Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T05:33:13.673Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  23 July 2021

Tim Byrnes
Affiliation:
New York University, Shanghai
Ebubechukwu O. Ilo-Okeke
Affiliation:
New York University, Shanghai
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quantum Atom Optics
Theory and Applications to Quantum Technology
, pp. 216 - 246
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abo-Shaeer, J. R., Raman, C., Vogels, J. M., and Ketterle, Wolfgang. 2001. Observation of vortex lattices in Bose–Einstein condensates. Science, 292(5516), 476479.CrossRefGoogle ScholarPubMed
Adams, C. S., and Riis, E. 1997. Laser cooling and trapping of neutral atoms. Progress in Quantum Electronics, 21(1), 179.Google Scholar
Adcock, Mark R. A., Høyer, Peter, and Sanders, Barry C. 2016. Quantum computation with coherent spin states and the close Hadamard problem. Quantum Information Processing, 15(4), 13611386.Google Scholar
Adesso, Gerardo, Ragy, Sammy, and Lee, Antony R. 2014. Continuous variable quantum information: Gaussian states and beyond. Open Systems and Information Dynamics, 21(01n02), 1440001.Google Scholar
Aharonov, Dorit, Van Dam, Wim, Kempe, Julia, Landau, Zeph, Lloyd, Seth, and Regev, Oded. 2008. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Review, 50(4), 755787.CrossRefGoogle Scholar
Albash, Tameem, and Lidar, Daniel A. 2018. Adiabatic quantum computation. Reviews of Modern Physics, 90(Jan), 015002.CrossRefGoogle Scholar
Allen, L., and Eberly, J. H. 1975. Optical Resonance and Two-Level Atoms. John Wiley.Google Scholar
Alon, Ofir E., Streltsov, Alexej I., and Cederbaum, Lorenz S. 2005. Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices. Physical Review Letters, 95(3), 030405.CrossRefGoogle ScholarPubMed
Altland, Alexander, and Simons, Ben D. 2010. Condensed Matter Field Theory. Cambridge University Press.Google Scholar
Amico, Luigi, Birkl, Gerhard, Boshier, Malcolm, and Kwek, Leong-Chuan. 2017. Focus on atomtronics-enabled quantum technologies. New Journal of Physics, 19(2), 020201.Google Scholar
Amico, Luigi, Fazio, Rosario, Osterloh, Andreas, and Vedral, Vlatko. 2008. Entanglement in many-body systems. Reviews of Modern Physics, 80(2), 517.CrossRefGoogle Scholar
Amo, Alberto, Pigeon, S., Sanvitto, D., Sala, V. G., Hivet, R., Carusotto, Iacopo, Pisanello, F., Leménager, G., Houdré, R., Giacobino, E., et al. 2011. Polariton superfluids reveal quantum hydrodynamic solitons. Science, 332(6034), 11671170.CrossRefGoogle ScholarPubMed
Anderson, B. P., Haljan, P. C., Regal, C. A., Feder, D. L., Collins, L. A., Clark, Charles W., and Cornell, Eric A. 2001. Watching dark solitons decay into vortex rings in a Bose–Einstein condensate. Physical Review Letters, 86(14), 2926.CrossRefGoogle Scholar
Anderson, Brandon M., Juzeliūnas, Gediminas, Galitski, Victor M., and Spielman, Ian B. 2012. Synthetic 3D spin-orbit coupling. Physical Review Letters, 108(23), 235301.CrossRefGoogle ScholarPubMed
Anderson, Mike H., Ensher, Jason R., Matthews, Michael R., Wieman, Carl E., and Cornell, Eric A. 1995. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science, 198–201.Google Scholar
Andrews, M. R., Townsend, C. G., Miesner, H.-J., Durfee, D. S., Kurn, D. M., and Ketterle, W.. 1997. Observation of Interference Between Two Bose Condensates. Science, 275, 637641.Google Scholar
Anglin, James R., and Ketterle, Wolfgang. 2002. Bose–Einstein condensation of atomic gases. Nature, 416(6877), 211.CrossRefGoogle ScholarPubMed
Appel, Jürgen, Windpassinger, Patrick Joachim, Oblak, Daniel, Hoff, U. Busk, Kjærgaard, Niels, and Polzik, Eugene Simon. 2009. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proceedings of the National Academy of Sciences, 106(27), 1096010965.Google Scholar
Arecchi, F. T., Courtens, E., Gilmore, R., and Thomas, H. 1972. Atomic coherent states in quantum optics. Physical Review A, 6(6), 22112237.Google Scholar
Arfken, G. B., and Weber, H. J. 2005. Mathematical Methods for Physicists. 6th ed. Elsevier Academic Press.Google Scholar
Ashkin, Arthur. 1997. Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences, 94(10), 48534860.Google Scholar
Ashkin, Arthur. 2006. Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume with Commentaries. World Scientific.Google Scholar
Auerbach, Assa. 2012. Interacting Electrons and Quantum Magnetism. Springer Science and Business Media.Google Scholar
Autler, Stanley H., and Townes, Charles H. 1955. Stark effect in rapidly varying fields. Physical Review, 100(2), 703.Google Scholar
Bacry, H. 1978. Physical significance of minimum uncertainty states of an angular momentum system. Physical Review A, 18(2), 617.Google Scholar
Bakr, Waseem S., Gillen, Jonathon I., Peng, Amy, Fölling, Simon, and Greiner, Markus. 2009. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature, 462(7269), 74.CrossRefGoogle Scholar
Bao, Weizhu, Jaksch, Dieter, and Markowich, Peter A. 2003. Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. Journal of Computational Physics, 187(1), 318342.Google Scholar
Barends, R., Lamata, L., Kelly, J., García-Álvarez, L., Fowler, A. G., Megrant, A., Jeffrey, E., White, T. C., Sank, D., Mutus, J. Y., et al. 2015. Digital quantum simulation of fermionic models with a superconducting circuit. Nature Communications, 6, 7654.Google Scholar
Barnett, S. M., and Radmore, P. M. 1997. Methods in Theoretical Quantum Optics. 2nd ed. Oxford University Press.Google Scholar
Barredo, Daniel, Lienhard, Vincent, De Leseleuc, Sylvain, Lahaye, Thierry, and Browaeys, Antoine. 2018. Synthetic three-dimensional atomic structures assembled atom by atom. Nature, 561(7721), 79.CrossRefGoogle ScholarPubMed
Barrett, M. D., Sauer, J. A., and Chapman, M. S. 2001. All-optical formation of an atomic Bose–Einstein condensate. Physical Review Letters, 87, 010404.Google Scholar
Baym, G., and Pethick, C. J. 1996. Ground-state properties of magnetically trapped Bose-condensed rubidium gas. Physical Review Letters, 76, 69.CrossRefGoogle ScholarPubMed
Bender, C. M., and Orszag, S. A. 1978. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wootters, W. K. 1993. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Physical Review Letters, 70, 18951899.CrossRefGoogle ScholarPubMed
Benson, O., Raithel, G., and Walther, Herbert. 1994. Quantum jumps of the micromaser field: dynamic behavior close to phase transition points. Physical Review Letters, 72(22), 3506.Google Scholar
Bergquist, J. C., Hulet, Randall G., Itano, Wayne M., and Wineland, D. J. 1986. Observation of quantum jumps in a single atom. Physical Review Letters, 57(14), 1699.Google Scholar
Berman, P. R. 1997. Atom Interferometry. Academic Press.Google Scholar
Bernien, Hannes, Schwartz, Sylvain, Keesling, Alexander, Levine, Harry, Omran, Ahmed, Pichler, Hannes, Choi, Soonwon, Zibrov, Alexander S., Endres, Manuel, Greiner, Markus, et al. 2017. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551(7682), 579.Google Scholar
Berry, M. V. 1984. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 392(1802), 4557.Google Scholar
Berry, M. V. 1989. The quantum phase, five years after. Page 7 of: Wilczek, Frank, and Shapere, Alfred (eds.), Geometric Phases in Physics. Vol. 5. World Scientific.Google Scholar
Billy, Juliette, Josse, Vincent, Zuo, Zhanchun, Bernard, Alain, Hambrecht, Ben, Lugan, Pierre, Clément, David, Sanchez-Palencia, Laurent, Bouyer, Philippe, and Aspect, Alain. 2008. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature, 453(7197), 891.Google Scholar
Blatt, S., Ludlow, A. D., Campbell, G. K., Thomsen, Jan Westenkær, Zelevin-sky, T., Boyd, M. M., Ye, J., Baillard, X., Fouché, M., Le Targat, R., et al. 2008. New limits on coupling of fundamental constants to gravity using 87 Sr optical lattice clocks. Physical Review Letters, 100(14), 140801.CrossRefGoogle Scholar
Bloch, Immanuel. 2005. Ultracold quantum gases in optical lattices. Nature Physics, 1(1), 23.CrossRefGoogle Scholar
Bloch, Immanuel. 2008. Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature, 453(7198), 1016.Google Scholar
Bloch, Immanuel, Dalibard, Jean, and Nascimbene, Sylvain. 2012. Quantum simulations with ultracold quantum gases. Nature Physics, 8(4), 267.CrossRefGoogle Scholar
Bloch, Immanuel, Dalibard, Jean, and Zwerger, Wilhelm. 2008. Many-body physics with ultracold gases. Reviews of Modern Physics, 80(3), 885.Google Scholar
Bloom, B. J., Nicholson, T. L., Williams, J. R., Campbell, S. L., Bishof, M., Zhang, X., Zhang, W., Bromley, S. L., and Ye, J. 2014. An optical lattice clock with accuracy and stability at the 10-18 level. Nature, 506(7486), 7175.Google Scholar
Bo-sture, Skagerstam, et al. 1985. Coherent States: Applications in Physics and Mathematical Physics. World Scientific.Google Scholar
Bogolyubov, Nikolay Nikolaevich. 1947. On the theory of superfluidity. Izv. Akad. Nauk Ser. Fiz., 11, 2332.Google Scholar
Böhi, P., Riedel, M. F., Hoffrogge, J., Reichel, J., Hänsch, T. W., and Treutlein, P. 2009. Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip. Nature Physics, 5, 592.Google Scholar
Bose, Satyendra Nath. 1924. Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik, 26(1).Google Scholar
Bouchoule, Isabelle, and Mølmer, Klaus. 2002. Spin squeezing of atoms by the dipole interaction in virtually excited Rydberg states. Physical Review A, 65(4), 041803.Google Scholar
Bourdel, Thomas, Khaykovich, Lev, Cubizolles, Julien, Zhang, Jun, Chevy, Frédéric, Teichmann, M., Tarruell, L., Kokkelmans, SJJMF, and Salomon, Christophe. 2004. Experimental study of the BEC–BCS crossover region in lithium 6. Physical Review Letters, 93(5), 050401.Google Scholar
Bouyer, P., and Kasevich, M. A. 1997. Heisenberg-limited spectroscopy with degenerate Bose–Einstein gases. Physical Review A, 56, R1083R1086.Google Scholar
Boyer, V., McCormick, C. F., Arimondo, Ennio, and Lett, Paul D. 2007. Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor. Physical Review Letters, 99(14), 143601.Google Scholar
Bransden, Brian Harold, Joachain, Charles Jean, and Plivier, Theodor J. 2003. Physics of Atoms and Molecules. Pearson Education India.Google Scholar
Braunstein, S. L., and Caves, C. M. 1994. Statistical distance and the geometry of quantum states. Physical Review Letters, 72, 34393443.CrossRefGoogle ScholarPubMed
Braunstein, S. L., and Kimble, H. Jeff. 1998. Teleportation of continuous quantum variables. Physical Review Letters, 80(4), 869.CrossRefGoogle Scholar
Braunstein, S. L., and van Loock, P. 2005. Quantum information with continuous variables. Reviews of Modern Physics, 77(April), 513.Google Scholar
Braunstein, S. L., and Pati, Arun K. 2012. Quantum Information with Continuous Variables. Springer Science and Business Media.Google Scholar
Brink, David Maurice, and Satchler, George Raymond. 1968. Angular Momentum. Clarendon Press.Google Scholar
Brion, E., Mølmer, K., and Saffman, M. 2007a. Quantum computing with collective ensembles of multilevel systems. Physical Review Letters, 99(26), 260501.Google Scholar
Brion, E., Pedersen, L. H., and Mølmer, K. 2007b. Adiabatic elimination in a lambda system. Journal of Physics A: Mathematic and Theoretical, 40(5), 1033.Google Scholar
Brzozowski, Tomasz M., Maczynska, Maria, Zawada, Michal, Zachorowski, Jerzy, and Gawlik, Wojciech. 2002. Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances. Journal of Optics B: Quantum and Semiclassical Optics, 4(1), 62.CrossRefGoogle Scholar
