman. 2000. Fault-tolerant quantum computation with local gates. J. Mod. Optics, 47, 333.Google Scholar
[G09] D., Gottesman. 2009. An introduction to quantum error correction and fault-tolerant quantum computation. eprint arXiv:0904.2557.Google Scholar
[GC99] D., Gottesman and I., Chuang. 1999. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402, 390.Google Scholar
[GKP01] D., Gottesman, A., Kitaev, and J., Preskill. 2001. Encoding a qubit in an oscillator. Phys. Rev. A, 64, 012310.Google Scholar
[GB97] M., Grassl and T., Beth. 1997. A note on non-additive quantum codes. eprint arXiv:quant-ph/9703016.Google Scholar
[GB99] M., Grassl and T., Beth. 1999. Quantum BCH codes. Proceedings Xth International Symposium on Theoretical Electrical Engineering, Magdeburg, p. 207.Google Scholar
[GR06a] M., Grassl and M., Rötteler. 2006. Noncatastrophic encoders and encoder inverses for quantum convolutional codes. Proceedings of the IEEE International Symposium on Information Theory, p. 1109.Google Scholar
[GR06b] M., Grassl and M., Rotteler. 2006. Quantum convolutional codes: Encoders and structural properties. Proceedings of the Forty-Fourth Annual Allerton Conference, p. 510.Google Scholar
[GR07] M., Grassl and M., Rotteler. 2007. Constructions of quantum convolutional codes. Proceedings of the IEEE International Symposium on Information Theory, p. 816.Google Scholar
[GR08a] M., Grassl and M., Rötteler. 2008. Non-additive quantum codes from Goethals and Preparata codes. Proceedings of the IEEE Information Theory Workshop (ITW 08), p. 396.Google Scholar
[GR08b] M., Grassl and M., Rötteler. 2008. Quantum Goethals-Preparata codes. Proceedings of the IEEE International Symposium on Information Theory, p. 300.Google Scholar
[GBP97] M., Grassl, T., Beth, and T., Pellizzari. 1997. Codes for the quantum erasure channel. Phys.Rev.A, 56, 33.Google Scholar
[GKR02] M., Grassl, A., Klappenecker, and M., Rötteler. 2002. Graphs, quadratic forms, and quantum codes. Proceedings of the IEEE International Symposium on Information Theory, p. 45.Google Scholar
[GRB03] M., Grassl, M., Rötteler, and T., Beth. 2003. Efficient quantum circuits for nonqubit quantum error-correcting codes. Int. J.Found. Comput. Sci., 14, 757.Google Scholar
[GBR04] M., Grassl, T., Beth, and M., Rötteler. 2004. On optimal quantum codes. Int. J. Quant. Inf., 2, 757.Google Scholar
[GSS+09] M., Grassl, P., Shor, G., Smith, J., Smolin, and B., Zeng. 2009. Generalized concatenated quantum codes. Phys. Rev. A, 79, 050306(R).Google Scholar
[G01b] L. F., Gray. 2001. A reader's guide to Gacs's “positive rates” paper. Online at Gray's website at the University of Minnesota. www.math.umn.edu/~gray/.Google Scholar
[GPW99] M., Grifoni, E., Paladino, and U., Weiss. 1999. Dissipation, decoherence and preparation effects in the spin-boson system. Eur. Phys. J. B, 10, 719.Google Scholar
[G96b] L. K., Grover. 1996. A fast quantum mechanical algorithm for database search. Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), p. 212.Google Scholar
[G97b] L. K., Grover. 1997. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 79, 325.Google Scholar
[GSE08] S., Guha, J. H., Shapiro, and B. I., Erkmen. 2008. Capacity of the bosonic wiretap channel and the entropy photon-number inequality. Proceedings of the 2008 International Symposium on Information Theory, p. 91.Google Scholar
[GBC90] T., Gullion, D. B., Baker, and M. S., Conradi. 1990. New, compensated Carr-Purcell sequences. J. Magn. Reson., 89, 479.Google Scholar
[H11] J., Haah. 2011. Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A, 83, 042330.Google Scholar
[H76] U., Haeberlen. 1976. High Resolution NMR in Solids: Selective Averaging. New York: Academic Press.Google Scholar
[HW68] U., Haeberlen and J. S., Waugh. 1968. Coherent averaging effect in magnetic resonance. Phys. Rev., 175, 453.Google Scholar
[HJ02] G. A., Hagedorn and A., Joye. 2002. Elementary exponential error estimates for the adiabatic approximation. J. Math. Anal. Appl., 267, 235.Google Scholar
[HI07] M., Hagiwara and H., Imai. 2007. Quantum quasi-cyclic LDPC codes. Proceedings of the IEEE International Symposium on Information Theory, p. 806.Google Scholar
[H50] E. L., Hahn. 1950. Spin echoes. Phys. Rev., 80, 580.Google Scholar
[HSK+98] B., Ham, M., Shahriar, M., Kim, and P., Hemmer. 1998. Spin coherence excitation and rephasing with optically shelved atoms. Phys. Rev. B, 58, R11825.Google Scholar
[HKC+94] A. R., Hammons Jr., P. V., Kumar, A. R., Calderbank, N. J. A., Sloane, and P., Solé. 1994. The ℤ4-Linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory, 40, 301.Google Scholar
[HP01] J., Harrington and J., Preskill. 2001. Achievable rates for the Gaussian quantum channel. Phys. Rev. A, 64, 062301.Google Scholar
[H02] A., Hatcher. 2002. Algebraic Topology. Cambridge: Cambridge University Press.Google Scholar
[H03] T. F., Havel. 2003. Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups. J. Math. Phys., 44, 534.Google Scholar
[H07] M., Hayashi. 2007. Upper bounds of eavesdropper's performances in finite-length code with the decoy method. Phys. Rev. A, 76, 012329.Google Scholar
[HHW+08] P., Hayden, M., Horodecki, A., Winter, and J., Yard. 2008. A decoupling approach to the quantum capacity. Open Syst. Inf. Dynam., 15, 7.Google Scholar
[HSW08] P., Hayden, P. W., Shor, and A., Winter. 2008. Random quantum codes from Gaussian ensembles and an uncertainty relation. Open Syst. Inf. Dynam., 15, 71.Google Scholar
[HCD+11] D., Hayes, S. M., Clark, S., Debnath, D., Hucul, Q., Quraishi, and C. M., Monroe. 2011. Coherent error suppression in spin-dependent force quantum gates. eprint arXiv:1104.1347.Google Scholar
[HKV+11] D., Hayes, K., Khodjasteh, L., Viola, and M. J., Biercuk. 2011. Reducing sequencing complexity in quantum dynamical error suppression by Walsh modulation. eprint arXiv:1109.6002.Google Scholar
[HSS99] A. S., Hedayat, N. J. A., Sloane, and J., Stufken. 1999. Orthogonal Arrays. Springer Series in Statistics. New York: Springer.Google Scholar
[H90] F. B., Hergert. 1990. On the Delsarte-Goethals codes and their formal duals. Discrete Math., 83, 249.Google Scholar
[H93] A. C., Hewson. 1993. The Kondo Problem. Cambridge: Cambridge University Press.Google Scholar
[H73] R., Hill. 1973. Linear transformations which preserve Hermitian matrices. Linear Algebr. Appl., 6, 257.Google Scholar
[HVD10] T. E., Hodgson, L., Viola, and I., D'Amico. 2010. Towards optimized suppression of dephasing in systems subject to pulse timing constraints. Phys. Rev. A, 81, 062321.Google Scholar
[HDW+04] L. C. L., Hollenberg, A., Dzurak, C., Wellard, A., Hamilton, D., Reilly, G., Milburn, and R., Clark. 2004. Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B, 69, 113301.Google Scholar
[HOW05] M., Horodecki, J., Oppenheim, and A., Winter. 2005. Partial quantum information. Nature, 436, 673.Google Scholar
[HOW07] M., Horodecki, J., Oppenheim, and A., Winter. 2007. Quantum state merging and negative information. Commun. Math. Phys., 269, 107.Google Scholar
[HLW08] M., Horodecki, S., Lloyd, and A., Winter. 2008. Quantum coding theorem from privacy and distinguishability. Open Syst. Inf. Dynam., 15, 47.Google Scholar
[HHH+09] R., Horodecki, P., Horodecki, M., Horodecki, and K., Horodecki. 2009. Quantum entanglement. Rev. Mod. Phys., 81, 865.Google Scholar
[HH.-KW10] M., Houshmand, S., Hosseini-Khayat, and M., Wilde. 2010. Minimal memory requirements for pearl-necklace encoders of quantum convolutional codes. IEEE Trans. Comput., PP, 1.Google Scholar
[HH.-KW11] M., Houshmand, S., Hosseini-Khayat, and M. M., Wilde. 2011. Minimal-memory, non-catastrophic, polynomial-depth quantum convolutional encoders. eprint arXiv:1105.0649.Google Scholar
[HW10] M.-H., Hsieh and M. M., Wilde. 2010. Trading classical communication, quantum communication, and entanglement in quantum Shannon theory. IEEE Trans. Inf. Theory, 56, 4705.Google Scholar
[HDB07] M.-H., Hsieh, I., Devetak, and T. A., Brun. 2007. General entanglement-assisted quantum error-correcting codes. Phys. Rev. A, 76, 062313.Google Scholar
[HBD09] M.-H., Hsieh, T. A., Brun, and I., Devetak. 2009. Quantum quasi-cyclic low-density parity-check codes. Phys. Rev. A, 79, 032340.Google Scholar
[HYH11] M.-H., Hsieh, W.-T., Yen, and L.-Y., Hsu. 2011. High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory, 57, 1761.Google Scholar
[HTZ+08] D., Hu, W., Tang, M., Zhao, Q., Chen, S., Yu, and C., Hiap. 2008. Graphical nonbi-nary quantum error-correcting codes. Phys.Rev.A, 78, 012306.Google Scholar