Buluta, Iulia, and Nori, Franco. 2009. Quantum simulators. Science, 326(5949), 108111.Google Scholar
Burger, Stefan, Bongs, Kai, Dettmer, Stefanie, Ertmer, Wolfgang, Sengstock, Klaus, Sanpera, Anna, Shlyapnikov, Gora V., and Lewenstein, Maciej. 1999. Dark solitons in Bose–Einstein condensates. Physical Review Letters, 83(25), 5198.Google Scholar
Burke, J. H. T., Deissler, B., Hughes, K. J., and Sackett, C. A. 2008. Confinement effects in a guided-wave atom interferometer with milimeter-scale arm separation. Physical Review A, 78, 023619.Google Scholar
Burke, J. H. T., and Sackett, C. A. 2009. Scalable Bose–Einstein condensate Sagnac interferometer in a linear trap. Physical Review A, 80, 061603(R).Google Scholar
Busch, T., and Anglin, J. R. 2000. Motion of dark solitons in trapped Bose–Einstein condensates. Physical Review Letters, 84(11), 2298.Google Scholar
Busch, T., and Anglin, J. R. 2001. Dark-bright solitons in inhomogeneous Bose–Einstein condensates. Physical Review Letters, 87(1), 010401.Google Scholar
Byrnes, Tim. 2013. Fractality and macroscopic entanglement in two-component Bose–Einstein condensates. Physical Review A, 88, 023609.Google Scholar
Byrnes, Tim, Recher, Patrik, and Yamamoto, Yoshihisa. 2010. Mott transitions of exciton polaritons and indirect excitons in a periodic potential. Physical Review B, 81(20), 205312.Google Scholar
Byrnes, Tim, Rosseau, Daniel, Khosla, Megha, Pyrkov, Alexey, Thomasen, Andreas, Mukai, Tetsuya, Koyama, Shinsuke, Abdelrahman, Ahmed, and Ilo-Okeke, Ebubechukwu O. 2015. Macroscopic quantum information processing using spin coherent states. Optics Communications, 337, 102109.Google Scholar
Byrnes, Tim, Wen, Kai, and Yamamoto, Yoshihisa. 2012. Macroscopic quantum computation using Bose–Einstein condensates. Physical Review A, 85(4), 040306.Google Scholar
Byrnes, Tim, and Yamamoto, Yoshihisa. 2006. Simulating lattice gauge theories on a quantum computer. Physical Review A, 73(2), 022328.Google Scholar
Calarco, Tommaso, Hinds, E. A., Jaksch, D., Schmiedmayer, J., Cirac, J. I., and Zoller, P. 2000. Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps. Physical Review A, 61(2), 022304.CrossRefGoogle Scholar
Campbell, Gretchen K., Mun, Jongchul, Boyd, Micah, Medley, Patrick, Leanhardt, Aaron E., Marcassa, Luis G., Pritchard, David E., and Ketterle, Wolfgang. 2006. Imaging the Mott insulator shells by using atomic clock shifts. Science, 313(5787), 649652.Google Scholar
Campos, R. A., Gerry, C. C., and Benmoussa, A. 2003. Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements. Physical Review A, 68, 023810.Google Scholar
Capogrosso-Sansone, B., ProkofEv, N. V., and Svistunov, B. V. 2007. Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model. Physical Review B, 75(13), 134302.Google Scholar
Carmichael, Howard. 2009. An open systems approach to quantum optics. Lecture presented at the Université Libre de Bruxelles, October 28 to November 4, 1991. Vol. 18. Springer Science and Business Media.Google Scholar
Carnal, O., and Mlynek, J. 1991. Young’s double-slit experiment with atoms: a simple atom interferometer. Physical Review Letters, 66, 26892692.Google Scholar
Carr, Lincoln D., DeMille, David, Krems, Roman V., and Ye, Jun. 2009. Cold and ultracold molecules: science, technology and applications. New Journal of Physics, 11(5), 055049.Google Scholar
Caspers, Willem Jan. 1989. Spin Systems. World Scientific.CrossRefGoogle Scholar
Cassettari, Donatella, Hessmo, Björn, Folman, Ron, Maier, Thomas, and Schmiedmayer, Jörg. 2000. Beam splitter for guided atoms. Physical Review Letters, 85(26), 5483.Google Scholar
Cataliotti, F. S., Burger, S., Fort, C., Maddaloni, P., Minardi, F., Trombettoni, A., Smerzi, A., and Inguscio, M. 2001. Josephson junction arrays with Bose–Einstein condensates. Science, 293, 843846.Google Scholar
Caves, C. M. 1981. Quantum-mechanical noise in an interferometer. Physical Review D, 23, 16931708.Google Scholar
Chabé, Julien, Lemarié, Gabriel, Grémaud, Benoît, Delande, Dominique, Szriftgiser, Pascal, and Garreau, Jean Claude. 2008. Experimental observation of the Anderson metal-insulator transition with atomic matter waves. Physical Review Letters, 101(25), 255702.Google Scholar
Chen, Qijin, Stajic, Jelena, Tan, Shina, and Levin, Kathryn. 2005. BCS–BEC crossover: from high temperature superconductors to ultracold superfluids. Physics Reports, 412(1), 188.CrossRefGoogle Scholar
Cheuk, Lawrence W., Nichols, Matthew A., Okan, Melih, Gersdorf, Thomas, Ramasesh, Vinay V., Bakr, Waseem S., Lompe, Thomas, and Zwierlein, Martin W. 2015. Quantum-gas microscope for fermionic atoms. Physical Review Letters, 114(19), 193001.CrossRefGoogle ScholarPubMed
Chin, Cheng, Grimm, Rudolf, Julienne, Paul, and Tiesinga, Eite. 2010. Feshbach resonances in ultracold gases. Reviews of Modern Physics, 82(2), 1225.CrossRefGoogle Scholar
Cirac, J. Ignacio, and Zoller, Peter. 2012. Goals and opportunities in quantum simulation. Nature Physics, 8(4), 264.Google Scholar
Cleve, Richard, Ekert, Artur, Macchiavello, Chiara, and Mosca, Michele. 1998. Quantum algorithms revisited. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 454(1969), 339354.Google Scholar
Cohen-Tannoudji, C. 1992. Laser cooling and trapping of neutral atoms: theory. Physics Reports, 219(3–6), 153164.Google Scholar
Cohen-Tannoudji, C., Diu, B., and Laloë, F. 1977. Quantum Mechanics. New York, NYM: Wiley.Google Scholar
Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G. 1998. Atom-Photon Interactions: Basic Process and Applications. Wiley.Google Scholar
Cooper, Nigel R. 2008. Rapidly rotating atomic gases. Advances in Physics, 57(6), 539616.Google Scholar
Cornish, Simon L., Claussen, Neil R., Roberts, Jacob L., Cornell, Eric A., and Wieman, Carl E. 2000. Stable 85 Rb Bose–Einstein condensates with widely tunable interactions. Physical Review Letters, 85(9), 1795.Google Scholar
Courteille, P., Freeland, R. S., Heinzen, Daniel J., Van Abeelen, F. A., and Verhaar, B. J. 1998. Observation of a Feshbach resonance in cold atom scattering. Physical Review Letters, 81(1), 69.Google Scholar
Cronin, A. D., Schmiedmayer, J., and Pritchard, D. E. 2009. Optics and interferometry with atoms and molecules. Reviews of Modern Physics, 81, 1051.Google Scholar
Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. 1999a. Ground-state properties of magnetically trapped Bose-condensed rubidium gas. Reviews of Modern Physics, 71, 463512.Google Scholar
Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. 1999b. Theory of Bose–Einstein condensation in trapped gases. Reviews of Modern Physics, 71(3), 463.Google Scholar
Dalibard, Jean. 1999. Collisional dynamics of ultra-cold atomic gases. Page 14 of: Proceedings of the International School of Physics–Enrico Fermi, Vol. 321.Google Scholar
Dalibard, Jean, Castin, Yvan, and Mølmer, Klaus. 1992. Wave-function approach to dissipative processes in quantum optics. Physical Review Letters, 68(5), 580.Google Scholar
Dalibard, Jean, and Cohen-Tannoudji, Claude. 1985. Dressed-atom approach to atomic motion in laser light: the dipole force revisited. Journal of the Optical Society of America B, 2, 1707.Google Scholar
Dalibard, Jean, Gerbier, Fabrice, Juzeliūnas, Gediminas, and Öhberg, Patrik. 2011. Colloquium: artificial gauge potentials for neutral atoms. Reviews of Modern Physics, 83(4), 1523.Google Scholar
Dalton, B. J., Goold, John, Garraway, B. M., and Reid, M. D. 2017. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests. Physica Scripta, 92(2), 023005.Google Scholar
Damski, B., Santos, L., Tiemann, E., Lewenstein, M., Kotochigova, S., Julienne, P., and Zoller, P. 2003a. Creation of a dipolar superfluid in optical lattices. Physical Review Letters, 90(11), 110401.Google Scholar
Damski, Bogdan, Zakrzewski, Jakub, Santos, Luis, Zoller, Peter, and Lewenstein, Maciej. 2003b. Atomic Bose and Anderson glasses in optical lattices. Physical Review Letters, 91(8), 080403.Google Scholar
Das, Arnab, and Chakrabarti, Bikas K. 2008. Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics, 80(Sep), 10611081.Google Scholar
Davis, Kendall B., Mewes, M.-O., Andrews, Michael R., van Druten, Nico-laas J., Durfee, Dallin S., Kurn, D. M., and Ketterle, Wolfgang. 1995. Bose–Einstein condensation in a gas of sodium atoms. Physical Review Letters, 75(22), 3969.CrossRefGoogle Scholar
De Paz, Aurelie, Sharma, Arijit, Chotia, Amodsen, Marechal, Etienne, Huck-ans, J. H., Pedri, Paolo, Santos, Luis, Gorceix, Olivier, Vernac, Laurent, and Laburthe-Tolra, Bruno. 2013. Nonequilibrium quantum magnetism in a dipolar lattice gas. Physical Review Letters, 111(18), 185305.Google Scholar
Deng, L., Hagley, Edward W., Wen, J., Trippenbach, M., Band, Y., Julienne, Paul S., Simsarian, J. E., Helmerson, Kristian, Rolston, S. L., and Phillips, William D. 1999. Four-wave mixing with matter waves. Nature, 398(6724), 218.Google Scholar
Deng, Shujin, Shi, , Zhe-Yu, Diao, Pengpeng, Yu, Qianli, Zhai, Hui, Ran, Qi, , and Wu, Haibin. 2016. Observation of the Efimovian expansion in scale-invariant Fermi gases. Science, 353(6297), 371374.Google Scholar
Denschlag, J., Simsarian, J. E., Feder, D. L., Clark, Charles W., Collins, L. A., Cubizolles, J., Deng, L., Hagley, Edward W., Helmerson, Kristian, Reinhardt, William P., et al. 2000. Generating solitons by phase engineering of a Bose–Einstein condensate. Science, 287(5450), 97101.Google Scholar
Deutsch, David, and Jozsa, Richard. 1992. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 439(1907), 553558.Google Scholar
Dirac, Paul Adrien Maurice. 1927. The quantum theory of the emission and absorption of radiation. Proceedings of the Royal Society of London A: Containing Papers of a Mathematical and Physical Character, 114(767), 243265.Google Scholar
Donley, Elizabeth A., Claussen, Neil R., Cornish, Simon L., Roberts, Jacob L., Cornell, Eric A., and Wieman, Carl E. 2001. Dynamics of collapsing and exploding Bose–Einstein condensates. Nature, 412(6844), 295.CrossRefGoogle ScholarPubMed
Dowling, Jonathan P. 2008. Quantum optical metrology – the lowdown on high-N00N states. Contemporary Physics, 49, 125143.Google Scholar
Dowling, Jonathan P. 1998. Correlated input-port, matter-wave interferometer: quantum-noise limits to the atom-laser gyroscope. Physical Review A, 57(6), 4736.Google Scholar
Dowling, Jonathan P., and Milburn, Gerard J. 2003. Quantum technology: the second quantum revolution. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 361(1809), 16551674.Google Scholar
Dowling, Jonathan P., Agarwal, Girish S., and Schleich, Wolfgang P. 1994. Wigner distribution of a general angular-momentum state: applications to a collection of two-level atoms. Physical Review A, 49(5), 4101.Google Scholar
Drummond, P. D., Kheruntsyan, K. V., and He, H. 1998. Coherent molecular solitons in Bose–Einstein condensates. Physical Review Letters, 81(15), 3055.Google Scholar
Duan, L.-M., Cirac, J. Ignacio, and Zoller, P. 2002. Quantum entanglement in spinor Bose–Einstein condensates. Physical Review A, 65(3), 033619.CrossRefGoogle Scholar
Duan, L.-M., Giedke, G., Cirac, J. I., and Zoller, P. 2000. Inseparability criterion for continuous variable systems. Physical Review Letters, 84(12), 2722.CrossRefGoogle ScholarPubMed
Dudarev, Artem M., Diener, Roberto B., Carusotto, Iacopo, and Niu, Qian. 2004. Spin-orbit coupling and Berry phase with ultracold atoms in 2D optical lattices. Physical Review Letters, 92(15), 153005.Google Scholar
Dulieu, Olivier, and Gabbanini, Carlo. 2009. The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics. Reports on Progress in Physics, 72(8), 086401.Google Scholar
Dum, R., and Olshanii, M. 1996. Gauge structures in atom-laser interaction: Bloch oscillations in a dark lattice. Physical Review Letters, 76(11), 1788.Google Scholar
Dum, R., Zoller, P., and Ritsch, H. 1992. Monte Carlo simulation of the atomic master equation for spontaneous emission. Physical Review A, 45(7), 4879.Google Scholar
Dumke, R., Müther, T., Volk, M., Ertmer, Wolfgang, and Birkl, G. 2002. Interferometer-type structures for guided atoms. Physical Review Letters, 89(22), 220402.Google Scholar
Dürr, Stephan, Volz, Thomas, Marte, Andreas, and Rempe, Gerhard. 2004. Observation of molecules produced from a Bose–Einstein condensate. Physical Review Letters, 92(2), 020406.Google Scholar
Ebert, M., Kwon, M., Walker, T. G., and Saffman, M. 2015. Coherence and Rydberg blockade of atomic ensemble qubits. Physical Review Letters, 115(9), 093601.Google Scholar
Efremidis, Nikolaos K., Hudock, Jared, Christodoulides, Demetrios N., Fleischer, Jason W., Cohen, Oren, and Segev, Mordechai. 2003. Two-dimensional optical lattice solitons. Physical Review Letters, 91(21), 213906.Google Scholar
Eiermann, B., Anker, T., Albiez, M., Taglieber, M., Treutlein, Philipp, Mar-zlin, K.-P., and Oberthaler, M. K. 2004. Bright Bose–Einstein gap solitons of atoms with repulsive interaction. Physical Review Letters, 92(23), 230401.CrossRefGoogle ScholarPubMed
Einstein, Albert. 1924. Quantentheorie des einatomigen idealen Gases. SB Preuss. Akad. Wiss. phys.-math. Klasse.Google Scholar
Engels, Peter, Coddington, I., Haljan, P. C., and Cornell, Eric A. 2002. Nonequilibrium effects of anisotropic compression applied to vortex lattices in Bose–Einstein condensates. Physical Review Letters, 89(10), 100403.Google Scholar
Erdős, László, Schlein, Benjamin, and Yau, Horng-Tzer. 2007. Rigorous derivation of the Gross–Pitaevskii equation. Physical Review Letters, 98(4), 040404.Google Scholar
Erdős, László, Schlein, Benjamin, and Yau, Horng-Tzer. 2010. Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Annals of Mathematics, 291–370.Google Scholar
Estève, J., Gross, C., Weller, A., Giovanazzi, S., and Oberthaler, M. K. 2008. Squeezing and entanglement in a Bose–Einstein condensate. Nature, 455, 12161219.Google Scholar
Eto, Y., Ikeda, H., Suzuki, H., Hasegawa, S., Tomiyama, Y., Sekine, S., Sadgrove, M., and Hirano, T. 2013. Spin-echo-based magnetometry with spinor Bose–Einstein condensates. Physical Review A, 88, 031602.Google Scholar
Eto, Y., Shibayama, H., Saito, H., and Hirano, T. 2018. Spinor dynamics in a mixture of spin-1 and spin-2 Bose–Einstein condensates. Physical Review A, 97, 021602.Google Scholar
Fadel, Matteo, Zibold, Tilman, Décamps, Boris, and Treutlein, Philipp. 2018. Spatial entanglement patterns and Einstein–Podolsky–Rosen steering in Bose–Einstein condensates. Science, 360(6387), 409413.Google Scholar
Farhi, Edward, Goldstone, Jeffrey, Gutmann, Sam, Lapan, Joshua, Lundgren, Andrew, and Preda, Daniel. 2001. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 292(5516), 472475.Google Scholar
Fetter, A. L. 1969. Page 351 of: Mahanthappa, K. T., and Brittin, W. E. (eds.), Lectures in Theoretical Physics. Vol. XIB. Gordon and Breach.Google Scholar
Fetter, Alexander L. 2009. Rotating trapped Bose–Einstein condensates. Reviews of Modern Physics, 81(2), 647.Google Scholar
Fetter, Alexander L., and Svidzinsky, Anatoly A. 2001. Vortices in a trapped dilute Bose–Einstein condensate. Journal of Physics: Condensed Matter, 13(12), R135.Google Scholar
Feynman, Richard P. 1982. Simulating physics with computers. International Journal of Theoretical Physics, 21(6–7), 467488.Google Scholar
Folman, Ron, Krüger, Peter, Cassettari, Donatella, Hessmo, Björn, Maier, Thomas, and Schmiedmayer, Jörg. 2000. Controlling cold atoms using nanofabricated surfaces: atom chips. Physical Review Letters, 84(20), 4749.Google Scholar
Foot, Christopher J. 2005. Atomic Physics. Vol. 7. Oxford University Press.Google Scholar
Fortágh, József, and Zimmermann, Claus. 2007. Magnetic microtraps for ultracold atoms. Reviews of Modern Physics, 79(1), 235.Google Scholar
Foulkes, W. M. C., Mitas, L., Needs, R. J., and Rajagopal, G. 2001. Quantum Monte Carlo simulations of solids. Reviews of Modern Physics, 73(1), 33.Google Scholar
Fox, Mark. 2006. Quantum Optics: An Introduction. Vol. 15. Oxford University Press.Google Scholar
Fray, Sebastian, Diez, Cristina Alvarez, Hänsch, Theodor W., and Weitz, Martin. 2004. Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Physical Review Letters, 93(24), 240404.Google Scholar
Fried, Dale G., Killian, Thomas C., Willmann, Lorenz, Landhuis, David, Moss, Stephen C., Kleppner, Daniel, and Greytak, Thomas J. 1998. Bose–Einstein condensation of atomic hydrogen. Physical Review Letters, 81(18), 3811.Google Scholar
Friis, Nicolai, Vitagliano, Giuseppe, Malik, Mehul, and Huber, Marcus. 2019. Entanglement certification from theory to experiment. Nature Reviews Physics, 1(1), 7287.Google Scholar
Furusawa, Akira, Sørensen, Jens Lykke, Braunstein, Samuel L., Fuchs, Christopher A., Kimble, H. Jeff, and Polzik, Eugene S. 1998. Unconditional quantum teleportation. Science, 282(5389), 706709.Google Scholar
Furusawa, Akira, and Takei, Nobuyuki. 2007. Quantum teleportation for continuous variables and related quantum information processing. Physics Reports, 443(3), 97119.Google Scholar
Furusawa, Akira, and van Loock, Peter. 2011. Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing. Wiley.Google Scholar
Gadway, Bryce, Pertot, Daniel, Reimann, René, and Schneble, Dominik. 2010. Superfluidity of interacting bosonic mixtures in optical lattices. Physical Review Letters, 105(4), 045303.Google Scholar
Gaëtan, Alpha, Miroshnychenko, Yevhen, Wilk, Tatjana, Chotia, Amodsen, Viteau, Matthieu, Comparat, Daniel, Pillet, Pierre, Browaeys, Antoine, and Grangier, Philippe. 2009. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Physics, 5(2), 115.Google Scholar
Galitski, Victor, and Spielman, Ian B. 2013. Spin-orbit coupling in quantum gases. Nature, 494(7435), 4954.Google Scholar
Garcia, O., Deissler, B., Hughes, K. J., Reeves, J. M., and Sackett, C. A. 2006. Bose–Einstein condensate interferometer with macroscopic arm separation. Physical Review A, 74, 031601.Google Scholar
Gardiner, C. W., Anglin, J. R., and Fudge, T. I. A. 2002. The stochastic Gross–Pitaevskii equation. Journal of Physics B: Atomic, Molecular and Optical Physics, 35(6), 1555.Google Scholar
Gardiner, C. W., and Zoller, P. 2004. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer-Verlag.Google Scholar
Georges, Antoine, Kotliar, Gabriel, Krauth, Werner, and Rozenberg, Marcelo J. 1996. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Reviews of Modern Physics, 68(1), 13.Google Scholar
Georgescu, I. M., Ashhab, Sahel, and Nori, Franco. 2014. Quantum simulation. Reviews of Modern Physics, 86(1), 153.Google Scholar
Gerd, Leuchs, et al. 2007. Quantum Information with Continuous Variables of Atoms and Light. World Scientific.Google Scholar
Gericke, Tatjana, Würtz, Peter, Reitz, Daniel, Langen, Tim, and Ott, Herwig. 2008. High-resolution scanning electron microscopy of an ultracold quantum gas. Nature Physics, 4(12), 949.Google Scholar
Gerry, Christopher, and Knight, Peter. 2005. Introductory Quantum Optics. Cambridge University Press.Google Scholar
Gibble, Kurt, Chang, Seongsik, and Legere, Ronald. 1995. Direct observation of s-wave atomic collisions. Physical Review Letters, 75(14), 2666.Google Scholar
Ginzburg, V. L., and Pitaevskii, L. P. 1958. On the theory of superfluidity. Soviet Physics JETP, 7(5), 858861.Google Scholar
Giovannetti, Vittorio, Mancini, Stefano, Vitali, David, and Tombesi, Paolo. 2003. Characterizing the entanglement of bipartite quantum systems. Physical Review A, 67(2), 022320.Google Scholar
Gleyzes, Sebastien, Kuhr, Stefan, Guerlin, Christine, Bernu, Julien, Deleglise, Samuel, Hoff, Ulrich Busk, Brune, Michel, Raimond, Jean-Michel, and Haroche, Serge. 2007. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature, 446(7133), 297.Google Scholar
Godun, R. M., D’Arcy, M. B., Summy, G. S., and Burnett, K. 2001. Prospects for atom interferometry. Contemporary Physics, 42, 7795.Google Scholar
Goldman, Nathan, Juzeliūnas, G., Öhberg, Patrik, and Spielman, Ian B. 2014. Light-induced gauge fields for ultracold atoms. Reports on Progress in Physics, 77(12), 126401.Google Scholar
Gong, Ming, Tewari, Sumanta, and Zhang, Chuanwei. 2011. BCS–BEC crossover and topological phase transition in 3D spin-orbit coupled degenerate Fermi gases. Physical Review Letters, 107(19), 195303.Google Scholar
Goodman, J. W. 1996. Introduction to Fourier Optics. 2nd ed. McGraw-Hill.Google Scholar
Greiner, Markus, Mandel, Olaf, Esslinger, Tilman, Hänsch, Theodor W., and Bloch, Immanuel. 2002. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 415(6867), 39.Google Scholar
Greiner, Markus, Regal, Cindy A., and Jin, Deborah S. 2005. Probing the excitation spectrum of a Fermi gas in the BCS–BEC crossover regime. Physical Review Letters, 94(7), 070403.Google Scholar
Griesmaier, Axel, Werner, Jörg, Hensler, Sven, Stuhler, Jürgen, and Pfau, Tilman. 2005. Bose–Einstein condensation of chromium. Physical Review Letters, 94(16), 160401.Google Scholar
Griffin, Allan, Snoke, David W., and Stringari, Sandro. 1996. Bose–Einstein condensation. Cambridge University Press.Google Scholar
Griffiths, David J., and Schroeter, Darrell F. 2018. Introduction to Quantum Mechanics. Cambridge University Press.Google Scholar
Grimm, Rudolf, Weidemüller, Matthias, and Ovchinnikov, Yurii B. 2000. Optical dipole traps for neutral atoms. Pages 95170 of: Advances in Atomic, Molecular, and Optical Physics. Vol. 42. Elsevier.Google Scholar
Gross, C. 2012. Spin squeezing, entanglement and quantum metrology with Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 103001.Google Scholar
Gross, C., and Bloch, I. 2017. Quantum simulations with ultracold atoms in optical lattices. Science, 357(6355), 9951001.Google Scholar
Gross, C., Zibold, T., Nicklas, E., Estève, J., and Oberthaler, M. K. 2010. Nonlinear atom interferometer surpasses classical precision limit. Nature, 464, 11651169.Google Scholar
Gross, Eugene P. 1961. Structure of a quantized vortex in boson systems. Il Nuovo Cimento (1955–1965), 20(3), 454477.Google Scholar
Grynberg, G., Lounis, B., Verkerk, P., Courtois, J.-Y., and Salomon, C. 1993. Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials. Physical Review Letters, 70(15), 2249.Google Scholar
Gühne, Otfried, and Tóth, Géza. 2009. Entanglement detection. Physics Reports, 474(1–6), 175.Google Scholar
Gupta, S., Leanhardt, A. E., Cronin, A. D., and Pritchard, D. E. 2001. Coherent manipulation of atoms with standing lightwaves. Comptes Rendus de l’Académie des Sciences Series IV: Physics, 2, 479495.Google Scholar
Gustavson, T. L., Bouyer, P., and Kasevich, M. A. 1997. Precision rotation measurements with an atom interferometer gyroscope. Physical Review Letters, 78(11), 2046.Google Scholar