[HP03] W. C., Huffman and V., Pless. 2003. Fundamentals of Error-Correcting Codes. Cambridge: Cambridge University Press.Google Scholar
[IAB+99] A., Imamoglu, D. D., Awschalom, G., Burkard, D. P., DiVincenzo, D., Loss, M. Sherwin, and A., Small. 1999. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett., 83, 4204.Google Scholar
[I02] A., Iserles. 2002. Expansions that grow on trees. Not. AMS, 49, 430.Google Scholar
[J04] K., Jacobs. 2004. Optimal feedback control for the rapid preparation of a single qubit. Proc. SPIE, 5468, 355.Google Scholar
[JSB+09] E. R., Jenista, A. M., Stokes, R. T., Branca, and W., Warren. 2009. Optimized, unequal pulse spacing in multiple echo sequences improves refocusing in magnetic resonance. J. Chem. Phys., 131, 240510.Google Scholar
[JŘF02] M., Ježek, J., Řeháček, and J., Fiurášek. 2002. Finding optimal strategies for minimum-error quantum-state discrimination. Phys. Rev. A, 65, 060301.Google Scholar
[JI11] L., Jiang and A., Imambekov. 2011. Universal dynamical decoupling of multiqubit states from environment. Phys. Rev. A, 84, 060302.Google Scholar
[JTS+07] L., Jiang, J. M., Taylor, A., Sørensen, and M. D., Lukin. 2007. Distributed quantum computation based on small quantum registers. Phys.Rev.A, 76, 062323.Google Scholar
[JZ99] R., Johannesson and K. S., Zigangirov. 1999. Fundamentals of Convolutional Coding. New York: Wiley-IEEE Press.Google Scholar
[JK99] J. A., Jones and E., Knill. 1999. Efficient refocusing of one-spin and two-spin interactions for NMR quantum computation. J. Magn. Reson., 141, 322.Google Scholar
[JVE+00] J. A., Jones, V., Vedral, A., Ekert, and G., Castagnoli. 2000. Geometric quantum computation using nuclear magnetic resonance. Nature, 403, 869.Google Scholar
[JFS06] S., Jordan, E., Farhi, and P., Shor. 2006. Error-correcting codes for adiabatic quantum computation. Phys. Rev. A, 74, 052322.Google Scholar
[JSS04] T., Jordan, A., Shaji, and E., Sudarshan. 2004. Dynamics of initially entangled open quantum systems. Phys. Rev. A, 70, 052110.Google Scholar
[JP05] P., Jorrand and S., Perdrix. 2005. Unifying quantum computation with projective measurements only and one-way quantum computation. Proceedings SPIE, Quantum Informatics (QI'04), Vol. 5833, p. 44.Google Scholar
[KU98] N., Kahale and R., Urbanke. 1998. On the minimum distance of parallel and serially concatenated codes. Proceedings IEEE International Symposium on Information Theory (ISIT'98), p. 31.Google Scholar
[K05a] A., Kamenev. 2005. Many-body theory of non-equilibrium systems. In H., Bouchiat, Y., Gefen, S., Guron, G., Montambaux, and J., Dalibard (eds.), Nanophysics: Coherence and Transport, Les Houches Summer School Proceedings, Vol. 81, p. 177. Amsterdam: Elsevier.Google Scholar
[KYS08] B. E., Kardynal, Z. L., Yuan, and A. J., Shields. 2008. An avalanche-photodiode-based photon-number-resolving detector. Nature Photonics, 2, 425.Google Scholar
[KBM.-D09] H., Katzgraber, H., Bombin, and M., Martin-Delgado. 2009. Error threshold for color codes and random 3-body ising models. Phys. Rev. Lett., 103, 090501.Google Scholar
[KBA+10] H., Katzgraber, H., Bombin, R., Andrist, and M., Martin-Delgado. 2010. Topological color codes on Union Jack lattices: A stable implementation of the whole Clifford group. Phys.Rev.A, 81, 012319.Google Scholar
[KBL+01] J., Kempe, D., Bacon, D. A., Lidar, and K. B., Whaley. 2001. Theory of decoherence-free, fault-tolerant, universal quantum computation. Phys. Rev. A, 63, 042307.Google Scholar
[KBS+09] J., Kerckhoff, L., Bouten, A., Silberfarb, and H., Mabuchi. 2009. Physical model of continuous two-qubit parity measurement in a cavity-QED network. Phys. Rev. A, 79, 024305.Google Scholar
[K09] O., Kern. 2009. Randomized Dynamical Decoupling Strategies and Improved One-Way Key Rates for Quantum Cryptography. Ph. D. thesis, Technische Universitäat Darmstadt. eprint arXiv:0906.2927.Google Scholar
[KA05] O., Kern and G., Alber. 2005. Controlling quantum systems by embedded dynamical decoupling schemes. Phys. Rev. Lett., 95, 250501.Google Scholar
[KA06] O., Kern and G., Alber. 2006. Selective recoupling and stochastic dynamical decoupling. Phys. Rev. A, 73, 062302.Google Scholar
[KAS05] O., Kern, G., Alber, and D. L., Shepelyansky. 2005. Quantum error correction of coherent errors by randomization. Eur. Phys. J.D, 32, 153.Google Scholar
[KKK+06] A., Ketkar, A., Klappenecker, S., Kumar, and P., Sarvepalli. 2006. Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory, 52, 4892.Google Scholar
[KLG02] A. V., Khaetskii, D., Loss, and L., Glazman. 2002. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett., 88, 186802.Google Scholar
[KL05] K., Khodjasteh and D. A., Lidar. 2005. Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett., 95, 180501.Google Scholar
[KL07] K., Khodjasteh and D. A., Lidar. 2007. Performance of deterministic dynamical decoupling schemes: Concatenated and periodic pulse sequences. Phys. Rev. A, 75, 062310.Google Scholar
[KL08] K., Khodjasteh and D. A., Lidar. 2008. Rigorous bounds on the performance of a hybrid Dynamical decoupling—quantum computing scheme. Phys. Rev. A, 78, 012355.Google Scholar
[KV09a] K., Khodjasteh and L., Viola. 2009. Dynamical quantum error correction of unitary operations with bounded controls. Phys. Rev. A, 80, 032314.Google Scholar
[KV09b] K., Khodjasteh and L., Viola. 2009. Dynamically error-corrected gates for universal quantum computation. Phys. Rev. Lett., 101, 080501.Google Scholar
[KLV10] K., Khodjasteh, D. A., Lidar, and L., Viola. 2010. Arbitrarily accurate dynamical control in open quantum systems. Phys. Rev. Lett., 104, 090501.Google Scholar
[KEV11] K., Khodjasteh, T., Erdélyi, and L., Viola. 2011. Limits on preserving quantum coherence using multipulse control. Phys. Rev. A, 83, 020305.Google Scholar
[KDV11] K., Khodjasteh, V. V., Dobrovitski, and L., Viola. 2011. Pointer states via engineered dissipation. Phys. Rev. A, 84, 022336.Google Scholar
[KMW02] D., Kielpinski, C., Monroe, and D., Wineland. 2002. Architecture for a large-scale ion-trap quantum computer. Nature, 417, 709.Google Scholar
[KK05] G., Kimura and A., Kossakowski. 2005. A note on positive maps and classification of states. Open Syst. Inf. Dyn., 12, 207.Google Scholar
[K97a] A., Kitaev. 1997. Quantum computation: Algorithms and error correction. Russ. Math. Surv., 52, 1191.Google Scholar
[K97b] A., Kitaev. 1997. Quantum error correction with imperfect gates. In O., Hirota, A. S., Holevo, and C. M., Caves (eds.), Proceeding of the Third International Conference on Quantum Communication and Measurement. New York: Plenum, p. 181.Google Scholar
[K03a] A., Kitaev. 2003. Fault-tolerant quantum computation by anyons. Ann. Phys., 303, 2.Google Scholar
[KS07] A., Klappenecker and P. K., Sarvepalli. 2007. On subsystem codes beating the quantum Hamming or Singleton bound. Proc. R. Soc. A, 463, 2887.Google Scholar
[KS08] A., Klappenecker and P., Sarvepalli. 2008. Clifford code construction of operator quantum error-correcting codes. IEEE Trans. Inf. Theory, 54, 5760.Google Scholar
[K89] H., Kleinert. 1989. Gauge Fields in Condensed Matter. Singapore; Teaneck, NJ: World Scientific.Google Scholar
[K07a] R., Klesse. 2007. Approximate quantum error correction, random codes, and quantum channel capacity. Phys. Rev. A, 75, 062315.Google Scholar
[K08] R., Klesse. 2008. A random coding based proof for the quantum coding theorem. Open Syst. Inf. Dyn., 15, 21.Google Scholar
[KF05] R., Klesse and S., Frank. 2005. Quantum error correction in spatially correlated quantum noise. Phys. Rev. Lett., 95, 230503.Google Scholar
[K05b] E., Knill. 2005. Quantum computing with realistically noisy devices. Nature, 434, 39.Google Scholar
[K06a] E., Knill. 2006. Protected realizations of quantum information. Phys. Rev. A, 74, 042301.Google Scholar
[KL97] E., Knill and R., Laflamme. 1997. A theory of quantum error-correcting codes. Phys. Rev. A, 55, 900.Google Scholar
[KCL98] E., Knill, I., Chuang, and R., Laflamme. 1998. Effective pure states for bulk quantum computation. Phys.Rev.A, 57, 3348.Google Scholar
[KLZ98a] E., Knill, R., Laflamme, and W. H., Zurek. 1998. Resilient quantum computation. Science, 279, 342.Google Scholar
[KLZ98b] E., Knill, R., Laflamme, and W., Zurek. 1998. Resilient quantum computation: error models and thresholds. Proc. R. Soc. A, 454, 365.Google Scholar
[KLV00] E., Knill, R., Laflamme, and L., Viola. 2000. Theory of quantum error correction for general noise. Phys. Rev. Lett., 84, 2525.Google Scholar
[KLM01] E., Knill, R., Laflamme, and G. J., Milburn. 2001. A scheme for efficient quantum computation with linear optics. Nature, 409, 46.Google Scholar
[KLM+01] E. H., Knill, R., Laflamme, R., Martinez, and C., Negrevergne. 2001. Benchmarking quantum computers: The five-qubit error correcting code. Phys. Rev. Lett., 86, 5811.Google Scholar
[KLA+02] E., Knill, R., Laflamme, A., Ashikhmin, H., Barnum, L., Viola, and W., Zurek. 2002. Introduction to quantum error correction. LA Science, 27, 188.Google Scholar
[K06b] M., Koashi. 2006. Efficient quantum key distribution with practical sources and detectors. eprint arXiv:quant-ph/0609180.Google Scholar
[K06c] M., Koashi. 2006. Unconditional security of quantum key distribution and the uncertainty principle. J. Phys: Conf. Ser., 36, 98.Google Scholar
[K07b] M., Koashi. 2007. Complementarity, distillable secret key, and distillable entanglement. eprint arXiv:0704.3661.Google Scholar
[KK01] A. G., Kofman and G., Kurizki. 2001. Universal dynamical control of quantum mechanical decay: modulation of the coupling to the continuum. Phys. Rev. Lett., 87, 270405.Google Scholar
[KK04] A. G., Kofman and G., Kurizki. 2004. Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett., 93, 130406.Google Scholar
[KMN+07] P., Kok, W. J., Munro, K., Nemoto, T. C., Ralph, J. P., Dowling, and G. J., Milburn. 2007. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79, 135.Google Scholar
[KL09] R., Kosut and D., Lidar. 2009. Quantum error correction via convex optimization. Quant. Inf. Proc., 8, 443.Google Scholar
[KSL08] R. L., Kosut, A., Shabani, and D. A., Lidar. 2008. Robust quantum error correction via convex optimization. Phys. Rev. Lett., 100, 020502.Google Scholar
[KGR05] B., Kraus, N., Gisin, and R., Renner. 2005. Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett., 95, 080501.Google Scholar
[K83] K., Kraus. 1983. States, Effects and Operations: Fundamental Notions of Quantum Theory. Berlin: Academic.Google Scholar
[KHB08] I., Kremsky, M.-H., Hsieh, and T. A., Brun. 2008. Classical enhancement of quantum error-correcting codes. Phys.Rev.A, 78, 012341.Google Scholar
[K03b] D. W., Kribs. 2003. Quantum channels, wavelets, dilations and representations of On. Proc. Edinburgh Math. Soc., 46, 421.Google Scholar
[KS06] D. W., Kribs and R. W., Spekkens. 2006. Quantum error correcting subsystems are unitarily recoverable subsystems. Phys. Rev. A, 74, 042329.Google Scholar
[KLP05] D., Kribs, R., Laflamme, and D., Poulin. 2005. Unified and generalized approach to quantum error correction. Phys. Rev. Lett., 94, 180501.Google Scholar
[KLP+06] D. W., Kribs, R., Laflamme, D., Poulin, and M., Lesosky. 2006. Operator quantum error correction. Quant. Inf. Comput., 6, 382.Google Scholar
[KOR+07] H., Krovi, O., Oreshkov, M., Ryazanov, and D. A., Lidar. 2007. Non-Markovian dynamics of a qubit coupled to an Ising spin bath. Phys.Rev.A, 76, 052117.Google Scholar
[K54] R., Kubo. 1954. Note on the stochastic theory of resonance absorption. J. Phys. Soc. Jpn., 9, 935.Google Scholar
[KL11] W.-J., Kuo and D. A., Lidar. 2011. Quadratic dynamical decoupling: Universality proof and error analysis. Phys. Rev. A, 84, 042329.Google Scholar
[KQP+12] W.-J., Kuo, G., Quiroz, G. A., Paz-Silva, and D. A., Lidar. 2012. Universality proof and analysis of generalized nested Uhrig dynamical decoupling. J. Math. Phys., 53, 122207.Google Scholar
[KBA+00] P., Kwiat, A., Berglund, J., Altepeter, and A., White. 2000. Experimental verification of decoherence-free subspaces. Science, 290, 498.Google Scholar
[LJL+10] T. D., Ladd, F., Jelezko, R., Laflamme, Y., Nakamura, C., Monroe, and J. L., O'Brien. 2010. Quantum computers. Nature, 464, 45.Google Scholar
[LMP+96] R., Laflamme, C., Miquel, J. P., Paz, and W. H., Zurek. 1996. Perfect quantum error correcting code. Phys. Rev. Lett., 77, 198.Google Scholar
[LKC+02] R., Laflamme, E., Knill, D. G., Cory, E. M., Fortunato, T., Havel, C., Miquel, R., Martinez, C., Negrevergne, G., Ortiz, M. A., Pravia, Y., Sharf, S., Sinha, R., Somma, and L., Viola. 2002. Introduction to NMR quantum information processing. Los Alamos Science, 226.Google Scholar
[LB10] C.-Y., Lai and T. A., Brun. 2010. Entanglement increases the error-correcting ability of quantum error-correcting codes. eprint arXiv:1008.2598.Google Scholar
[LBW10] C.-Y., Lai, T. A., Brun, and M. M., Wilde. 2010. Dualities and identities for entanglement-assisted quantum codes. eprint arXiv:1010.5506.Google Scholar
[LWD08] B., Lee, W. M., Witzel, and S. Das, Sarma. 2008. Universal pulse sequence to minimize spin dephasing in the central spin decoherence problem. Phys. Rev. Lett., 100, 160505.Google Scholar
[L89] A. J., Leggett. 1989. Comment on “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100”. Phys. Rev. Lett., 62, 2325.Google Scholar
[LCD+87] A. J., Leggett, S., Chakravarty, A. T., Dorsey, M. P. A., Fisher, A., Garg, and W., Zwerger. 1987. Dynamics of the dissipative two-state system. Rev. Mod. Phys., 59, 1.Google Scholar
[LDM+03] D., Leibfried, B., DeMarco, V., Meyer, D., Lucas, M., Barrett, J., Britton, W. M., Itano, B., Jelenković, C., Langer, T., Rosenband, and D. J., Wineland. 2003. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature, 422, 412.Google Scholar
[LP08] M., Leifer and D., Poulin. 2008. Quantum graphical models and belief propagation. Ann. Phys., 323, 1899.Google Scholar
[L02] D., Leung. 2002. Simulation and reversal of n-qubit Hamiltonians using Hadamard matrices. J. Mod. Opt., 49, 1199.Google Scholar
[L01a] D. W., Leung. 2001. Two-qubit projective measurements are universal for quantum computation. eprint eprint arXiv:quant-ph/0111122.Google Scholar
[L04] D. W., Leung. 2004. Quantum computation by measurements. Int. J. Quant. Inf., 2, 33.Google Scholar
[LNC+97] D. W., Leung, M. A., Nielsen, I. L., Chuang, and Y., Yamamoto. 1997. Approximate quantum error correction can lead to better codes. Phys.Rev.A, 56, 2567.Google Scholar
[LVZ+99] D., Leung, L., Vandersypen, X., Zhou, M., Sherwood, C., Yannoni, M., Kubinec, and I., Chuang. 1999. Experimental realization of a two-bit phase damping quantum code. Phys. Rev. A, 60, 1924.Google Scholar
[LCY+00] D. W., Leung, I. L., Chuang, Y., Yamaguchi, and Y., Yamamoto. 2000. Efficient implementation of coupled logic gates for quantum computing using Hadamard matrices. Phys. Rev. A, 61, 042310.Google Scholar
[L83] M., Levitt. 1983. Broadband decoupling in high-resolution NMR spectroscopy. Adv. Magn. Reson., 11, 47.Google Scholar
[L01b] M. H., Levitt. 2001. Spin Dynamics: Basics of Nuclear Magnetic Resonance. Chichester: John Wiley & Sons.Google Scholar
[LDP10] Y., Li, I., Dumer, and L. P., Pryadko. 2010. Clustered error correction of codeword-stabilized quantum codes. Phys. Rev. Lett., 104, 190501.Google Scholar
[LDG+10] Y., Li, I., Dumer, M., Grassl, and L. P., Pryadko. 2010. Structured error recovery for codeword-stabilized quantum codes. Phys. Rev. A, 81, 052337.Google Scholar
[L08a] D. A., Lidar. 2008. Towards fault tolerant adiabatic quantum computation. Phys. Rev. Lett., 100, 160506.Google Scholar
[LW02] D. A., Lidar and L.-A., Wu. 2002. Reducing constraints on quantum computer design by encoded selective recoupling. Phys. Rev. Lett., 88, 017905.Google Scholar
[LCW98] D. A., Lidar, I. L., Chuang, and K. B., Whaley. 1998. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett., 81, 2594.Google Scholar
[LBW99] D. A., Lidar, D., Bacon, and K. B., Whaley. 1999. Concatenating decoherence-free subspaces with quantum error correcting codes. Phys. Rev. Lett., 82, 4556.Google Scholar
[LBW01] D., Lidar, Z., Bihary, and K., Whaley. 2001. From completely positive maps to the quantum Markovian semigroup master equation. Chem. Phys., 268, 35.Google Scholar
[LBK+01a] D. A., Lidar, D., Bacon, J., Kempe, and K. B., Whaley. 2001. Decoherence-free subspaces for multiple-qubit errors. I. Characterization. Phys. Rev. A, 63, 022306.Google Scholar
[LBK+01b] D. A., Lidar, D., Bacon, J., Kempe, and K. B., Whaley. 2001. Decoherence-free subspaces for multiple-qubit errors. II. Universal, fault-tolerant quantum computation. Phys. Rev. A, 63, 022307.Google Scholar
[LZK08] D. A., Lidar, P., Zanardi, and K., Khodjasteh. 2008. Distance bounds on quantum dynamics. Phys. Rev. A, 78, 012308.Google Scholar
[LR73] E. H., Lieb and M. B., Ruskai. 1973. A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett., 30, 434.Google Scholar