Gustavson, T. L., Landragin, A., and Kasevich, M. A. 2000. Rotation sensing with a dual atom-interferometer Sagnac gyroscope. Classical and Quantum Gravity, 17(12), 2385.Google Scholar
Hald, J., Sørensen, J. L., Schori, Christian, and Polzik, E. S. 1999. Spin squeezed atoms: a macroscopic entangled ensemble created by light. Physical Review Letters, 83(7), 1319.CrossRefGoogle Scholar
Hall, B. V., Whitlock, S., Anderson, Russell, Hannaford, P., and Sidorov, A. I. 2007. Condensate splitting in an asymmetric double well for atom chip based sensors. Physical Review Letters, 98(3), 030402.Google Scholar
Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E., and Cornell, E. A. 1998a. Dynamics of component separation in a binary mixture of Bose–Einstein condensates. Physical Review Letters, 81, 15391542.Google Scholar
Hall, D. S., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1998b. Measurements of relative phase in two-component Bose–Einstein condensates. Physical Review Letters, 81, 15431546.Google Scholar
Haller, Elmar, Hudson, James, Kelly, Andrew, Cotta, Dylan A., Peaudecerf, Bruno, Bruce, Graham D., and Kuhr, Stefan. 2015. Single-atom imaging of fermions in a quantum-gas microscope. Nature Physics, 11(9), 738.Google Scholar
Halliday, D., Walker, J., and Resnick, R. 2013. Fundamentals of Physics. 10th ed. Wiley.Google Scholar
Hamer, C. J., and Barber, M. N. 1981. Finite-lattice methods in quantum Hamiltonian field theory: I. O(2) and O(3) Heisenberg models. Journal of Physics A: Mathematical and General, 14(1), 259.Google Scholar
Hammerer, Klemens, Sørensen, Anders S., and Polzik, Eugene S. 2010. Quantum interface between light and atomic ensembles. Reviews of Modern Physics, 82(2), 1041.Google Scholar
Hänsel, Wolfgang, Hommelhoff, Peter, Hänsch, T. W., and Reichel, Jakob. 2001. Bose–Einstein condensation on a microelectronic chip. Nature, 413(6855), 498501.Google Scholar
Happer, W., and Mathur, B. S. 1967. Off-resonant light as a probe of optically pumped alkali vapors. Physical Review Letters, 18(15), 577.Google Scholar
Harber, D. M., Lewandowski, H. J., McGuirk, J. M., and Cornell, Eric A. 2002. Effect of cold collisions on spin coherence and resonance shifts in a magnetically trapped ultracold gas. Physical Review A, 66(5), 053616.Google Scholar
Hart, Russell A., Duarte, Pedro M., Yang, Tsung-Lin, Liu, Xinxing, Paiva, Thereza, Khatami, Ehsan, Scalettar, Richard T., Trivedi, Nandini, Huse, David A., and Hulet, Randall G. 2015. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature, 519(7542), 211.Google Scholar
Hasan, M. Zahid, and Kane, Charles L. 2010. Colloquium: topological insulators. Reviews of Modern Physics, 82(4), 3045.Google Scholar
Hau, Lene Vestergaard, Harris, Stephen E., Dutton, Zachary, and Behroozi, Cyrus H. 1999. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 397(6720), 594.Google Scholar
He, Q. Y., Reid, M. D., Vaughan, T. G., Gross, C., Oberthaler, M., and Drummond, P. D. 2011. Einstein–Podolsky–Rosen entanglement strategies in two-well Bose–Einstein condensates. Physical Review Letters, 106(12), 120405.Google Scholar
Hecht, E. 2002. Optics. 4th ed. Addison-Wesley.Google Scholar
Hegerfeldt, Gerhard C., and Wilser, S. 1993. Ensemble or individual system, collapse or no collapse: a description of a single radiating atom. Classical and Quantum Systems, 104.Google Scholar
Heisenberg, Werner. 1985. Über den anschaulichen Inhalt der quantentheo-retischen Kinematik und Mechanik. Pages 478504 of: Original Scientific Papers Wissenschaftliche Originalarbeiten. Springer.CrossRefGoogle Scholar
Helmerson, Kristian, and You, Li. 2001. Creating massive entanglement of Bose–Einstein condensed atoms. Physical Review Letters, 87(17), 170402.Google Scholar
Helstrom, C. W., and Kennedy, R. S. 1974. Noncommuting observables in quantum detection and estimation theory. IEEE Transactions on Information Theory, 20, 1624.Google Scholar
Hemmerich, A., and Hänsch, T. W. 1993. Two-dimesional atomic crystal bound by light. Physical Review Letters, 70(4), 410.Google Scholar
Hemmerich, A., Zimmermann, C., and Hänsch, T. W. 1993. Sub-kHz Rayleigh resonance in a cubic atomic crystal. EPL (Europhysics Letters), 22(2), 89.Google Scholar
Hensinger, Winfried K., Häffner, Hartmut, Browaeys, Antoine, Heckenberg, Norman R., Helmerson, Kris, McKenzie, Callum, Milburn, Gerard J., Phillips, William D., Rolston, Steve L., Rubinsztein-Dunlop, Halina, et al. 2001. Dynamical tunnelling of ultracold atoms. Nature, 412(6842), 52.Google Scholar
Hillery, Mark, and Zubairy, M. Suhail. 2006. Entanglement conditions for two-mode states. Physical Review Letters, 96(5), 050503.Google Scholar
Hinds, E. A., Vale, C. J., and Boshier, M. G. 2001. Two-wire waveguide and interferometer for cold atoms. Physical Review Letters, 86(8), 1462.Google Scholar
Hines, Andrew P., McKenzie, Ross H., and Milburn, Gerard J. 2003. Entanglement of two-mode Bose–Einstein condensates. Physical Review A, 67(1), 013609.Google Scholar
Ho, T.-L. 1998. Spinor Bose condensates in optical traps. Physical Review Letters, 81, 742745.Google Scholar
Ho, T.-L., and Shenoy, V. B. 1996. Binary mixtures of Bose condensates of alkali atoms. Physical Review Letters, 77, 32763279.Google Scholar
Ho, T.-L., and Zhang, S. 2011. Bose–Einstein condensates with spin-orbit interaction. Physical Review Letters, 107(15), 150403.Google Scholar
Hodby, E., Hechenblaikner, G., Hopkins, S. A., Marago, O. M., and Foot, C. J. 2001. Vortex nucleation in Bose–Einstein condensates in an oblate, purely magnetic potential. Physical Review Letters, 88(1), 010405.Google Scholar
Hofmann, Holger F., and Takeuchi, Shigeki. 2003. Violation of local uncertainty relations as a signature of entanglement. Physical Review A, 68(3), 032103.Google Scholar
Holland, M. J., and Burnett, K. 1993. Interferometric detection of optical phase shifts at Heisenberg Limit. Physical Review Letters, 71, 13551358.Google Scholar
Holstein, T., and Primakoff, H. 1940. Field dependence of the intrinsic domain magnetization of a ferromagnet. Physical Review, 58(12), 1098.Google Scholar
Holtz, R., and Hanus, J. 1974. On coherent spin states. Journal of Physics A: Mathematical, Nuclear and General, 7(4), L37.Google Scholar
Horedecki, M., Horodecki, P., and Horodecki, R. 1996. Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223, 18.Google Scholar
Horikoshi, M., and Nakagawa, K. 2006. Dephasing due to atom-atom interaction in a waveguide interferometer using a Bose–Einstein condensate. Physical Review A, 74, 031602.Google Scholar
Horikoshi, M., and Nakagawa, K. 2007. Suppression of dephasing due to a trapping potential and atom-atom interactions in a trapped-condensate interferometer. Physical Review Letters, 99, 180401.Google Scholar
Horodecki, M., Horodecki, P., and Horodecki, R. 1996. Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223(1–2), 18.Google Scholar
Horodecki, Paweł. 1997. Separability criterion and inseparable mixed states with positive partial transposition. Physics Letters A, 232(5), 333339.Google Scholar
Horodecki, Ryszard, Horodecki, Paweł, Horodecki, Michał, and Horodecki, Karol. 2009. Quantum entanglement. Reviews of Modern Physics, 81(2), 865.Google Scholar
Hu, Hui, Jiang, Lei, Liu, Xia-Ji, and Pu, Han. 2011. Probing anisotropic superfluidity in atomic Fermi gases with Rashba spin-orbit coupling. Physical Review Letters, 107(19), 195304.Google Scholar
Hughes, K. J., Deissler, B., Burke, J. H. T., and Sackett, C. A. 2007. High-fidelity manipulation of a Bose–Einstein condensate using optical standing wave. Physical Review A, 76, 035601.Google Scholar
Ilo-Okeke, E. O., and Byrnes, T. 2014. Theory of single-shot phase contrast imaging in spinor Bose–Einstein condensates. Physical Review Letters, 112(23), 233602.Google Scholar
Ilo-Okeke, E. O., and Byrnes, T. 2016. Information and backaction due to phase-contrast-imaging measurements of cold atomic gases: beyond Gaussian states. Physical Review A, 94, 013617.Google Scholar
Ilo-Okeke, E. O., and Zozulya, A. A. 2010. Atomic population distribution in the output ports of cold-atom interferometers with optical splitting and recombination. Physical Review A, 82, 053603.Google Scholar
Inouye, S., Andrews, M. R., Stenger, J., Miesner, H.-J., Stamper-Kurn, D. M., and Ketterle, W. 1998. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature, 392(6672), 151.Google Scholar
Jackiw, Roman W. 1988. Berry’s phase: topological ideas from atomic, molecular and optical physics. Comments on Atomic and Molecular Physics, 21, 71.Google Scholar
Jaksch, Dieter, Bruder, Christoph, Cirac, Juan Ignacio, Gardiner, Crispin W., and Zoller, Peter. 1998. Cold bosonic atoms in optical lattices. Physical Review Letters, 81(15), 3108.Google Scholar
James, D. F. V., and Jerke, J. 2000. Effective Hamiltonian theory and its applications in quantum information. Fortschritte der Physik, 48, 823.Google Scholar
Javanainen, J., and Ivanov, M. Y. 1999. Splitting a trap containing a Bose–Einstein condensate: atom number fluctuations. Physical Review A, 60, 23512359.Google Scholar
Javanainen, J., and Wilkens, M. 1997. Phase and phase diffusion of a split Bose–Einstein condensate. Physical Review Letters, 78, 46754678.Google Scholar
Jeltes, Tom, McNamara, John M., Hogervorst, Wim, Vassen, Wim, Krach-malnicoff, Valentina, Schellekens, Martijn, Perrin, Aurélien, Chang, Hong, Boiron, Denis, Aspect, Alain, et al. 2007. Comparison of the Hanbury Brown–Twiss effect for bosons and fermions. Nature, 445(7126), 402.Google Scholar
Jendrzejewski, Fred, Bernard, Alain, Mueller, Killian, Cheinet, Patrick, Josse, Vincent, Piraud, Marie, Pezzé, Luca, Sanchez-Palencia, Laurent, Aspect, Alain, and Bouyer, Philippe. 2012. Three-dimensional localization of ultracold atoms in an optical disordered potential. Nature Physics, 8(5), 398.Google Scholar
Jessen, Poul S., Gerz, C., Lett, Paul D., Phillips, William D., Rolston, S. L., Spreeuw, R. J. C., and Westbrook, C. I. 1992. Observation of quantized motion of Rb atoms in an optical field. Physical Review Letters, 69(1), 49.Google Scholar
Jing, Yumang, Fadel, Matteo, Ivannikov, Valentin, and Byrnes, Tim. 2019. Split spin-squeezed Bose–Einstein condensates. New Journal of Physics, 21(9), 093038.Google Scholar
Jo, G. B., Shin, Y., Will, S., Pasquini, T. A., Saba, M., Ketterle, W., and Pritchard, D. E. 2007. Long phase coherence time and number squeezing of two Bose–Einstein condensates on an atom chip. Physical Review Letters, 98, 030407.Google Scholar
Jochim, Selim, Bartenstein, Markus, Altmeyer, Alexander, Hendl, Gerhard, Riedl, Stefan, Chin, Cheng, Denschlag, J. Hecker, and Grimm, Rudolf. 2003. Bose–Einstein condensation of molecules. Science, 302(5653), 21012103.Google Scholar
Jones, Robert O. 2015. Density functional theory: its origins, rise to prominence, and future. Reviews of Modern Physics, 87(3), 897.Google Scholar
Jordan, P. 1935. Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörperproblem. Zeitschrift für Physik, 94(7–8), 531535.Google Scholar
Julienne, P. S., Mies, F. H., Tiesinga, E., and Williams, C. J. 1997. Collisional stability of double Bose condensates. Physical Review Letters, 78, 18801883.Google Scholar
Julsgaard, Brian, Kozhekin, Alexander, and Polzik, Eugene S. 2001. Experimental long-lived entanglement of two macroscopic objects. Nature, 413(6854), 400.Google Scholar
Kafle, R. P., Anderson, D. Z., and Zozulya, A. A. 2011. Analysis of a free oscillation atom interferometer. Physical Review A, 84, 033639.Google Scholar
Kasamatsu, K., Tsubota, M., and Ueda, M. 2005. Vortices in multicomponent Bose–Einstein condensates. International Journal of Modern Physics B, 19, 18351904.Google Scholar
Kasevich, M., and Chu, S. 1991. Atomic interferometry using stimulated Raman transition. Physical Review Letters, 67, 181.Google Scholar
Kastberg, A., Phillips, William D., Rolston, S. L., Spreeuw, R. J. C., and Jessen, Poul S. 1995. Adiabatic cooling of cesium to 700 nK in an optical lattice. Physical Review Letters, 74(9), 1542.Google Scholar
Kawaguchi, Y., and Ueda, M. 2012. Spinor Bose-Einstein condensates. arXiv:1001.2072.Google Scholar
Kazantsev, A., Surdutovich, G., and Yakovlev, V. 1990. Mechanical Action of Light on Atoms. World Scientific.Google Scholar
Keil, Mark, Amit, Omer, Zhou, Shuyu, Groswasser, David, Japha, Yonathan, and Folman, Ron. 2016. Fifteen years of cold matter on the atom chip: promise, realizations, and prospects. Journal of Modern Optics, 63(18), 18401885.Google Scholar
Khalatnikov, Isaac M. 2018. An Introduction to the Theory of Superfluidity. CRC Press.Google Scholar
Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, Thomas, Cubizolles, Julien, Carr, Lincoln D., Castin, Yvan, and Salomon, Christophe. 2002. Formation of a matter-wave bright soliton. Science, 296(5571), 12901293.Google Scholar
Kitagawa, M., and Ueda, M. 1993. Squeezed spin states. Physical Review A, 47(6), 5138.Google Scholar
Kittel, Charles. 1987. Quantum Theory of Solids. Wiley.Google Scholar
Kitzinger, Jonas, Chaudhary, Manish, Kondappan, Manikandan, Ivannikov, Valentin, and Byrnes, Tim. 2020. Two-axis two-spin squeezed spin states. Phys. Rev. Research, 2, 033504.Google Scholar
Klausen, Nille N., Bohn, John L., and Greene, Chris H. 2001. Nature of spinor Bose–Einstein condensates in rubidium. Physical Review A, 64(5), 053602.Google Scholar
Köhler, Thorsten, Góral, Krzysztof, and Julienne, Paul S. 2006. Production of cold molecules via magnetically tunable Feshbach resonances. Reviews of Modern Physics, 78(4), 1311.Google Scholar
Kolomeisky, Eugene B., Newman, T. J., Straley, Joseph P., and Qi, Xiaoya. 2000. Low-dimensional Bose liquids: beyond the Gross–Pitaevskii approximation. Physical Review Letters, 85(6), 1146.Google Scholar
Korbicz, J. K., Cirac, J. Ignacio, and Lewenstein, M. 2005. Spin squeezing inequalities and entanglement of N qubit states. Physical Review Letters, 95(12), 120502.Google Scholar
Kordas, George, Witthaut, D., Buonsante, P., Vezzani, A., Burioni, R., Karanikas, A. I., and Wimberger, S. 2015. The dissipative Bose-Hubbard model. European Physical Journal Special Topics, 224(11), 21272171.Google Scholar
Kozuma, M. M., Deng, L., Hagley, E. W., Wen, J., Lutwak, R., Helmerson, K., Rolston, S. L., and Phillips, W. D. 1999. Coherent splitting of Bose–Einstein condensed atoms with optically induced Bragg diffraction. Physical Review Letters, 82, 871875.Google Scholar
Kraft, Sebastian, Vogt, Felix, Appel, Oliver, Riehle, Fritz, and Sterr, Uwe. 2009. Bose-Einstein condensation of alkaline earth atoms: Ca 40. Physical Review Letters, 103(13), 130401.Google Scholar
Krane, Kenneth S., Halliday, David, et al. 1987. Introductory Nuclear Physics. Wiley.Google Scholar
Krauter, H., Muschik, C. A., Jensen, K., Wasilewski, W., Petersen, J. M., Cirac, J. I., and Polzik, E. S. 2011. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Physical Review Letters, 107(8), 080503.Google Scholar
Krauter, H., Salart, D., Muschik, C. A., Petersen, Jonas Meyer, Shen, Heng, Fernholz, Thomas, and Polzik, Eugene Simon. 2013. Deterministic quantum teleportation between distant atomic objects. Nature Physics, 9(7), 400.Google Scholar
Kuhr, Stefan. 2016. Quantum-gas microscopes: a new tool for cold-atom quantum simulators. National Science Review, 3(2), 170172.Google Scholar
Kunkel, Philipp, Prüfer, Maximilian, Strobel, Helmut, Linnemann, Daniel, Frölian, Anika, Gasenzer, Thomas, Gärttner, Martin, and Oberthaler, Markus K. 2018. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science, 360(6387), 413416.Google Scholar
Kurkjian, Hadrien, Pawłowski, Krzysztof, Sinatra, Alice, and Treutlein, Philipp. 2013. Spin squeezing and Einstein–Podolsky–Rosen entanglement of two bimodal condensates in state-dependent potentials. Physical Review A, 88(4), 043605.Google Scholar
Kuzmich, A., Bigelow, N. P., and Mandel, L. 1998. Atomic quantum nondemolition measurements and squeezing. EPL (Europhysics Letters), 42(5), 481.Google Scholar
Kuzmich, A., Mandel, L., and Bigelow, N. P. 2000. Generation of spin squeezing via continuous quantum nondemolition measurement. Physical Review Letters, 85(8), 1594.Google Scholar
Kuzmich, A., Mølmer, K., and Polzik, E. S. 1997. Spin squeezing in an ensemble of atoms illuminated with squeezed light. Physical Review Letters, 79(24), 4782.Google Scholar
Kuzmich, A., and Polzik, E. S. 2000. Atomic quantum state teleportation and swapping. Physical Review Letters, 85(26), 5639.Google Scholar
Labeyrie, Guillaume, Vaujour, E., Mueller, Cord A., Delande, Dominique, Miniatura, Christian, Wilkowski, David, and Kaiser, Robin. 2003. Slow diffusion of light in a cold atomic cloud. Physical Review Letters, 91(22), 223904.Google Scholar
Labuhn, Henning, Barredo, Daniel, Ravets, Sylvain, De Léséleuc, Sylvain, Macrì, Tommaso, Lahaye, Thierry, and Browaeys, Antoine. 2016. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature, 534(7609), 667.Google Scholar
Lambrecht, A., Coudreau, Thomas, Steinberg, A. M., and Giacobino, E. 1996. Squeezing with cold atoms. EPL (Europhysics Letters), 36(2), 93.Google Scholar
Landau, L. D. 1941. Theory of the superfluidity of helium II. Physical Review, 60(4), 356.Google Scholar
Landau, L. D., and Lifshitz, E. M. 2013. Quantum Mechanics: Non-relativistic Theory. Vol. 3. Elsevier.Google Scholar
Lange, Karsten, Peise, Jan, Lücke, Bernd, Kruse, Ilka, Vitagliano, Giuseppe, Apellaniz, Iagoba, Kleinmann, Matthias, Tóth, Géza, and Klempt, Carsten. 2018. Entanglement between two spatially separated atomic modes. Science, 360(6387), 416418.Google Scholar
Langen, Tim, Erne, Sebastian, Geiger, Remi, Rauer, Bernhard, Schweigler, Thomas, Kuhnert, Maximilian, Rohringer, Wolfgang, Mazets, Igor E., Gasenzer, Thomas, and Schmiedmayer, Jörg. 2015. Experimental observation of a generalized Gibbs ensemble. Science, 348(6231), 207211.Google Scholar
Lanyon, Ben P., Hempel, Cornelius, Nigg, Daniel, Müller, Markus, Gerritsma, Rene, Zähringer, F., Schindler, Philipp, Barreiro, Julio T., Rambach, Markus, Kirchmair, Gerhard, et al. 2011. Universal digital quantum simulation with trapped ions. Science, 334(6052), 5761.Google Scholar
Las Heras, U., Mezzacapo, A., Lamata, L., Filipp, S., Wallraff, A., and Solano, E. 2014. Digital quantum simulation of spin systems in superconducting circuits. Physical Review Letters, 112(20), 200501.Google Scholar
Laudat, T., Durgrain, V., Mazzoni, T., Huang, M. Z., Alzar, C. L. G., Sinatra, A., Rosenbush, P., and Reichel, J. 2018. Spontaneous spin squeezing in a rubidium BEC. New Journal of Physics, 20, 073018.Google Scholar
LeBlanc, Lindsay J., Beeler, M. C., Jimenez-Garcia, Karina, Perry, Abigail R., Sugawa, Seiji, Williams, R. A., and Spielman, Ian B. 2013. Direct observation of zitterbewegung in a Bose–Einstein condensate. New Journal of Physics, 15(7), 073011.Google Scholar
Lee, C. T. 1984. Q representation of the atomic coherent states and the origin of fluctuations in superfluorescence. Physical Review A, 30(6), 3308.Google Scholar
Leggett, Anthony J. 1999. Superfluidity. Reviews of Modern Physics, 71(2), S318.Google Scholar
Leggett, Anthony J. 2001. Bose–Einstein condensation in the alkali gases: some fundamental concepts. Reviews of Modern Physics, 73(2), 307.Google Scholar
Lemke, Nathan D., Ludlow, Andrew D., Barber, Z. W., Fortier, Tara M., Diddams, Scott A., Jiang, Yanyi, Jefferts, Steven R., Heavner, Thomas P., Parker, Thomas E., and Oates, Christopher W. 2009. Spin-1/2 optical lattice clock. Physical Review Letters, 103(6), 063001.Google Scholar
Leroux, Ian D., Schleier-Smith, Monika H., and Vuletić, Vladan. 2010. Implementation of cavity squeezing of a collective atomic spin. Physical Review Letters, 104(7), 073602.Google Scholar
Lesanovsky, Igor, and von Klitzing, Wolf. 2007. Time-averaged adiabatic potentials: versatile matter-wave guides and atom traps. Physical Review Letters, 99(8), 083001.Google Scholar
Lett, Paul D., Watts, Richard N., Westbrook, Christoph I., Phillips, William D., Gould, Phillip L., and Metcalf, Harold J. 1988. Observation of atoms laser cooled below the Doppler limit. Physical Review Letters, 61(2), 169.Google Scholar
Levine, Mindy, Heath, A., et al. 1991. Quantum Chemistry. Citeseer.Google Scholar
Lewenstein, M., Kraus, B., Cirac, J. I., and Horodecki, P. 2000. Optimization of entanglement witnesses. Physical Review A, 62(5), 052310.Google Scholar
Lewenstein, M., Sanpera, A., Ahufinger, V., Damski, B., Sen, A., and Sen, U. 2007. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Advances in Physics, 56(2), 243379.Google Scholar
Lewenstein, M., Santos, L., Baranov, M. A., and Fehrmann, H. 2004. Atomic Bose-Fermi mixtures in an optical lattice. Physical Review Letters, 92(5), 050401.Google Scholar
Li, Jun-Ru, Lee, Jeongwon, Huang, Wujie, Burchesky, Sean, Shteynas, Boris, Top, Furkan Çağrı, Jamison, Alan O., and Ketterle, Wolfgang. 2017. A stripe phase with supersolid properties in spin-orbit-coupled Bose–Einstein condensates. Nature, 543(7643), 9194.Google Scholar
Li, Tongcang, Kheifets, Simon, Medellin, David, and Raizen, Mark G. 2010. Measurement of the instantaneous velocity of a Brownian particle. Science, 328(5986), 16731675.Google Scholar
Lin, Y.-J., Compton, Robert L., Jiménez-García, Karina, Phillips, William D., Porto, James V., and Spielman, Ian B. 2011b. A synthetic electric force acting on neutral atoms. Nature Physics, 7(7), 531534.Google Scholar
Lin, Y.-J., Compton, Robert L., Jiménez-García, Karina, Porto, James V., and Spielman, Ian B. 2009. Synthetic magnetic fields for ultracold neutral atoms. Nature, 462(7273), 628632.Google Scholar
Lin, Y.-J., Jiménez-García, K., and Spielman, Ian B. 2011a. Spin-orbit-coupled Bose–Einstein condensates. Nature, 471(7336), 8386.Google Scholar
Liu, Chien, Dutton, Zachary, Behroozi, Cyrus H., and Hau, Lene Vestergaard. 2001. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature, 409(6819), 490.Google Scholar
Liu, Y. C., Xu, Z. F., Jin, G. R., and You, L. 2011. Spin squeezing: transforming one-axis twisting into two-axis twisting. Physical Review Letters, 107(1), 013601.Google Scholar
Lloyd, Seth. 1995. Almost any quantum logic gate is universal. Physical Review Letters, 75(2), 346.Google Scholar
Lloyd, Seth. 1996. Universal quantum simulators. Science, 1073–1078.Google Scholar
Longuet-Higgins, Hugh Christopher, Öpik, U., Pryce, Maurice Henry Lecor-ney, and Sack, R. A. 1958. Studies of the Jahn-Teller effect. II. The dynamical problem. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 244(1236), 116.Google Scholar