[L76] G., Lindblad. 1976. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 48, 119.Google Scholar
[LS08] S., Ling and P., Solé. 2008. Nonadditive quantum codes from ℤ4-codes. http://hal.archives-ouvertes.fr/hal-00338309/fr/.Google Scholar
[LYS07] R.-B., Liu, W., Yao, and L. J., Sham. 2007. Control of electron spin decoherence caused by electron-nuclear spin dynamics in a quantum dot. New J. Phys., 9, 226.Google Scholar
[L96] S., Lloyd. 1996. Universal quantum simulators. Science, 273, 1073.Google Scholar
[L97] S., Lloyd. 1997. Capacity of the noisy quantum channel. Phys. Rev. A, 55, 1613.Google Scholar
[LS98] S., Lloyd and J.-J. E., Slotine. 1998. Analog quantum error correction. Phys. Rev. Lett., 80, 4088.Google Scholar
[LC99] H.-K., Lo and H. F., Chau. 1999. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 283, 2050.Google Scholar
[LW06] S., Loepp and W., Wootters. 2006. Protecting Information: From Classical Error Correction to Quantum Cryptography. New York: Cambridge University Press.Google Scholar
[LYG+08] S. Y., Looi, L., Yu, V., Gheorghiu, and R. B., Griffiths. 2008. Quantum-error-correcting codes using qudit graph states. Phys. Rev. A, 78, 042303.Google Scholar
[LGZ+08] C.-Y., Lu, W.-B., Gao, J., Zhang, X.-Q., Zhou, T., Yang, and J.-W., Pan. 2008. Experimental quantum coding against qubit loss error. Proc. Nat. USA Acad. Sci., 105, 11050.Google Scholar
[L08b] Z., Luo. 2008. Quantum error correcting codes based on privacy amplification. eprint arXiv:0808.1392.Google Scholar
[LD07] Z., Luo and I., Devetak. 2007. Efficiently implementable codes for quantum key expansion. Phys.Rev.A, 75, 010303.Google Scholar
[M09] H., Mabuchi. 2009. Continuous quantum error correction as classical hybrid control. New J. Phys., 11, 105044.Google Scholar
[MMM04] D. J. C., MacKay, G., Mitchison, and P. L., McFadden. 2004. Sparse graph codes for quantum error-correction. IEEE Trans. Inf. Theory, 50, 2315.Google Scholar
[MS77] F. J., MacWilliams and N. J., A. Sloane. 1977. The Theory of Error-Correcting Codes. Amsterdam: North-Holland.Google Scholar
[MK06] P. K., Madhu and N. D., Kurur. 2006. Fer expansion for effective propagators and Hamiltonians in NMR. Chem. Phys. Lett., 418, 235.Google Scholar
[MKS04] W., Magnus, A., Karrass, and D., Solitar. 2004. Combinatorial Group Theory. New York: Dover.Google Scholar
[M00] G. D., Mahan. 2000. Many-Particle Physics, 3rd edn. New York: Kluwer Academic/Plenum Publishers.Google Scholar
[MSS01] Y., Makhlin, G., Schön, and A., Shnirman. 2001. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys., 73, 357.Google Scholar
[ML98] N., Margolus and L., Levitin. 1998. The maximum speed of dynamical evolution. Physica D, 120, 188.Google Scholar
[M82] M. M., Maricq. 1982. Application of average Hamiltonian theory to the NMR of solids. Phys. Rev. B, 25, 6622.Google Scholar
[M96] D., Mayers. 1996. Quantum key distribution and string oblivious transfer in noisy channels. Lecture Notes In Computer Science; Vol. 1109, Proceedings of the 16th Annual International Cryptology Conference on Advances in Cryptology. London: Springer-Verlag, p. 343.Google Scholar
[M01] D., Mayers. 2001. Unconditional security in quantum cryptography. J. ACM, 48, 351.Google Scholar
[MG58] S., Meiboom and D., Gill. 1958. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum., 29, 688.Google Scholar
[M07] N., Mermin. 2007. Quantum Computer Science: An Introduction. New York: Cambridge University Press.Google Scholar
[M65] A., Messiah. 1965. Quantum Mechanics, Vol. II. Amsterdam: North-Holland.Google Scholar
[MM08] M., Mézard and A., Montanari. 2008. Information, Physics and Computation. Oxford: Oxford University Press.Google Scholar
[MS97] B., Misra and E., Sudarshan. 1997. The Zeno's paradox in quantum theory. J. Math. Phys., 18, 756.Google Scholar
[MS00] T. K., Moon and W. C., Stirling. 2000. Mathematical Methods and Algorithms for Signal Processing. Upper Saddle River: Prentice Hall.Google Scholar
[MTA+06] J., Morton, A., Tyryshkin, A., Ardavan, S., Benjamin, K., Porfyrakis, S., Lyon, and G., Briggs. 2006. Bang-bang control of fullerene qubits using ultra-fast phase gates. Nature Phys., 2, 40.Google Scholar
[MTB+08] J., Morton, A., Tyryshkin, R., Brown, S., Shankar, B., Lovett, A., Ardavan, T., Schenkel, E., Haller, J., Ager, and S. A., Lyon. 2008. Solid state quantum memory using the 31P nuclear spin. Nature, 455, 1085.Google Scholar
[MSS+10a] M., Mukhtar, W. T., Soh, T. B., Saw, and J., Gong. 2010. Protecting unknown twoqubit entangled states by nesting Uhrig's dynamical decoupling sequences. Phys. Rev. A, 82, 052338.Google Scholar
[MSS+10b] M., Mukhtar, T. B., Saw, W. T., Soh, and J., Gong. 2010. Universal dynamical decoupling: two-qubit states and beyond. Phys. Rev. A, 81, 012331.Google Scholar
[N90] M., Nakahara. 1990. Geometry, Topology and Physics. Bristol: Institute of Physics Publishing.Google Scholar
[N58] S., Nakajima. 1958. On quantum theory of transport phenomena: Steady diffusion. Prog. Theor. Phys., 20, 948.Google Scholar
[NPY+02] Y., Nakamura, Y. A., Pashkin, T., Yamamoto, and J. S., Tsai. 2002. Charge echo in a Cooper-pair box. Phys. Rev. Lett., 88, 047901.Google Scholar
[NNP96] H., Nakazato, M., Namiki, and S., Pascazio. 1996. Temporal behavior of quantum mechanical systems. Int. J. Mod. Phys. B, 10, 247.Google Scholar
[NSS+08] C., Nayak, S. H., Simon, A., Stern, M., Freedman, and S. Das, Sarma. 2008. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys., 80, 1083.Google Scholar
[NDH+11] B., Naydenov, F., Dolde, L. T., Hall, C., Shin, H., Fedder, L. C. L., Hollenberg, F., Jelezko, and J., Wrachtrup. 2011. Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B, 83, 081201(R).Google Scholar
[N04a] R. E., Neapolitan. 2004. Learning Bayesian Networks. Pearson Prentice Hall.Google Scholar
[N55] J., von Neumann. 1955. Probabilistic logics and the synthesis of reliable organisms from unreliable components. In C. E., Shannon and J., McCarthy (eds.), Automata Studies. Princeton, NJ: Princeton University Press, p. 43.Google Scholar
[N66] J., von Neumann. 1966. Theory of Self-Reproducing Automata. Champaign, IL: University of Illinois Press.Google Scholar
[NP09] H.-K., Ng and J., Preskill. 2009. Fault-tolerant quantum computation versus Gaussian noise. Phys. Rev. A, 79, 032318.Google Scholar
[NLP11] H. K., Ng, D. A., Lidar, and J., Preskill. 2011. Combining dynamical decoupling with fault-tolerant quantum computation. Phys. Rev. A, 84, 012305.Google Scholar
[N03] M. A., Nielsen. 2003. Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 state. Phys. Lett. A, 308, 96.Google Scholar
[N04b] M. A., Nielsen. 2004. Optical quantum computation using cluster states. Phys. Rev. Lett., 93.Google Scholar
[NC00] M. A., Nielsen and I. L., Chuang. 2000. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.Google Scholar
[ND05] M. A., Nielsen and C. M., Dawson. 2005. Fault-tolerant quantum computation with cluster states. Phys.Rev.A, 71, 042323.Google Scholar
[NP07] M. A., Nielsen and D., Poulin. 2007. Algebraic and information-theoretic conditions for operator quantum error correction. Phys. Rev. A, 75, 064304.Google Scholar
[NBD+02] M. A., Nielsen, M. J., Bremner, J. L., Dodd, A. M., Childs, and C. M., Dawson. 2002. Universal simulation of Hamiltonian dynamics for quantum systems with finite-dimensional state spaces. Phys. Rev. A, 66, 022317.Google Scholar
[NAC08] J., Niset, U. L., Andersen, and N. J., Cerf. 2008. Experimentally feasible quantum erasure-correcting code for continuous variables. Phys. Rev. Lett., 101, 130503.Google Scholar
[N81] H., Nishimori. 1981. Internal energy, specific heat and correlation function of the bond-random Ising model. Prog. Theor. Phys., 66, 1169.Google Scholar
[N01] H., Nishimori. 2001. Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford: Clarendon Press.Google Scholar
[NÖ03] S., Niskanen and P. R. J., Östergøard. 2003. Cliquer User's Guide, Version 1.0. Communications Laboratory, Helsinki University of Technology, Espoo, Finland. Technical Report T48.Google Scholar
[NB06] E., Novais and H. U., Baranger. 2006. Decoherence by correlated noise and quantum error correction. Phys. Rev. Lett., 97, 040501.Google Scholar
[NC. NB+05] E., Novais, A. H., Castro Neto, L., Borda, I., Affleck, and G., Zarand. 2005. Frustration of decoherence in open quantum systems. Phys. Rev. B, 72, 014417.Google Scholar
[NMB07] E., Novais, E. R., Mucciolo, and H. U., Baranger. 2007. Resilient quantum computation in correlated environments: A quantum phase transition perspective. Phys. Rev. Lett., 98, 040501.Google Scholar
[NMB08] E., Novais, E., Mucciolo, and H. U., Baranger. 2008. Hamiltonian formulation of quantum error correction and correlated noise: Effects of syndrome extraction in the long-time limit. Phys. Rev. A, 78, 012314.Google Scholar
[OPW+05] J. L., O'Brien, G. J., Pryde, A. G., White, and T. C., Ralph. 2005. High-fidelity Z-measurement error encoding of optical qubits. Phys. Rev. A, 71, 060303(R).Google Scholar
[OAI+04] T., Ohno, G., Arakawa, I., Ichinose, and T., Matsui. 2004. Phase structure of the random-plaquette Z2 gauge model: accuracy threshold for a toric quantum memory. Nucl. Phys. B, 697, 462.Google Scholar
[OT05] H., Ollivier and J.-P., Tillich. 2005. Interleaved serial concatenation of quantum convolutional codes: Gate implementation and iterative error estimation algorithm. Proceedings of the 26th Symposium on Information Theory in the Benelux, p. 149.Google Scholar
[OZ02] H., Ollivier and W., Zurek. 2002. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett., 88, 017901.Google Scholar
[OT03] H., Ollivier and J.-P., Tillich. 2003. Description of a quantum convolutional code. Phys. Rev. Lett., 91, 177902.Google Scholar
[OT04] H., Ollivier and J.-P., Tillich. 2004. Quantum convolutional codes: Fundamentals. eprint arXiv:quant-ph/0401134.Google Scholar
[OT06] H., Ollivier and J.-P., Tillich. 2006. Trellises for stabilizer codes: Definition and uses. Phys.Rev.A, 74, 032304.Google Scholar
[O08] O., Oreshkov. 2008. Topics in Quantum Information and the Theory of Open Quantum Systems. Ph.D. thesis, University of Southern California. eprint arXiv:0812:4682.Google Scholar
[O09] O., Oreshkov. 2009. Holonomic quantum computation in subsystems. Phys. Rev. Lett., 103, 090502.Google Scholar
[OB05] O., Oreshkov and T. A., Brun. 2005. Weak measurements are universal. Phys. Rev. Lett., 95, 110409.Google Scholar
[OB07] O., Oreshkov and T. A., Brun. 2007. Continuous quantum error correction for non-Markovian decoherence. Phys.Rev.A, 76, 022318.Google Scholar
[OBL08] O., Oreshkov, T. A., Brun, and D. A., Lidar. 2008. Fault-tolerant holonomic quantum computation. Phys. Rev. Lett., 102, 070502.Google Scholar
[OLB08] O., Oreshkov, D. A., Lidar, and T. A., Brun. 2008. Operator quantum error correction for continuous dynamics. Phys.Rev.A, 78, 022333.Google Scholar
[OBL09] O., Oreshkov, T. A., Brun, and D. A., Lidar. 2009. Scheme for fault-tolerant holonomic computation on stabilizer codes. Phys. Rev. A, 80, 022325.Google Scholar
[OCC02] M., Oskin, F. T., Chong, and I. L., Chuang. 2002. A practical architecture for reliable quantum computers. IEEE Computing, 18, 79.Google Scholar
[PZ01] J. Pachos and P., Zanardi. 2001. Quantum holonomies for quantum computing. Int. J. Mod. Phys. B, 15, 1257.Google Scholar
[PSE96] M., Palma, K.-A., Suominen, and A. K., Ekert. 1996. Quantum computers and dissipation. Proc. R. Soc. London A, 452, 567.Google Scholar
[PSS+06] D., Parodi, M., Sassetti, P., Solinas, P., Zanardi, and N., Zanghí. 2006. Fidelity optimization for holonomic quantum gates in dissipative environments. Phys. Rev. A, 73, 052304.Google Scholar
[PU08] S., Pasini and G. S., Uhrig. 2008. Generalization of short coherent control pulses: Extension to arbitrary rotations. J. Phys. A, 41, 312005.Google Scholar
[PU10a] S., Pasini and G. S., Uhrig. 2010. Optimized dynamical decoupling for power-law noise spectra. Phys. Rev. A, 81, 012309.Google Scholar
[PU10b] S., Pasini and G. S., Uhrig. 2010. Optimized dynamical decoupling for time-dependent Hamiltonians. J. Phys. A, 43, 132001.Google Scholar
[PFK+08] S., Pasini, T., Fischer, P., Karbach, and G. S., Uhrig. 2008. Optimization of short coherent control pulses. Phys. Rev. A, 77, 032315.Google Scholar
[PZ98] J. P., Paz and W. H., Zurek. 1998. Continuous error correction. Proc. R. Soc. London A, 454, 355.Google Scholar
[PSL11] X., Peng, D., Suter, and D. A., Lidar. 2011. High fidelity quantum memory via dynamical decoupling: Theory and experiment. J. Phys. B, 44, 154003.Google Scholar
[P89] A., Peres. 1989. Quantum measurements with postselection. Phys. Rev. Lett., 62, 2326.Google Scholar
[P98a] A., Peres. 1998. Quantum Theory: Concepts and Methods. Dordrecht: Kluwer.Google Scholar
[PJT+05] J., Petta, A., Johnson, J., Taylor, E., Laird, A., Yacoby, M. D., Lukin, C., Marcus, M., Hanson, and A. C., Gossard. 2005. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 309, 2180.Google Scholar
[PMV+04] S., Pirandola, S., Mancini, D., Vitali, and P., Tombesi. 2004. Constructing finite-dimensional codes with optical continuous variables. Europhys. Lett., 68, 323.Google Scholar
[PJF05] T. B., Pittman, B. C., Jacobs, and J. D., Franson. 2005. Demonstration of quantum error correction using linear optics. Phys. Rev. A, 71, 052332.Google Scholar
[P98b] J. G., Polchinski. 1998. String Theory. Vol. 1. Cambridge: Cambridge University Press.Google Scholar
[P01] M. S., Postol. 2001. A proposed quantum low density parity check code. eprint quant-ph/0108131.Google Scholar
[P05] D., Poulin. 2005. Stabilizer formalism for operator quantum error correction. Phys. Rev. Lett., 95, 230504.Google Scholar
[P06] D., Poulin. 2006. Optimal and efficient decoding of concatenated quantum block codes. Phys. Rev. A, 74, 052333.Google Scholar
[PTO09] D., Poulin, J.-P., Tillich, and H., Ollivier. 2009. Quantum serial turbo-codes. IEEE Trans. Inf. Theory, 55, 2776.Google Scholar
[P68] F. P., Preparata. 1968. A class of optimum nonlinear double-error-correcting codes. Inf. Control, 13, 378.Google Scholar
[P96] J., Preskill. 1996. Fault-tolerant quantum computation. In H.-K., Lo, S., Popescu, and T. P., Spiller (eds.), Introduction to Quantum Computation and Information: Singapore: World Scientific.Google Scholar
[P04] J., Preskill. 2004. Lecture notes on topological quantum computation. www.theory.caltech.edu/preskill/ph219/topological.pdf.Google Scholar
[QRZ02] B., Qiao, H., Ruda, and M., Zhan. 2002. Two-qubit quantum computing in a projected subspace. Phys. Rev. A, 65, 042325.Google Scholar
[QWJ+97] T., Quang, M., Woldeyohannes, S., John, and G. S., Agarwal. 1997. Coherent control of spontaneous emission near a photonic band edge: A single-atom optical memory device. Phys. Rev. Lett., 79, 5238.Google Scholar
[QL11] G., Quiroz and D. A., Lidar. 2011. Quadratic dynamical decoupling with nonuniform error suppression. Phys.Rev.A, 84, 042328.Google Scholar
[R99] E., Rains. 1999. Nonbinary quantum codes. IEEE Trans. Inf. Theory, 45, 1827.Google Scholar
[R01] E. M., Rains. 2001. A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory, 47, 2921.Google Scholar
[RHS+97] E. M., Rains, R. H., Hardin, P. W., Shor, and N. J. A., Sloane. 1997. Nonadditive quantum code. Phys. Rev. Lett., 79, 953.Google Scholar
[R50] N. F., Ramsey. 1950. A molecular beam resonance method with separated oscillating fields. Phys. Rev., 78, 695.Google Scholar
[RB01] R., Raussendorf and H. J., Briegel. 2001. A one-way quantum computer. Phys. Rev. Lett., 86, 5188.Google Scholar
[RH07] R., Raussendorf and J., Harrington. 2007. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett., 98, 190504.Google Scholar
[RBB02] R., Raussendorf, D. E., Browne, and H. J., Briegel. 2002. The one-way quantum computer: A non-network model of quantum computation. J. Mod. Opt., 49, 1299.Google Scholar
[RBB03] R., Raussendorf, D. E., Browne, and H. J., Briegel. 2003. Measurement-based quantum computation with cluster states. Phys. Rev. A, 68, 022312.Google Scholar
[RHG06] R., Raussendorf, J., Harrington, and K., Goyal. 2006. A fault-tolerant one-way quantum computer. Ann. Phys., 321, 2242.Google Scholar
[RHG07] R., Raussendorf, J., Harrington, and K., Goyal. 2007. Topological fault-tolerance in cluster state quantum computation. New J. Phys., 9, 199.Google Scholar
[R06] B. W., Reichardt. 2006. Error-Detection-Based Quantum Fault Tolerance Against Discrete Pauli Noise. Ph.D. thesis, University of California, Berkeley. eprint arXiv:quant-ph/0612004.Google Scholar
[RW05] M., Reimpell and R. F., Werner. 2005. Iterative optimization of error correcting codes. Phys. Rev. Lett., 94, 080501.Google Scholar
[RWA06] M., Reimpell, R. F., Werner, and K., Audenaert. 2006. Comment on “Optimum quantum error recovery using semidefinite programming”. eprint arXiv/quantph/0606059.Google Scholar
[R05] R., Renner. 2005. Security of Quantum Key Distribution. Ph.D. thesis, ETH Zurich. eprint arXiv:quant-ph/0512258.Google Scholar