Lukin, M. D., Fleischhauer, M., Cote, R., Duan, L. M., Jaksch, D., Cirac, J. I., and Zoller, P. 2001. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Physical Review Letters, 87(3), 037901.Google Scholar
Ma, Jian, Wang, Xiaoguang, Sun, Chang-Pu, and Nori, Franco. 2011. Quantum spin squeezing. Physics Reports, 509(2–3), 89165.Google Scholar
Madison, K. W., Chevy, F., Wohlleben, W., and Dalibard, J. 2000. Vortex formation in a stirred Bose–Einstein condensate. Physical Review Letters, 84(5), 806.Google Scholar
Mandel, L., and Wolf, E. 1995. Optical Coherence and Quantum Optics. Cambridge University Press.Google Scholar
Mandel, Olaf, Greiner, Markus, Widera, Artur, Rom, Tim, Hänsch, Theodor W., and Bloch, Immanuel. 2003. Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Physical Review Letters, 91(1), 010407.Google Scholar
Marago, O. M., Hopkins, S. A., Arlt, J., Hodby, E., Hechenblaikner, G., and Foot, C. J. 2000. Observation of the scissors mode and evidence for superfluidity of a trapped Bose–Einstein condensed gas. Physical Review Letters, 84(10), 2056.Google Scholar
Marchant, A. L., Billam, T. P., Wiles, T. P., Yu, M. M. H., Gardiner, S. A., and Cornish, S. L. 2013. Controlled formation and reflection of a bright solitary matter-wave. Nature Communications, 4, 1865.Google Scholar
Marte, M., and Stenholm, S. 1992. Multiphoton resonance in atomic Bragg scattering. Applied Physics B, 54, 443450.Google Scholar
Martin, P. J., Oldaker, B. G., Miklich, H., and Pritchard, D. E. 1988. Bragg scattering of atoms from a standing wave light. Physical Review Letters, 60, 515518.Google Scholar
Matthews, M. R., Anderson, B. P., Haljan, P. C., Hall, D. S., Wieman, C. E., and Cornell, E. A. 1999. Vortices in a Bose–Einstein condensate. Physical Review Letters, 83(13), 2498.Google Scholar
Matthews, M. R., Hall, D. S., Jin, D. S., Ensher, J. R., Wieman, C. E., Cornell, E. A., Dalfovo, F., Minniti, C., and Stringari, S. 1998. Dynamical response of a Bose–Einstein condensate to a discontinuous change in internal state. Physical Review Letters, 81, 243247.Google Scholar
McArdle, Sam, Endo, Suguru, Aspuru-Guzik, Alan, Benjamin, Simon, and Yuan, Xiao. 2018. Quantum computational chemistry. arXiv:1808.10402.Google Scholar
Mead, C. Alden, and Truhlar, Donald G. 1979. On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. Journal of Chemical Physics, 70(5), 22842296.Google Scholar
Mekhov, Igor B., Maschler, Christoph, and Ritsch, Helmut. 2007. Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity quantum electrodynamics. Nature Physics, 3(5), 319.Google Scholar
Melko, R. G., Paramekanti, A., Burkov, A. A., Vishwanath, A., Sheng, D. N., and Balents, Leon. 2005. Supersolid order from disorder: hard-core bosons on the triangular lattice. Physical Review Letters, 95(12), 127207.Google Scholar
Mertes, K. M., Merrillc, J. W., Carretero-González, R., Frantzeskakis, D. J., Kevrekidis, P. G., and Hall, D. S. 2007. Nonequilibrium dynamics and superfluid ring excitations in binary Bose–Einstein condensates. Physical Review Letters, 99, 190402.Google Scholar
Metcalf, Harold J., and der Straten, P. V. 1999. Laser Cooling and Trapping. Springer-Verlag.Google Scholar
Metcalf, Harold, and van der Straten, Peter. 1994. Cooling and trapping of neutral atoms. Physics Reports, 244(4–5), 203286.Google Scholar
Metcalf, Harold J., and van der Straten, Peter. 2007. Laser cooling and trapping of neutral atoms. The Optics Encyclopedia: Basic Foundations and Practical Applications. Wiley.Google Scholar
Meystre, Pierre. 2001. Atom Optics. Vol. 33. Springer Science and Business Media.Google Scholar
Micheli, Andrea, Jaksch, D., Cirac, J. Ignacio, and Zoller, P. 2003. Many-particle entanglement in two-component Bose–Einstein condensates. Physical Review A, 67(1), 013607.Google Scholar
Milburn, G. J., Corney, J., Wright, E. M., and Walls, D. F. 1997. Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Physical Review A, 55(6), 43184324.Google Scholar
Miroshnychenko, Yevhen, Alt, Wolfgang, Dotsenko, Igor, Förster, Leonid, Khudaverdyan, Mkrtych, Meschede, Dieter, Schrader, Dominik, and Rauschenbeutel, Arno. 2006. Quantum engineering: an atom-sorting machine. Nature, 442(7099), 151.Google Scholar
Mizel, Ari, Lidar, Daniel A., and Mitchell, Morgan. 2007. Simple proof of equivalence between adiabatic quantum computation and the circuit model. Physical Review Letters, 99(7), 070502.Google Scholar
Mohseni, Naeimeh, Narozniak, Marek, Pyrkov, Alexey N., Ivannikov, Valentin, Dowling, Jonathan P., and Byrnes, Tim. 2019. Error suppression in adiabatic quantum computing with qubit ensembles. npj Quantum Information 7, 71 (2021)Google Scholar
Moler, K., Weiss, D. S., Kasevich, K., and Chu, S. 1992. Theoretical analysis of velocity-selective Raman transitions. Physical Review A, 45, 342348.Google Scholar
Mølmer, Klaus. 1999. Twin-correlations in atoms. European Physical Journal D. Atomic, Molecular, Optical and Plasma Physics, 5(2), 301305.Google Scholar
Mølmer, Klaus, Castin, Yvan, and Dalibard, Jean. 1993. Monte Carlo wave-function method in quantum optics. Journal of the Optical Society of America B, 10(3), 524538.Google Scholar
Mueller, E. J., and Ho, T. L. 2002. Two-component Bose–Einstein condensates with large number of vortices. Physical Review Letters, 88, 180403.Google Scholar
Muruganandam, Paulsamy, and Adhikari, Sadhan K. 2009. Fortran programs for the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap. Computer Physics Communications, 180(10), 18881912.Google Scholar
Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A., and Wieman, C. E. 1997. Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Physical Review Letters, 78, 586589.Google Scholar
Nielsen, M. A., and Chuang, I. L. 2000. Quantum Computation and Quantum Information. Cambridge University Press.Google Scholar
Oberthaler, M. K., Abfalterer, R., Bernet, S., Keller, C., Schmiedmayer, J., and Zeilinger, A. 1999. Dynamical diffraction of atomic matter waves by crystals of light. Physical Review A, 60, 456472.Google Scholar
Obrecht, John Michael, Wild, R. J., Antezza, M., Pitaevskii, L. P., Stringari, S., and Cornell, Eric A. 2007. Measurement of the temperature dependence of the Casimir–Polder force. Physical Review Letters, 98(6), 063201.Google Scholar
Ockeloen, C. F., Schmied, R., Riedel, M. F., and Treutlein, P. 2013. Quantum metrology with a scanning probe atom interferometer. Physical Review Letters, 111, 143001.Google Scholar
ODell, Duncan H. J., Giovanazzi, Stefano, and Eberlein, Claudia. 2004. Exact hydrodynamics of a trapped dipolar Bose–Einstein condensate. Physical Review Letters, 92(25), 250401.Google Scholar
O’hara, K. M., Hemmer, S. L., Gehm, M. E., Granade, S. R., and Thomas, J. E. 2002. Observation of a strongly interacting degenerate Fermi gas of atoms. Science, 298(5601), 21792182.Google Scholar
Ohashi, Yoji, and Griffin, A. 2002. BCS–BEC crossover in a gas of Fermi atoms with a Feshbach resonance. Physical Review Letters, 89(13), 130402.Google Scholar
Ohmi, T., and Machida, K. 1998. Spinor Bose condensates in optical traps. Journal of the Physical Society of Japan, 67, 18221825.Google Scholar
Oitmaa, Jaan, Hamer, Chris, and Zheng, Weihong. 2006. Series Expansion Methods for Strongly Interacting Lattice Models. Cambridge University Press.Google Scholar
Olshanii, M., and Dunjko, V. 2005. Interferometry in dense nonlinear media and interaction-induced loss of contrast in microfabricated atom interferometers. arXiv:cond-mat/0505358.Google Scholar
Orzel, Chad, Tuchman, A. K., Fenselau, M. L., Yasuda, M., and Kasevich, M. A. 2001. Squeezed states in a Bose–Einstein condensate. Science, 291(5512), 23862389.Google Scholar
Osterloh, K., Baig, M., Santos, L., Zoller, P., and Lewenstein, M. 2005. Cold atoms in non-Abelian gauge potentials: from the Hofstadter “moth” to lattice gauge theory. Physical Review Letters, 95(1), 010403.Google Scholar
Ostrovskaya, Elena A., and Kivshar, Yuri S. 2003. Matter-wave gap solitons in atomic band-gap structures. Physical Review Letters, 90(16), 160407.Google Scholar
Paivi, Torma, and Klaus, Sengstock. 2014. Quantum Gas Experiments: Exploring Many-Body States. Vol. 3. World Scientific.Google Scholar
Pancharatnam, Shivaramakrishnan. 1956. Generalized theory of interference and its applications. Pages 398417 of: Proceedings of the Indian Academy of Sciences Section A. Vol. 44. Springer.Google Scholar
Paredes, Belén, Widera, Artur, Murg, Valentin, Mandel, Olaf, Fölling, Simon, Cirac, Ignacio, Shlyapnikov, Gora V., Hänsch, Theodor W., and Bloch, Immanuel. 2004. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature, 429(6989), 277.Google Scholar
Paris, M. G. 2009. Quantum estimation for quantum technology. International Journal of Quantum Information, 7, 125137.Google Scholar
Parker, N. G., and Adams, C. S. 2005. Emergence and decay of turbulence in stirred atomic Bose–Einstein condensates. Physical Review Letters, 95(14), 145301.Google Scholar
Perelomov, Askold. 2012. Generalized Coherent States and Their Applications. Springer Science and Business Media.Google Scholar
Peres, Asher. 1996. Separability criterion for density matrices. Physical Review Letters, 77(Aug), 14131415.Google Scholar
Perez-Garcia, Victor M., Michinel, Humberto, Cirac, J. I., Lewenstein, M., and Zoller, P. 1997. Dynamics of Bose–Einstein condensates: variational solutions of the Gross–Pitaevskii equations. Physical Review A, 56(2), 1424.Google Scholar
Perez-Garcia, Victor M., Michinel, Humberto, and Herrero, Henar. 1998. Bose–Einstein solitons in highly asymmetric traps. Physical Review A, 57(5), 3837.Google Scholar
Peters, A., Chung, K. Y., and Chu, S. 1999. Measurement of gravitational acceleration by dropping atoms. Nature, 400, 849.Google Scholar
Peters, A., Chung, K. Y., and Chu, S. 2001. High-precision gravity measurements using atom interferometry. Metrologia, 38, 25.Google Scholar
Pethick, C. J., and Smith, H. 2002. Bose–Einstein Condensation in Dilute Gases. Cambridge University Press.Google Scholar
Pezzè, L., and Smerzi, A. 2014. Quantum theory of phase estimation. arXiv:1411.5164.Google Scholar
Pfeuty, Pierre. 1970. The one-dimensional Ising model with a transverse field. Annals of Physics, 57(1), 7990.Google Scholar
Phillips, William D. 1998. Nobel lecture: laser cooling and trapping of neutral atoms. Reviews of Modern Physics, 70(3), 721.Google Scholar
Phillips, William D., Prodan, John V., and Metcalf, Harold J. 1985. Laser cooling and electromagnetic trapping of neutral atoms. Journal of the Optical Society of America B, 2(11), 17511767.Google Scholar
Pitaevskii, L. P. 1961. Vortex lines in an imperfect Bose gas. Soviet Physics JETP, 13(2), 451454.Google Scholar
Pitaevskii, L. P., and Stringari, S. 2016. Bose–Einstein Condensation and Superfluidity. Vol. 164. Oxford University Press.Google Scholar
Plenio, M. B. 2005. Logarithmic negativity: a full entanglement monotone that is not convex. Physical Review Letters, 95(Aug), 090503.Google Scholar
Plenio, M. B., and Knight, P. L. 1998. The quantum-jump approach to dissipative dynamics in quantum optics. Reviews of Modern Physics, 70(1), 101.Google Scholar
Plenio, M. B., and Virmani, S. S. 2014. An introduction to entanglement theory. Pages 173209 of: Quantum Information and Coherence. Springer.Google Scholar