[RK05] R., Renner and R., Konig. 2005. Universally composable privacy amplification against quantum adversaries. In Theory of Cryptography: Second Theory of Cryptography Conference. Lecture Notes in Computer Science, Vol. 3378. Berlin: Springer Verlag, p. 407.Google Scholar
[RGK05] R., Renner, N., Gisin, and B., Kraus. 2005. Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A, 72, 012332.Google Scholar
[R.-RMK+08] C., Rodríguez-Rosario, K., Modi, A.-M., Kuah, E., Sudarshan, and A., Shaji. 2008. Completely positive maps and classical correlations. J. Phys. A, 41, 205301.Google Scholar
[RW06] M., Roetteler and P., Wocjan. 2006. Equivalence of decoupling schemes and orthogonal arrays. IEEE Trans. Inf. Theory, 52, 4171.Google Scholar
[RHR+07] D., Rosenberg, J. W., Harrington, P. R., Rice, P. A., Hiskett, C. G., Peterson, R. J., Hughes, A. E., Lita, S. W., Nam, and J. E., Nordholt. 2007. Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett., 98, 010503.Google Scholar
[RPH+09] D., Rosenberg, C. G., Peterson, J. W., Harrington, P. R., Rice, N., Dallmann, K. T., Tyagi, K. P., McCabe, S., Nam, B., Baek, R. H., Hadfield, R. J., Hughes, and J. E., Nordholt. 2009. Practical long-distance quantum key distribution system using decoy levels. New J. Phys., 11, 045009.Google Scholar
[R08] M., Rötteler. 2008. Dynamical decoupling schemes derived from Hamilton cycles. J. Math. Phys., 49, 042106.Google Scholar
[RB.-KD+02] M., Rowe, A., Ben-Kish, B., DeMarco, D., Leibfried, V., Meyer, J., Beall, J., Britton, J., Hughes, W., Itano, B., Jelenkovic, C., Langer, T., Rosenband, and D., Wineland. 2002. Transport of quantum states and separation of ions in a dual RF ion trap. Quant. Inf. Comput., 2, 257.Google Scholar
[RHC10] C. A., Ryan, J. S., Hodges, and D. G., Cory. 2010. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett., 105, 200402.Google Scholar
[S99a] S., Sachdev. 1999. Quantum Phase Transitions. Cambridge: Cambridge University Press.Google Scholar
[SAD10] Y., Sagi, I., Almog, and N., Davidson. 2010. Observation of collisional narrowing in an ensemble of cold atoms. Quantum Electronics and Laser Science Conference. Optical Society of America, p. QFE1.Google Scholar
[SV05] L., Santos and L., Viola. 2005. Dynamical control of qubit coherence: Random versus deterministic schemes. Phys. Rev. A, 72, 062303.Google Scholar
[SV06] L., Santos and L., Viola. 2006. Enhanced convergence and robust performance of randomized dynamical decoupling. Phys. Rev. Lett., 97, 150501.Google Scholar
[SV08] L., Santos and L., Viola. 2008. Advantages of randomization in coherent quantum dynamical control. New J. Phys., 10, 083009.Google Scholar
[SM05] M., Sarovar and G. J., Milburn. 2005. Continuous quantum error correction by cooling. Phys.Rev.A., 72, 012306.Google Scholar
[SAJ+04] M., Sarovar, C., Ahn, K., Jacobs, and G. J., Milburn. 2004. A practical scheme for error control using feedback. Phys.Rev.A., 69, 052324.Google Scholar
[SR08] V., Scarani and R., Renner. 2008. Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett., 100, 200501.Google Scholar
[SAR+04] V., Scarani, A., Acín, G., Ribordy, and N., Gisin. 2004. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett., 92, 057901.Google Scholar
[SB.-PC+09] V., Scarani, H., Bechmann-Pasquinucci, N. J., Cerf, M., Dusek, N., Lutkenhaus, and M., Peev. 2009. The security of practical quantum key distribution. Rev. Mod. Phys., 81, 1301.Google Scholar
[S02a] D., Schlingemann. 2002. Stabilizer codes can be realized as graph codes. Quantum Inf. Comput., 2, 307.Google Scholar
[SW02a] D., Schlingemann and R. F., Werner. 2002. Quantum error-correcting codes associated with graphs. Phys. Rev. A, 65, 012308.Google Scholar
[SV99] L. J., Schulman and U. V., Vazirani. 1999. Molecular scale heat engines and scalable quantum computation. STOC '99: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing. New York: ACM, p. 322.Google Scholar
[S96a] B., Schumacher. 1996. Sending entanglement through noisy quantum channels. Phys. Rev. A, 54, 2615.Google Scholar
[SN96] B., Schumacher and M. A., Nielsen. 1996. Quantum data processing and error correction. Phys. Rev. A, 54, 2629.Google Scholar
[SW98] B., Schumacher and M. D., Westmoreland. 1998. Quantum privacy and quantum coherence. Phys. Rev. Lett., 80, 5695.Google Scholar
[SW02b] B., Schumacher and M. D., Westmoreland. 2002. Approximate quantum error correction. Quant. Inf. Proc., 1, 5.Google Scholar
[SJ01] A., Schweiger and G., Jeschke. 2001. Principles of Pulse Electron Paramagnetic Resonance. Oxford: Oxford University Press.Google Scholar
[S00] A. M., Sengupta. 2000. Spin in a fluctuating field: The Bose(+Fermi) Kondo models. Phys. Rev. B, 61, 4041.Google Scholar
[SL05] A., Shabani and D. A., Lidar. 2005. Completely positive post-Markovian master equation via a measurement approach. Phys. Rev. A, 71, 020101(R).Google Scholar
[SL09a] A., Shabani and D. A., Lidar. 2009. Maps for general open quantum systems and a theory of linear quantum error correction. Phys. Rev. A, 80, 012309.Google Scholar
[SL09b] A., Shabani and D. A., Lidar. 2009. Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett., 102, 100402.Google Scholar
[SK87] A., Shaka and J., Keeler. 1987. Broadband spin decoupling in isotropic liquids. Progr. NMR Spectrosc., 19, 47.Google Scholar
[S94a] R., Shankar. 1994. Renormalization-group approach to interacting fermions. Rev. Mod. Phys., 66, 129.Google Scholar
[S40] C. E., Shannon. 1940. A Symbolic Analysis of Relay and Switching Circuits. M.Phil. thesis, Massachusetts Institute of Technology.Google Scholar
[S48] C. E., Shannon. 1948. A mathematical theory of communication. Bell Syst. Tech. J., 27, 379.Google Scholar
[SW89] A., Shapere and F., Wilczek (eds). 1989. Geometric Phases in Physics. Singapore: World Scientific.
[SB02] M., Shapiro and P., Brumer. 2002. S-matrix approach to the construction of decoherence-free subspaces. Phys. Rev. A, 66, 052308.Google Scholar
[SCS+00] Y., Sharif, D. G., Cory, S. S., Somaroo, T. F., Havel, E., Knill, R., Laflamme, and W., Zurek. 2000. A study of quantum error correction by geometric algebra and liquid-state NMR spectroscopy. Mol. Phys., 98, 1347.Google Scholar
[SA80] F., Shibata and T., Arimitsu. 1980. Expansion formulas in nonequilibrium statistical mechanics. J. Phys. Soc. Jpn., 49, 891.Google Scholar
[STH77] F., Shibata, Y., Takahashi, and N., Hashitsume. 1977. A generalized stochastic Liouville equation: Non-Markovian versus memoryless master equations. J. Stat. Phys., 17, 171.Google Scholar
[SL04] K., Shiokawa and D. A., Lidar. 2004. Dynamical decoupling using slow pulses: Efficient suppression of 1/f noise. Phys. Rev. A, 69, 030302.Google Scholar
[S94b] P. W., Shor. 1994. Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science. Los Alamitos, CA: IEEE Computer Society Press, p. 124.Google Scholar
[S95] P. W., Shor. 1995. Scheme for reducing decoherence in quantum memory. Phys. Rev. A, 52, R2493.Google Scholar
[S96b] P., Shor. 1996. Fault-tolerant quantum computation. Proceedings of the 37th Annual Symposium on Foundations of Computer Science. Los Alamitos, CA: IEEE Computer Society Press, p. 56.Google Scholar
[S97] P. W., Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Comput., 26, 1484.Google Scholar
[SP00] P. W., Shor and J., Preskill. 2000. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett., 85, 441.Google Scholar
[S02b] P., Shor. 2002. The quantum channel capacity and coherent information. Lecture Notes, MSRI Workshop on Quantum Computation, www.msri.org/publications/ln/msri/2002/quantumcrypto/shor/1/.Google Scholar
[S03a] P. W., Shor. 2003. Capacities of quantum channels and how to find them. Math. Program., Ser. B, 97, 311.Google Scholar
[SRZ05] M., Silva, M., Rotteler, and C., Zalka. 2005. Thresholds for linear optics quantum computing with photon loss at the detectors. Phys. Rev. A, 72, 032307.Google Scholar
[SMK+08] M., Silva, E., Magesan, D. W., Kribs, and J., Emerson. 2008. Scalable protocol for identification of correctable codes. Phys.Rev.A, 78, 012347.Google Scholar
[S90] C. P., Slichter. 1990. Principles of Magnetic Resonance. 3rd edn. Berlin: Springer.Google Scholar
[SZZ+03a] P., Solinas, P., Zanardi, N., Zanghì, and F., Rossi. 2003. Holonomic quantum gates: A semiconductor-based implementation. Phys.Rev.A, 67, 062315.Google Scholar
[SZZ+03b] P., Solinas, P., Zanardi, N., Zanghi, and F., Rossi. 2003. Semiconductor-based geometrical quantum gates. Phys. Rev. B, 67, 121307.Google Scholar
[SZZ04] P., Solinas, P., Zanardi, and N., Zangh. 2004. Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys. Rev. A, 70, 042316.Google Scholar
[SBD09] T., Stace, S., Barrett, and A., Doherty. 2009. Thresholds for topological codes in the presence of loss. Phys. Rev. Lett., 102, 200501.Google Scholar
[S96c] A. M., Steane. 1996. Multiple-particle interference and quantum error correction. Proc. R. Soc. London A, 452, 2551.Google Scholar
[S96d] A. M., Steane. 1996. Simple quantum error correcting codes. Phys. Rev. A, 54, 4741.Google Scholar
[S96e] A. M., Steane. 1996. Error correcting codes in quantum theory. Phys. Rev. Lett., 77, 793.Google Scholar
[S99b] A. M., Steane. 1999. Enlargement of Calderbank—Shor—Steane quantum codes. IEEE Trans. Inf. Theory, 45, 2492.Google Scholar
[S99c] A. M., Steane. 1999. Quantum Reed—Muller codes. IEEE Trans. Inf. Theory, 45, 1701.Google Scholar
[S03b] A. M., Steane. 2003. Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A, 68, 042322.Google Scholar
[S55] W. F., Stinespring. 1955. Positive functions on C*-algebras. Proc. Amer. Math. Soc., 6, 211.Google Scholar
[S03c] D., Stinson. 2003. Combinatorial Designs. Berlin: Springer.Google Scholar
[SJ09] R., Stock and D. F. V., James. 2009. Scalable, high-speed measurement-based quantum computer using trapped ions. Phys. Rev. Lett., 102, 170501.Google Scholar
[SM01] M., Stollsteimer and G., Mahler. 2001. Suppression of arbitrary internal coupling in a quantum register. Phys. Rev. A, 64, 052301.Google Scholar
[STD05] K. M., Svore, B. M., Terhal, and D. P., DiVincenzo. 2005. Local fault-tolerant quantum computation. Phys. Rev. A, 72, 022317.Google Scholar
[TKL10] S., Taghavi, R., Kosut, and D., Lidar. 2010. Channel-optimized quantum error correction. IEEE Trans. Inf. Theory, 56, 1461.Google Scholar
[TN04] K., Takeda and H., Nishimori. 2004. Self-dual random-plaquette gauge model and the quantum toric code. Nucl. Phys. B, 686, 377.Google Scholar
[TKI03] K., Tamaki, M., Koashi, and N., Imoto. 2003. Unconditionally secure key distribution based on two nonorthogonal states. Phys. Rev. Lett., 90, 167904.Google Scholar
[TL06] J. M., Taylor and M. D., Lukin. 2006. Dephasing of quantum bits by a quasi-static mesoscopic environment. Quant. Inf. Proc., 5, 503.Google Scholar
[TED+05] J. M., Taylor, H. A., Engel, W., Dür, A., Yacoby, C. M., Marcus, P., Zoller, and M. D., Lukin. 2005. Fault-tolerant architecture for quantum computation using elecrically controlled semicondcutor spins. Nature Phys., 1, 177.Google Scholar
[TDZ+05] J. M., Taylor, W., Dür, P., Zoller, A., Yacoby, C. M., Marcus, and M. D., Lukin. 2005. Solid-state circuit for spin entanglement generation and purification. Phys. Rev. Lett., 94, 236803.Google Scholar
[TB05] B. M., Terhal and G., Burkard. 2005. Fault-tolerant quantum computation for local non-Markovian noise. Phys. Rev. A, 71, 012336.Google Scholar
[TV06] F., Ticozzi and L., Viola. 2006. Single-bit feedback and quantum-dynamical decoupling. Phys. Rev. A, 74, 052328.Google Scholar
[TM02] B. C., Travaglione and G. J., Milburn. 2002. Preparing encoded states in an oscillator. Phys. Rev. A, 66, 052322.Google Scholar
[TWZ+11] A. M., Tyryshkin, Z.-H., Wang, W., Zhang, E. E., Haller, J. W., Ager, V. V., Dobrovitski, and S. A., Lyon. 2011. Dynamical decoupling in the presence of realistic pulse errors. eprint arXiv:1011.1903.Google Scholar
[T03] J., Tyson. 2003. Operator-Schmidt decompositions and the Fourier transform, with applications to the operator-Schmidt numbers of unitaries. J. Phys. A, 36, 10101.Google Scholar
[UA02] C., Uchiyama and M., Aihara. 2002. Multipulse control of decoherence. Phys. Rev. A, 66, 032313.Google Scholar
[U07] G., Uhrig. 2007. Keeping a quantum bit alive by optimized π-pulse sequences. Phys. Rev. Lett., 98, 100504. Erratum: 2011. Phys. Rev. Lett., 106, 129901.Google Scholar
[U08] G. S., Uhrig. 2008. Exact results on dynamical decoupling by π-pulses in quantum information processes. New J. Phys., 10, 083024.Google Scholar
[U09] G. S., Uhrig. 2009. Concatenated control sequences based on optimized dynamic decoupling. Phys. Rev. Lett., 102, 120502.Google Scholar
[UL10] G. S., Uhrig and D. A., Lidar. 2010. Rigorous bounds for optimal dynamical decoupling. Phys.Rev.A, 82, 012301.Google Scholar
[UP10] G. S., Uhrig and S., Pasini. 2010. Efficient coherent control by sequences of pulses of finite duration. New J. Phys., 12, 045001.Google Scholar
[U95] W. G., Unruh. 1995. Maintaining coherence in quantum computers. Phys. Rev. A, 51, 992.Google Scholar
[UBB09] H., Uys, M. J., Biercuk, and J. J., Bollinger. 2009. Optimized noise filtration through dynamical decoupling. Phys. Rev. Lett., 103, 040501.Google Scholar
[VGW96] L., Vaidman, L., Goldenberg, and S., Wiesner. 1996. Error prevention scheme with four particles. Phys.Rev.A, 54, R1745.Google Scholar
[VB96] L., Vandenberghe and S., Boyd. 1996. Semidefinite programming. SIAM Rev., 38, 49.Google Scholar
[VC04] L. M., Vandersypen and I. L., Chuang. 2004. NMR techniques for quantum control and computation. Rev. Mod. Phys., 76, 1037.Google Scholar
[V02] L., Viola. 2002. Quantum control via encoded dynamical decoupling. Phys. Rev. A, 66, 012307.Google Scholar
[V04] L., Viola. 2004. Advances in decoherence control. J. Mod. Opt., 51, 2357.Google Scholar
[V06] L., Viola. 2006. Randomized control of open quantum systems. Proceedings 44th IEEE Conference on Decision and Control, p. 1794.Google Scholar
[VK03] L., Viola and E., Knill. 2003. Robust dynamical decoupling with bounded controls. Phys. Rev. Lett., 90, 037901.Google Scholar
[VK05] L., Viola and E., Knill. 2005. Random decoupling schemes for quantum dynamical control and error suppression. Phys. Rev. Lett., 94, 060502.Google Scholar
[VS98] L., Viola and S., Lloyd. 1998. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A, 58, 2733.Google Scholar
[VS06] L., Viola and L. F., Santos. 2006. Randomized dynamical decoupling techniques for coherent quantum control. J. Mod. Opt., 53, 2559.Google Scholar
[VKL99] L., Viola, E., Knill, and S., Lloyd. 1999. Dynamical decoupling of open quantum systems. Phys. Rev. Lett., 82, 2417.Google Scholar
[VLK99] L., Viola, S., Lloyd, and E., Knill. 1999. Universal control of decoupled quantum systems. Phys. Rev. Lett., 83, 4888.Google Scholar
[VKL00] L., Viola, E., Knill, and S., Lloyd. 2000. Dynamical generation of noiseless quantum subsystems. Phys. Rev. Lett., 85, 3520.Google Scholar
[VFP+01] L., Viola, E., Fortunato, M., Pravia, E., Knill, R., Laflamme, and D. G., Cory. 2001. Experimental realization of noiseless subsystems for quantum information processing. Science, 293, 5537.Google Scholar
[VT99] D., Vitali and P., Tombesi. 1999. Using parity kicks for decoherence control. Phys. Rev. A, 59, 4178.Google Scholar
[V67] A. J., Viterbi. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory, 13, 260.Google Scholar
[VMB05] S., Vorojtsov, E. R., Mucciolo, and H. U., Baranger. 2005. Phonon decoherence of a double quantum dot charge qubit. Phys.Rev.B, 71, 205322.Google Scholar
[WAS+03] Z. D., Walton, A. F., Abouraddy, A. V., Sergienko, B. E. A., Saleh, and M. C., Teich. 2003. Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett., 91, 087901.Google Scholar
[WHP03] C., Wang, J., Harrington, and J., Preskill. 2003. Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory. Ann. Phys., 303, 31.Google Scholar
[WRF+11] Y., Wang, X., Rong, P., Feng, W., Xu, B., Chong, J.-H., Su, J., Gong, and J., Du. 2011. Preservation of bipartite pseudoentanglement in solids using dynamical decoupling. Phys. Rev. Lett., 106, 040501.Google Scholar
[WZT+12] Z.-H., Wang, W., Zhang, A. M., Tyryshkin, S. A., Lyon, J. W., Ager, E. E., Haller, and V. V., Dobrovitski. 2012. Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon. Phys. Rev. B, 85, 085206.Google Scholar
[WL11a] Z.-Y., Wang and R.-B., Liu. 2011. Extending quantum control of time-independent systems to time-dependent systems. Phys. Rev. A, 83, 062313.Google Scholar
[WL11b] Z.-Y., Wang and R.-B., Liu. 2011. Protection of quantum systems by nested dynamical decoupling. Phys.Rev.A, 83, 022306.Google Scholar
[W97] W. S., Warren. 1997. The usefulness of NMR quantum computing. Science, 277, 1688.Google Scholar
[WB07] W., Wasilewski and K., Banaszek. 2007. Protecting an optical qubit against photon loss. Phys. Rev. A, 75, 042316.Google Scholar
[W04] J., Watrous. 2004. www.cs.uwaterloo.ca/watrous/lecture-notes/701/all.pdf.