Preiss, Philipp M., Ma, Ruichao, Tai, M. Eric, Lukin, Alexander, Rispoli, Matthew, Zupancic, Philip, Lahini, Yoav, Islam, Rajibul, and Greiner, Markus. 2015. Strongly correlated quantum walks in optical lattices. Science, 347(6227), 12291233.Google Scholar
Pu, H., and Meystre, Pierre. 2000. Creating macroscopic atomic Einstein–Podolsky–Rosen states from Bose–Einstein condensates. Physical Review Letters, 85(19), 3987.Google Scholar
Pyrkov, Alexey N., and Byrnes, Tim. 2013. Entanglement generation in quantum networks of Bose–Einstein condensates. New Journal of Physics, 15(9), 093019.Google Scholar
Raab, E. L., Prentiss, M., Cable, Alex, Chu, Steven, and Pritchard, David E. 1987. Trapping of neutral sodium atoms with radiation pressure. Physical Review Letters, 59(23), 2631.Google Scholar
Rabl, P., DeMille, D., Doyle, John M., Lukin, Mikhail D., Schoelkopf, R. J., and Zoller, P. 2006. Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Physical Review Letters, 97(3), 033003.Google Scholar
Radcliffe, J. M. 1971. Some properties of coherent spin states. Journal of Physics A: General Physics, 4(3), 313.Google Scholar
Raghavan, S., Smerzi, A., Fantoni, S., and Shenoy, S. R. 1999. Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping. Physical Review A, 59, 620633.Google Scholar
Raman, C., Abo-Shaeer, J. R., Vogels, J. M., Xu, K., and Ketterle, W. 2001. Vortex nucleation in a stirred Bose–Einstein condensate. Physical Review Letters, 87(Nov), 210402.Google Scholar
Ramsey, N. F. 1950. A molecular beam resonance method with separated oscillating fields. Physical Review, 78(6), 695699.Google Scholar
Ramsey, N. F. 1985. Molecular Beams. Oxford University Press.Google Scholar
Rasel, E. M., Oberthaler, M. K., Batelaan, H., Schmiedmayer, J., and Zeilinger, A. 1995. Atom wave interferometry with diffraction gratings of Light. Physical Review Letters, 75, 26332637.Google Scholar
Ratti, Claudia. 2018. Lattice QCD and heavy ion collisions: a review of recent progress. Reports on Progress in Physics, 81(8), 084301.Google Scholar
Regal, C. A., Greiner, M., and Jin, D. S. 2004. Observation of resonance condensation of fermionic atom pairs. Physical Review Letters, 92(4), 040403.Google Scholar
Regal, C. A., Ticknor, C., Bohn, J. L., and Jin, D. S. 2003. Creation of ultracold molecules from a Fermi gas of atoms. Nature, 424(6944), 47.Google Scholar
Reichel, Jakob, and Vuletic, Vladan. 2011. Atom Chips. Wiley.Google Scholar
Riedel, M. F., Böhi, P., L. i., Y., Hänsch, T. W., Sinatra, A., and Treutlein, P. 2010. Atom-chip-based generation of entanglement for quantum metrology. Nature, 464, 1170.Google Scholar
Roach, T. M., Abele, H., Boshier, M. G., Grossman, H. L., Zetie, K. P., and Hinds, E. A. 1995. Realization of a magnetic mirror for cold atoms. Physical Review Letters, 75(4), 629.Google Scholar
Roati, G., De Mirandes, E., Ferlaino, F., Ott, H., Modugno, G., and Inguscio, M. 2004. Atom interferometry with trapped Fermi gases. Physical Review Letters, 92(23), 230402.Google Scholar
Robertson, H. P. 1929. The uncertainty principle. Physical Review, 34(1), 163.Google Scholar
Robertson, H. P. 1934. An indeterminacy relation for several observables and its classical interpretation. Physical Review, 46(9), 794.Google Scholar
Rogel-Salazar, Jesus. 2013. The Gross–Pitaevskii equation and Bose–Einstein condensates. European Journal of Physics, 34(2), 247.Google Scholar
Romans, M. W. J., Duine, R. A., Sachdev, Subir, and Stoof, H. T. C. 2004. Quantum phase transition in an atomic Bose gas with a Feshbach resonance. Physical Review Letters, 93(2), 020405.Google Scholar
Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M., and Tino, G. M. 2014. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 510(7506), 518.Google Scholar
Rosseau, Daniel, Ha, Qianqian, and Byrnes, Tim. 2014. Entanglement generation between two spinor Bose–Einstein condensates with cavity QED. Physical Review A, 90(5), 052315.Google Scholar
Ruostekoski, J., and Anglin, J. R. 2001. Creating vortex rings and three-dimensional skyrmions in Bose–Einstein condensates. Physical Review Letters, 86(18), 3934.Google Scholar
Ruseckas, Julius, Juzeliūnas, G., Öhberg, Patrik, and Fleischhauer, Michael. 2005. Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. Physical Review Letters, 95(1), 010404.Google Scholar
Sadgrove, M., Horikoshi, M., Sekimura, T., and Nakagawa, K. 2007. Rectified momentum transport for a kicked Bose–Einstein condensate. Physical Review Letters, 99, 043002.Google Scholar
Saffman, Mark, Walker, Thad G., and Mølmer, Klaus. 2010. Quantum information with Rydberg atoms. Reviews of Modern Physics, 82(3), 2313.Google Scholar
Sakurai, Jun John, and Commins, Eugene D. 1995. Modern Quantum Mechanics, Revised Edition. Cambridge University Press.Google Scholar
Salasnich, L., Parola, A., and Reatto, L. 2002. Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates. Physical Review A, 65(4), 043614.Google Scholar
Sauter, T., Neuhauser, W., Blatt, R., and Toschek, P. E. 1986. Observation of quantum jumps. Physical Review Letters, 57(14), 1696.Google Scholar
Scarola, Vito W., and Sarma, S. Das. 2005. Quantum phases of the extended Bose-Hubbard Hamiltonian: Possibility of a supersolid state of cold atoms in optical lattices. Physical Review Letters, 95(3), 033003.Google Scholar
Schaetz, Tobias, Monroe, Chris R., and Esslinger, Tilman. 2013. Focus on quantum simulation. New Journal of Physics, 15(8), 085009.Google Scholar
Schellekens, Martijn, Hoppeler, Rodolphe, Perrin, Aurélien, Gomes, J. Viana, Boiron, Denis, Aspect, Alain, and Westbrook, Christoph I. 2005. Hanbury Brown Twiss effect for ultracold quantum gases. Science, 310(5748), 648651.Google Scholar
Schindler, Philipp, Müller, Markus, Nigg, Daniel, Barreiro, Julio T., Martinez, Esteban A., Hennrich, Markus, Monz, T., Diehl, Sebastian, Zoller, Peter, and Blatt, Rainer. 2013. Quantum simulation of dynamical maps with trapped ions. Nature Physics, 9(6), 361.Google Scholar
Schlosshauer, Maximilian A. 2007. Decoherence and the Quantum-to-Classical Transition. Springer Science and Business Media.Google Scholar
Schneider, U., Hackermüller, L., Will, S., Best, T., Bloch, Immanuel, Costi, T. A., Helmes, R. W., Rasch, D., and Rosch, A. 2008. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science, 322(5907), 15201525.Google Scholar
Schollwöck, Ulrich. 2011. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326(1), 96192.Google Scholar
Schreiber, Michael, Hodgman, Sean S., Bordia, Pranjal, Lüschen, Henrik P., Fischer, Mark H., Vosk, Ronen, Altman, Ehud, Schneider, Ulrich, and Bloch, Immanuel. 2015. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science, 349(6250), 842845.Google Scholar
Schumm, T., Hofferberth, S., Andersson, L. M., Wildermuth, S., Groth, S., Bar-Joseph, I., Schmiedmayer, J., and Krüger, P. 2005. Matter-wave interferometry in a double well on an atom chip. Nature Physics, 1, 5762.Google Scholar
Schweikhard, Volker, Coddington, I., Engels, Peter, Tung, Shihkuang, and Cornell, Eric A. 2004. Vortex-lattice dynamics in rotating spinor Bose–Einstein condensates. Physical Review Letters, 93(21), 210403.Google Scholar
Schwinger, J. 1965. Quantum Mechanics of Angular Momentum. A Collection of Reprints and Original Papers. Ed. Biedenharn, L. C. and van Dam, H.. Academic Press.Google Scholar
Scully, Marlan O., and Zubairy, M. Suhail. 1999. Quantum Optics. Cambridge University Press.Google Scholar
Scully, M. O., and Wódkiewicz, K. 1994. Spin quasi-distribution functions. Foundations of Physics, 24(1), 85107.Google Scholar
Seaman, B. T., Krämer, M., Anderson, D. Z., and Holland, M. J. 2007. Atomtronics: ultracold-atom analogs of electronic devices. Physical Review A, 75(2), 023615.Google Scholar
Semenenko, Henry, and Byrnes, Tim. 2016. Implementing the Deutsch–Jozsa algorithm with macroscopic ensembles. Physical Review A, 93(5), 052302.Google Scholar
Sherson, Jacob F., Krauter, Hanna, Olsson, Rasmus K., Julsgaard, Brian, Hammerer, Klemens, Cirac, Ignacio, and Polzik, Eugene S. 2006. Quantum teleportation between light and matter. Nature, 443(7111), 557.Google Scholar
Sherson, Jacob F., Weitenberg, Christof, Endres, Manuel, Cheneau, Marc, Bloch, Immanuel, and Kuhr, Stefan. 2010. Single-atom-resolved fluorescence imaging of an atomic mott insulator. Nature, 467(7311), 68.Google Scholar
Shin, Y., Saba, M., Pasquini, T. A., Ketterle, W., Pritchard, D. E., and Leanhardt, A. E. 2004. Atom interferometry with Bose–Einstein condensates in a double-well potential. Physical Review Letters, 92, 050405.Google Scholar
Shore, B. W. 1990. The Theory of Coherent Atomic Excitation. Vol. 2. Wiley-Interscience.Google Scholar
Simon, R. 2000. Peres–Horodecki separability criterion for continuous variable systems. Physical Review Letters, 84(Mar), 27262729.Google Scholar
Simula, T. P., and Blakie, P. B. 2006. Thermal activation of vortex-antivortex pairs in quasi-two-dimensional Bose–Einstein condensates. Physical Review Letters, 96(2), 020404.Google Scholar
Slusher, R. E., Hollberg, L. W., Yurke, Bernard, Mertz, J. C., and Valley, J. F. 1985. Observation of squeezed states generated by four-wave mixing in an optical cavity. Physical Review Letters, 55(22), 2409.Google Scholar
Smerzi, A., Fantoni, S., Giovanazzi, S., and Shenoy, S. R. 1997. Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates. Physical Review Letters, 79, 49504953.Google Scholar
Söding, J., Guéry-Odelin, D., Desbiolles, P., Chevy, F., Inamori, H., and Dalibard, J. 1999. Three-body decay of a rubidium Bose–Einstein condensate. Applied Physics B, 69(4), 257261.Google Scholar
Sørensen, A. S., Duan, L.-M., Cirac, J. I., and Zoller, Peter. 2001. Many-particle entanglement with Bose–Einstein condensates. Nature, 409(6816), 63.Google Scholar
Sørensen, A. S., and Mølmer, K. 2001. Entanglement and extreme spin squeezing. Physical Review Letters, 86(20), 4431.Google Scholar
Stamper-Kurn, D. M., Andrews, M. R., Chikkatur, A. P., Inouye, S., Miesner, H.-J., Stenger, J., and Ketterle, W. 1998. Optical confinement of a Bose–Einstein condensate. Physical Review Letters, 80, 20272030.Google Scholar
Stanescu, Tudor D., Anderson, Brandon, and Galitski, Victor. 2008. Spin-orbit coupled Bose–Einstein condensates. Physical Review A, 78(2), 023616.Google Scholar
Steck, Daniel A. 2001. Rubidium 87 D Line Data.Google Scholar
Steck, Daniel A. 2007. Quantum and atom optics. Oregon Center for Optics and Department of Physics, University of Oregon, 47.Google Scholar
Steel, M. J., and Collett, M. J. 1998. Quantum state of two trapped Bose–Einstein condensates with a Josephson coupling. Physical Review A, 57, 29202930.Google Scholar
Steinhauer, J., Ozeri, R., Katz, N., and Davidson, N. 2002. Excitation spectrum of a Bose–Einstein condensate. Physical Review Letters, 88(12), 120407.Google Scholar
Stickney, J. A., Anderson, D. Z., and Zozulya, A. A. 2007. Increasing the coherence tome of Bose–Einstein condensate interferometers with optical control of dynamics. Physical Review A, 75, 063603.Google Scholar
Stöferle, Thilo, Moritz, Henning, Schori, Christian, Köhl, Michael, and Esslinger, Tilman. 2004. Transition from a strongly interacting 1D superfluid to a Mott insulator. Physical Review Letters, 92(13), 130403.Google Scholar
Stöferle, Thilo, Moritz, Henning, Günter, Kenneth, Köhl, Michael, and Esslinger, Tilman. 2006. Molecules of fermionic atoms in an optical lattice. Physical Review Letters, 96(3), 030401.Google Scholar
Strecker, Kevin E., Partridge, Guthrie B., Truscott, Andrew G., and Hulet, Randall G. 2002. Formation and propagation of matter-wave soliton trains. Nature, 417(6885), 150.Google Scholar
Strinati, Giancarlo Calvanese, Pieri, Pierbiagio, Röpke, Gerd, Schuck, Peter, and Urban, Michael. 2018. The BCS–BEC crossover: from ultra-cold Fermi gases to nuclear systems. Physics Reports, 738, 176.Google Scholar
Suzuki, Masuo. 1976a. Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Communications in Mathematical Physics, 51(2), 183190.Google Scholar
Suzuki, Masuo. 1976b. Relationship between d-dimensional quantal spin systems and (d + 1)-dimensional Ising systems: Equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Progress of Theoretical Physics, 56(5), 14541469.Google Scholar
Szangolies, Jochen, Kampermann, Hermann, and Bruß, Dagmar. 2015. Detecting entanglement of unknown quantum states with random measurements. New Journal of Physics, 17(11), 113051.Google Scholar
Takamoto, Masao, Hong, Feng-Lei, Higashi, Ryoichi, and Katori, Hidetoshi. 2005. An optical lattice clock. Nature, 435(7040), 321324.Google Scholar
Takano, T., Fuyama, M., Namiki, R., and Takahashi, Y. 2009. Spin squeezing of a cold atomic ensemble with the nuclear spin of one-half. Physical Review Letters, 102(3), 033601.Google Scholar
Tang, Yijun, Kao, Wil, L. i., Kuan-Yu, Seo, Sangwon, Mallayya, Krishnanand, Rigol, Marcos, Gopalakrishnan, Sarang, , and Lev, Benjamin L. 2018. Ther-malization near integrability in a dipolar quantum Newtons cradle. Physical Review X, 8(2), 021030.Google Scholar
Tarruell, Leticia, and Sanchez-Palencia, Laurent. 2018. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. Comptes Rendus Physique, 19(6), 365393.Google Scholar
Terhal, Barbara M. 2002. Detecting quantum entanglement. Theoretical Computer Science, 287(1), 313335.Google Scholar
Theocharis, G., Schmelcher, P., Kevrekidis, P. G., and Frantzeskakis, D. J. 2005. Matter-wave solitons of collisionally inhomogeneous condensates. Physical Review A, 72(3), 033614.Google Scholar
Thompson, William J. 2008. Angular Momentum: An Illustrated Guide to Rotational Symmetries for Physical Systems. Wiley.Google Scholar
Thomsen, L. K., Mancini, Stefano, and Wiseman, Howard Mark. 2002. Spin squeezing via quantum feedback. Physical Review A, 65(6), 061801.Google Scholar
Tilley, David R. 2019. Superfluidity and Superconductivity. Routledge.Google Scholar
Tilma, Todd, Everitt, Mark J., Samson, John H., Munro, William J., and Nemoto, Kae. 2016. Wigner functions for arbitrary quantum systems. Physical Review Letters, 117(18), 180401.Google Scholar
Timmermans, Eddy, Tommasini, Paolo, Hussein, Mahir, and Kerman, Arthur. 1999. Feshbach resonances in atomic Bose–Einstein condensates. Physics Reports, 315(1–3), 199230.Google Scholar
Torii, Y., Suzuki, Y., Kozuma, M., Sugiura, T., Kuga, T., Deng, L., and Hagley, E. W. 2000. Mach–Zehnder Bragg interferometer for a Bose–Einstein condensate. Physical Review A, 61, 041602.Google Scholar
Tóth, Géza, and Apellaniz, Iagoba. 2014. Quantum metrology from a quantum information science perspective. Journal of Physics A: Mathematical and Theoretical, 47(42), 424006.Google Scholar
Tóth, Géza, Knapp, Christian, Gühne, Otfried, and Briegel, Hans J. 2007. Optimal spin squeezing inequalities detect bound entanglement in spin models. Physical Review Letters, 99(25), 250405.Google Scholar
Tóth, Géza, Knapp, Christian, Gühne, Otfried, and Briegel, Hans J. 2009. Spin squeezing and entanglement. Physical Review A, 79(4), 042334.Google Scholar
Treutlein, Philipp. 2008. Coherent Manipulation of Ultracold Atoms on Atom Chips. Ph.D. thesis, LMU Munich.Google Scholar
Treutlein, Philipp, Hänsch, Theodor W., Reichel, Jakob, Negretti, Antonio, Cirone, Markus A., and Calarco, Tommaso. 2006. Microwave potentials and optimal control for robust quantum gates on an atom chip. Physical Review A, 74(2), 022312.Google Scholar
Treutlein, Philipp, Hommelhoff, Peter, Steinmetz, Tilo, Hänsch, Theodor W., and Reichel, Jakob. 2004. Coherence in microchip traps. Physical Review Letters, 92(20), 203005.Google Scholar
Tripathi, Vinay, Radhakrishnan, Chandrashekar, and Byrnes, Tim. 2020. Covariance matrix entanglement criterion for an arbitrary set of operators. New Journal of Physics, 22(7), 073055.Google Scholar
Trotter, Hale F. 1959. On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4), 545551.Google Scholar
Urban, E., Johnson, Todd A., Henage, T., Isenhower, L., Yavuz, D. D., Walker, T. G., and Saffman, M. 2009. Observation of Rydberg blockade between two atoms. Nature Physics, 5(2), 110114.Google Scholar
Ushijima, Ichiro, Takamoto, Masao, Das, Manoj, Ohkubo, Takuya, and Katori, Hidetoshi. 2015. Cryogenic optical lattice clocks. Nature Photonics, 9(3), 185189.Google Scholar
Vaidman, Lev. 1994. Teleportation of quantum states. Physical Review A, 49(2), 1473.Google Scholar
Verkerk, P., Lounis, B., Salomon, C., Cohen-Tannoudji, C., Courtois, J.-Y., and Grynberg, G. 1992. Dynamics and spatial order of cold cesium atoms in a periodic optical potential. Physical Review Letters, 68(26), 3861.Google Scholar
Vidal, Guifré, and Werner, Reinhard F. 2002. Computable measure of entanglement. Physical Review A, 65(3), 032314.Google Scholar
von Neumann, J. 1927. Thermodynamik quantenmechanischer Grossen. Gott. Nachr., 273.Google Scholar
Walls, Daniel F. 1983. Squeezed states of light. Nature, 306(5939), 141.Google Scholar
Walls, Daniel F., and Milburn, Gerard J. 2007. Quantum Optics. Springer Science and Business Media.Google Scholar
Wang, Chunji, Gao, Chao, Jian, Chao-Ming, and Zhai, Hui. 2010. Spin-orbit coupled spinor Bose–Einstein condensates. Physical Review Letters, 105(16), 160403.Google Scholar
Wang, Xiaoguang, and Sanders, Barry C. 2003. Spin squeezing and pairwise entanglement for symmetric multiqubit states. Physical Review A, 68(1), 012101.Google Scholar
Wang, Y. J., Anderson, D. Z., Bright, V. M., Cornell, E. A., Diot, Q., Kishimoto, T., Prentiss, M., Saravanan, R. A., Segal, S. R., and Wu, S. 2005. Atom Michelson interferometer on a chip using a Bose–Einstein condensate. Physical Review Letters, 94, 090405.Google Scholar
Weedbrook, Christian, Pirandola, Stefano, García-Patrón, Raúl, Cerf, Nicolas J., Ralph, Timothy C., Shapiro, Jeffrey H., and Lloyd, Seth. 2012. Gaussian quantum information. Reviews of Modern Physics, 84(2), 621.Google Scholar
Wehrl, Alfred. 1978. General properties of entropy. Reviews of Modern Physics, 50(2), 221.Google Scholar
Weiler, Chad N., Neely, Tyler W., Scherer, David R., Bradley, Ashton S., Davis, Matthew J., and Anderson, Brian P. 2008. Spontaneous vortices in the formation of Bose–Einstein condensates. Nature, 455(7215), 948.Google Scholar
Weimer, Hendrik, Müller, Markus, Lesanovsky, Igor, Zoller, Peter, and Büchler, Hans Peter. 2010. A Rydberg quantum simulator. Nature Physics, 6(5), 382.Google Scholar
Weisskopf, V. F., and Wigner, E. 1930. Z. Physik, 63, 54.Google Scholar
Weld, David M., Medley, Patrick, Miyake, Hirokazu, Hucul, David, Pritchard, David E., and Ketterle, Wolfgang. 2009. Spin gradient thermometry for ultracold atoms in optical lattices. Physical Review Letters, 103(24), 245301.Google Scholar
White, M., Pasienski, M., McKay, D., Zhou, S. Q., Ceperley, D., and DeMarco, B. 2009. Strongly interacting bosons in a disordered optical lattice. Physical Review Letters, 102(5), 055301.Google Scholar
White, Steven R. 1992. Density matrix formulation for quantum renormalization groups. Physical Review Letters, 69(19), 2863.Google Scholar
Wieman, Carl E., Pritchard, David E., and Wineland, David J. 1999. Atom cooling, trapping, and quantum manipulation. Reviews of Modern Physics, 71(2), S253.Google Scholar
Wiesner, Stephen. 1996. Simulations of many-body quantum systems by a quantum computer. arXiv:quant-ph/9603028.Google Scholar
Wineland, David J., Bollinger, John J., Itano, Wayne M., and Heinzen, D. J. 1994. Squeezed atomic states and projection noise in spectroscopy. Physical Review A, 50(1), 67.Google Scholar
Wineland, David J., Bollinger, John J., Itano, Wayne M., Moore, F. L., and Heinzen, Daniel J. 1992. Spin squeezing and reduced quantum noise in spectroscopy. Physical Review A, 46(11), R6797.Google Scholar
Wiseman, Howard M., and Milburn, Gerard J. 2009. Quantum Measurement and Control. Cambridge University Press.Google Scholar
Wu, S., Wang, Y. J., Diot, Q., and Prentis, M. 2005. Splitting matter waves using an optimized standing-wave light-pulse sequence. Physical Review A, 71, 043602.Google Scholar
Wu, Zhan, Zhang, Long, Sun, Wei, Xu, Xiao-Tian, Wang, Bao-Zong, Ji, Si-Cong, Deng, Youjin, Chen, Shuai, Liu, Xiong-Jun, and Pan, Jian-Wei. 2016. Realization of two-dimensional spin-orbit coupling for Bose–Einstein condensates. Science, 354(6308), 8388.Google Scholar
Yamamoto, Ryuta, Kobayashi, Jun, Kuno, Takuma, Kato, Kohei, and Takahashi, Yoshiro. 2016. An ytterbium quantum gas microscope with narrow-line laser cooling. New Journal of Physics, 18(2), 023016.Google Scholar
Yamamoto, Yoshihisa, and Imamoglu, Atac. 1999. Mesoscopic quantum optics. Mesoscopic Quantum Optics Wiley.Google Scholar
Yan, Bo, Moses, Steven A., Gadway, Bryce, Covey, Jacob P., Hazzard, Kaden R. A., Rey, Ana Maria, Jin, Deborah S., and Ye, Jun. 2013. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature, 501(7468), 521.Google Scholar
Yang, Chen Ning. 1962. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Reviews of Modern Physics, 34(4), 694.Google Scholar
Yang, Jianke, and Musslimani, Ziad H. 2003. Fundamental and vortex solitons in a two-dimensional optical lattice. Optics Letters, 28(21), 20942096.Google Scholar
Yavin, I., Weel, M., Andreyuk, A., and Kumarakrishnan, A. 2002. A calculation of the time-of-flight distribution of trapped atoms. American Journal of Physics, 70(2), 149152.Google Scholar
Young, H. D., and Freedman, R. A. 2012. Sears and Zemansky’s University Physics. Addison-Wesley.Google Scholar
Yurke, B., McCall, S. L., and Klauder, J. R. 1986. SU(2) and SU(1,1) interferometers. Physical Review A, 33, 40334054.Google Scholar
Zhai, Hui. 2012. Spin-orbit coupled quantum gases. International Journal of Modern Physics B, 26(01), 1230001.Google Scholar
Zhang, Long, and Liu, Xiong-Jun. 2018. Spin-orbit coupling and topological phases for ultracold atoms. arXiv:1806.05628.Google Scholar
Zirbel, J. J., Ni, K.-K., Ospelkaus, S., DIncao, J. P., Wieman, C. E., Ye, J., and Jin, DS. 2008. Collisional stability of fermionic Feshbach molecules. Physical Review Letters, 100(14), 143201.Google Scholar
Zwerger, Wilhelm. 2011. The BCS–BEC Crossover and the Unitary Fermi Gas. Vol. 836. Springer Science and Business Media.Google Scholar
Zwierlein, Martin W., Stan, Claudiu A., Schunck, Christian H., Raupach, Sebastian M. F., Gupta, Subhadeep, Hadzibabic, Zoran, and Ketterle, Wolfgang. 2003. Observation of Bose–Einstein condensation of molecules. Physical Review Letters, 91(25), 250401.Google Scholar
Zwierlein, M. W., Stan, C. A., Schunck, C. H., Raupach, S. M. F., Kerman, A. J., and Ketterle, W. 2004. Condensation of pairs of fermionic atoms near a Feshbach resonance. Physical Review Letters, 92(12), 120403.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×