[WHH68] J. S., Waugh, L. M., Huber, and U., Haeberlen. 1968. Approach to high-resolution NMR in solids. Phys. Rev. Lett., 20, 180.Google Scholar
[WC79] M. N., Wegman and J. L., Carter. 1979. Universal classes of hash functions. J. Comput. Syst. Sci., 18, 143.Google Scholar
[WC81] M. N., Wegman and J. L., Carter. 1981. New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci., 22, 265.Google Scholar
[W67] S., Weinberg. 1967. A model of leptons. Phys. Rev. Lett., 19, 1264.Google Scholar
[W99] S., Weiss. 1999. Quantum Dissipative Systems. 2nd edn. Singapore: World Scientific.Google Scholar
[W88] M. B., Weissman. 1988. 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys., 60, 537.Google Scholar
[W89] R., Werner. 1989. Quantum states with Einstein—Podolsky—Rosen correlations admitting a hidden-variable model. Phys.Rev.A, 40, 4277.Google Scholar
[WLF+10] J. R., West, D. A., Lidar, B. H., Fong, M. F., Gyure, X., Peng, and D., Suter. 2010. Quantum gates via concatenated dynamical decoupling: Theory and experiment. eprint arXiv:0911.2398.Google Scholar
[WFL10] J. R., West, B. H., Fong, and D. A., Lidar. 2010. Near-optimal dynamical decoupling of a qubit. Phys. Rev. Lett., 104, 130501.Google Scholar
[W83] S., Wiesner. 1983. Conjugate coding. SIGACT News, 15, 78.Google Scholar
[WZ84] F., Wilczek and A., Zee. 1984. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett., 52, 2111.Google Scholar
[W09a] M. M., Wilde. 2009. Logical operators of quantum codes. Phys. Rev. A, 79, 062322.Google Scholar
[W09b] M. M., Wilde. 2009. Quantum-shift-register circuits. Phys. Rev. A, 79, 062325.Google Scholar
[WB08a] M. M., Wilde and T. A., Brun. 2008. Optimal entanglement formulae for entanglement-assisted quantum coding. Phys. Rev. A, 77, 064302.Google Scholar
[WB08b] M. M., Wilde and T. A., Brun. 2008. Protecting quantum information with entanglement and noisy optical modes. Quant. Inf. Proc., 8, 401.Google Scholar
[WB08c] M. M., Wilde and T. A., Brun. 2008. Unified quantum convolutional coding. Proceedings of the IEEE International Symposium on Information Theory, p. 359.Google Scholar
[WB09] M. M., Wilde and T. A., Brun. 2009. Extra shared entanglement reduces memory demand in quantum convolutional coding. Phys. Rev. A, 79, 032313.Google Scholar
[WB10a] M. M., Wilde and T. A., Brun. 2010. Entanglement-assisted quantum convolutional coding. Phys.Rev.A, 81, 042333.Google Scholar
[WB10b] M. M., Wilde and T. A., Brun. 2010. Quantum convolutional coding with shared entanglement: General structure. Quant. Inf. Proc., 9, 509.Google Scholar
[WH10] M. M., Wilde and M.-H., Hsieh. 2010. Entanglement boosts quantum turbo codes. eprint arXiv:1010.1256.Google Scholar
[WKB07] M. M., Wilde, H., Krovi, and T. A., Brun. 2007. Entanglement-assisted quantum error correction with linear optics. Phys.Rev.A, 76, 052308.Google Scholar
[WHH.-K11] M. M., Wilde, M., Houshmand, and S., Hosseini-Khayat. 2011. Examples of minimal-memory, non-catastrophic quantum convolutional encoders. Proceedings of the 2011 International Symposium on Information Theory, p. 376.Google Scholar
[WR06] H. M., Wiseman and J. F., Ralph. 2006. Reconsidering rapid qubit purification by feedback. New J. Phys., 8, 90.Google Scholar
[WD07] W. M., Witzel and S. Das, Sarma. 2007. Concatenated dynamical decoupling in a solid-state spin bath. Phys. Rev. B, 76, 241303(R).Google Scholar
[W06] P., Wocjan. 2006. Efficient decoupling schemes with bounded controls based on Eulerian arrays. Phys.Rev.A, 73, 062317.Google Scholar
[WJB02] P., Wocjan, D., Janzing, and T., Beth. 2002. Simulating arbitrary pair-interactions by a given Hamiltonian: Graph-theoretical bounds on the time complexity. Quant. Inf. Comput., 2, 117.Google Scholar
[WRJ+02a] P., Wocjan, M., Rötteler, D., Janzing, and T., Beth. 2002. Simulating Hamiltonians in quantum networks: efficient schemes and complexity bounds. Phys. Rev. A, 65, 042309.Google Scholar
[WRJ+02b] P., Wocjan, M., Roetteler, D., Janzing, and T., Beth. 2002. Universal simulation of Hamiltonians using a finite set of control operations. Quant. Inf. Comput., 2, 133.Google Scholar
[WP.-GG07] M. M., Wolf, D., Pérez-García, and G., Giedke. 2007. Quantum capacities of bosonic channels. Phys. Rev. Lett., 98, 130501.Google Scholar
[WZ82] W. K., Wootters and W. H., Zurek. 1982. A single quantum cannot be cloned. Nature, 299, 802.Google Scholar
[WL02] L.-A., Wu and D. A., Lidar. 2002. Creating decoherence-free subspaces using strong and fast pulses. Phys. Rev. Lett., 88, 207902.Google Scholar
[WZL05] L.-A., Wu, P., Zanardi, and D. A., Lidar. 2005. Holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett., 95, 130501.Google Scholar
[YF07] N., Yamamoto and M., Fazel. 2007. Computational approach to quantum encoder design for purity optimization. Phys.Rev.A, 76, 012327.Google Scholar
[YHT05] N., Yamamoto, S., Hara, and K., Tsumura. 2005. Supobtimal quantum-error-correcting procedure based on semidefinite programming. Phys.Rev.A, 71, 022322.Google Scholar
[YG.-B01] C.-P., Yang and J., Gea-Banacloche. 2001. Three-qubit quantum error-correction scheme for collective decoherence. Phys. Rev. A, 63, 022311.Google Scholar
[YL08] W., Yang and R.-B., Liu. 2008. Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation. Phys. Rev. Lett., 101, 180403.Google Scholar
[YWL11] W., Yang, Z.-Y., Wang, and R.-B., Liu. 2011. Preserving qubit coherence by dynamical decoupling. Front. Phys., 6, 2.Google Scholar
[YLS07] W., Yao, R.-B., Liu, and L. J., Sham. 2007. Restoring coherence lost to a slow interacting mesoscopic spin bath. Phys. Rev. Lett., 98, 077602.Google Scholar
[YD09] J., Yard and I., Devetak. 2009. Optimal quantum source coding with quantum side information at the encoder and decoder. IEEE Trans. Inf. Theory, 55, 5339.Google Scholar
[YBW08] M.-Y., Ye, Y.-K., Bai, and Z. D., Wang. 2008. Quantum state redistribution based on a generalized decoupling. Phys. Rev. A, 78, 030302.Google Scholar
[Y01] J. S., Yedidia. 2001. An idiosyncratic journey beyond mean field theory. In Advanced Mean Field Methods: Theory and Practice. Cambridge, MA: MIT Press, p. 21.Google Scholar
[YHA+07] J.-I., Yoshikawa, T., Hayashi, T., Akiyama, N., Takei, A., Huck, U. L., Andersen, and A., Furusawa. 2007. Demonstration of deterministic and high fidelity squeezing of quantum information. Phys.Rev.A, 76, 060301.Google Scholar
[YMH+08] J.-I., Yoshikawa, Y., Miwa, A., Huck, U. L., Andersen, P., van Loock, and A., Furusawa. 2008. Demonstration of a quantum nondemolition sum gate. Phys. Rev. Lett., 101, 250501.Google Scholar
[YW11] K. C., Young and B. K., Whaley. 2011. Qubits as spectrometers of dephasing noise. eprint arXiv:1102.5115.Google Scholar
[YCO07] S., Yu, Q., Chen, and C. H., Oh. 2007. Graphical quantum error-correcting codes. Preprint arXiv:0709.1780v1 [quant-ph].Google Scholar
[YCL+09] S., Yu, Q., Chen, C. H., Lai, and C. H., Oh. 2009. Nonadditive quantum error-correcting code. Phys. Rev. Lett., 101, 090501.Google Scholar
[Z97] P., Zanardi. 1997. Dissipative dynamics in a quantum register. Phys. Rev. A, 56, 4445.Google Scholar
[Z98] P., Zanardi. 1998. Dissipation and decoherence in a quantum register. Phys. Rev. A, 57, 3276.Google Scholar
[Z99] P., Zanardi. 1999. Symmetrizing evolutions. Phys. Lett. A, 258, 77.Google Scholar
[Z00] P., Zanardi. 2000. Stabilizing quantum information. Phys.Rev.A, 63, 012301.Google Scholar
[Z01] P., Zanardi. 2001. Virtual quantum subsystems. Phys. Rev. Lett., 87, 077901.Google Scholar
[ZL03] P., Zanardi and S., Lloyd. 2003. Topological protection and quantum noiseless subsystems. Phys. Rev. Lett., 90, 067902.Google Scholar
[ZR97a] P., Zanardi and M., Rasetti. 1997. Error avoiding quantum codes. Mod. Phys. Lett. B, 11, 1085.Google Scholar
[ZR97b] P., Zanardi and M., Rasetti. 1997. Noiseless quantum codes. Phys. Rev. Lett., 79, 3306.Google Scholar
[ZR99a] P., Zanardi and M., Rasetti. 1999. Holonomic quantum computation. Phys. Lett. A, 264, 94.Google Scholar
[ZR98] P., Zanardi and F., Rossi. 1998. Quantum information in semiconductors: Noiseless encoding in a quantum-dot array. Phys. Rev. Lett., 81, 4752.Google Scholar
[ZR99b] P., Zanardi and F., Rossi. 1999. Subdecoherent information encoding in a quantum-dot array. Phys. Rev. B, 59, 8170.Google Scholar
[ZLL04] P., Zanardi, D., Lidar, and S., Lloyd. 2004. Quantum tensor product structures are observable-induced. Phys. Rev. Lett., 92, 060402.Google Scholar
[ZDS+07] W., Zhang, V. V., Dobrovitski, L. F., Santos, L., Viola, and B. N., Harmon. 2007. Dynamical control of electron spin coherence in a quantum dot: A theoretical study. Phys.Rev.B, 75, 201302.Google Scholar
[ZKD+08] W., Zhang, N. P., Konstantinidis, V. V., Dobrovitski, B. N., Harmon, L. F., Santos, and L., Viola. 2008. Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot. Phys. Rev. B, 77, 125336.Google Scholar
[ZHH+11] N., Zhao, J.-L., Hu, S.-W., Ho, J. T. K., Wan, and R.-B., Liu. 2011. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nature Nanotech., 6, 242.Google Scholar
[ZLC00] X., Zhou, D. W., Leung, and I. L., Chuang. 2000. Methodology for quantum logic gate constructions. Phys.Rev.A, 62, 052316.Google Scholar
[ZYZ+04] Z.-W., Zhou, B., Yu, X., Zhou, M. J., Feldman, and G.-C., Guo. 2004. Scalable fault-tolerant quantum computation in decoherence-free subspaces. Phys. Rev. Lett., 93, 010501.Google Scholar
[Z84] W. H., Zurek. 1984. Reversibility and stability of information processing systems. Phys. Rev. Lett., 53, 391.Google Scholar
[Z03] W. H., Zurek. 2003. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys., 75, 715.Google Scholar
[ZP94] W., Zurek and J. P., Paz. 1994. Decoherence, chaos, and the second law. Phys. Rev. Lett., 72, 2508.Google Scholar
[Z60] R., Zwanzig. 1960. Ensemble method in the theory of irreversibility. J. Chem. Phys., 33, 1338.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edited by Daniel A. Lidar, University of Southern California, Todd A. Brun, University of Southern California
  • Book: Quantum Error Correction
  • Online publication: 05 September 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034807.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edited by Daniel A. Lidar, University of Southern California, Todd A. Brun, University of Southern California
  • Book: Quantum Error Correction
  • Online publication: 05 September 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034807.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edited by Daniel A. Lidar, University of Southern California, Todd A. Brun, University of Southern California
  • Book: Quantum Error Correction
  • Online publication: 05 September 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034807.029
Available formats
×