Skip to main content Accessibility help
×
Hostname: page-component-55f67697df-sqlfs Total loading time: 0 Render date: 2025-05-12T15:28:30.866Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 May 2025

Alexander M. Dalzell
Affiliation:
AWS Center for Quantum Computing
Sam McArdle
Affiliation:
AWS Center for Quantum Computing
Mario Berta
Affiliation:
RWTH Aachen University
Przemyslaw Bienias
Affiliation:
AWS Center for Quantum Computing
Chi-Fang Chen
Affiliation:
University of California, Berkeley
András Gilyén
Affiliation:
HUN-REN Alfréd Rényi Institute of Mathematics
Connor T. Hann
Affiliation:
AWS Center for Quantum Computing
Michael J. Kastoryano
Affiliation:
University of Copenhagen
Emil T. Khabiboulline
Affiliation:
National Institute of Standards and Technology
Aleksander Kubica
Affiliation:
Yale University
Grant Salton
Affiliation:
Amazon Quantum Solutions Lab
Samson Wang
Affiliation:
Caltech
Fernando G. S. L. Brandão
Affiliation:
AWS Center for Quantum Computing
HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the 'Save PDF' action button.
Type
Chapter
Information
Quantum Algorithms
A Survey of Applications and End-to-end Complexities
, pp. 346 - 414
Publisher: Cambridge University Press
Print publication year: 2025
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC-ND 4.0 https://creativecommons.org/cclicenses/

References

Aaronson, S. (2015). Read the fine print. Nat. Phys., 11, 291–293. doi:10.1038/nphys3272.CrossRefGoogle Scholar
Aaronson, S. (2018). Shadow tomography of quantum states. Pages 325–338 of: STOC. doi:10.1145/3188745.3188802. arXiv:1711.01053.CrossRefGoogle Scholar
Aaronson, S. (2021). Open problems related to quantum query complexity. ACM Trans. Quantum Comput., 2. doi:10.1145/3488559. arXiv:2109.06917.CrossRefGoogle Scholar
Aaronson, S., and Gottesman, D. (2004). Improved simulation of stabilizer circuits. Phys. Rev. A, 70, 052328. doi:10.1103/PhysRevA.70.052328. arXiv:quant-ph/0406196.CrossRefGoogle Scholar
Aaronson, S., Chen, X., Hazan, E., et al. (2019). Online learning of quantum states. J. Stat. Mech. Theory Exp., 2019, 124019. doi:10.1088/1742-5468/ab3988. arXiv:1802.09025.CrossRefGoogle Scholar
Abbas, A., Ambainis, A., Augustino, B., et al. (2024). Challenges and opportunities in quantum optimization. Nat. Rev. Phys., 6, 718–735. doi:10.1038/s42254-024-00770-9. arXiv:2312.02279.CrossRefGoogle Scholar
Adachi, S. H., and Henderson, M. P. (2015). Application of quantum annealing to training of deep neural networks. arXiv:1510.06356.Google Scholar
Aggarwal, D., Brennen, G., Lee, T., et al. (2018). Quantum attacks on bitcoin, and how to protect against them. Ledger, 3. doi:10.5195/ledger.2018.127. arXiv:1710.10377.CrossRefGoogle Scholar
Agrawal, A. A., Wilson, T. L., Saadatmand, S., et al. (2024). Quantifying fault tolerant simulation of strongly correlated systems using the Fermi–Hubbard model. arXiv:2406.06511.Google Scholar
Aharonov, D., and Ben-Or, M. (2008). Fault-tolerant quantum computation with constant error rate. SIAM J. Comp., 38, 1207–1282. doi:10.1137/S0097539799359385. Earlier version in STOC’97. arXiv:quant-ph/9906129.CrossRefGoogle Scholar
Aharonov, D., and Ta-Shma, A. (2007). Adiabatic quantum state generation. SIAM J. Comp., 37, 47–82. doi:10.1137/060648829. Earlier version in STOC’03. arXiv:quant-ph/0301023.CrossRefGoogle Scholar
Aharonov, D., Ben-Or, M., Impagliazzo, R., and Nisan, N. (1996). Limitations of noisy reversible computation. arXiv:quant-ph/9611028.Google Scholar
Akhalwaya, I. Y., Ubaru, S., Clarkson, K. L., et al. (2022). Exponential advantage on noisy quantum computers. arXiv:2209.09371.Google Scholar
Akhalwaya, I. Y., Connolly, A., Guichard, R., et al. (2023). A modular engine for quantum Monte Carlo integration. arXiv:2308.06081.Google Scholar
Alagic, G., Apon, D., Cooper, D., et al. (2022). Status report on the third round of the NIST post-quantum cryptography standardization process. Tech. rept. NISTIR 8413. National Institute of Standards and Technology, Gaithersburg, MD. doi:10.6028/NIST.IR.8413-upd1.Google Scholar
Albash, T., and Lidar, D. A. (2018). Adiabatic quantum computation. Rev. Mod. Phys., 90, 015002. doi:10.1103/RevModPhys.90.015002. arXiv:1611.04471.CrossRefGoogle Scholar
Albert, V. V., and Faist, P. (eds). (2024). The error correction zoo. https://errorcorrectionzoo.org/, accessed: 2024-12-01.Google Scholar
Alexis, M., Lin, L., Mnatsakanyan, G., et al. (2024). Infinite quantum signal processing for arbitrary Szegő functions. arXiv:2407.05634.Google Scholar
Alexis, M., Mnatsakanyan, G., and Thiele, C. (2024). Quantum signal processing and nonlinear Fourier analysis. Rev. Mat. Complut., 37, 655–694. doi:10.1007/s13163-024-00494-5. arXiv:2310.12683.CrossRefGoogle Scholar
Aliferis, P., Gottesman, D., and Preskill, J. (2006). Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput., 6, 97–165. doi:10.26421/QIC6.2-1. arXiv:quant-ph/0504218.Google Scholar
Aliferis, P., Gottesman, D., and Preskill, J. (2008). Accuracy threshold for postselected quantum computation. Quantum Inf. Comput., 8, 181–244. doi:10.26421/QIC8.3-4-1. arXiv:quant-ph/0703264.Google Scholar
Altaisky, M. (2001). Quantum neural network. arXiv:quant-ph/0107012.Google Scholar
Altshuler, B., Krovi, H., and Roland, J. (2010). Anderson localization makes adiabatic quantum optimization fail. Proc. Natl. Acad. Sci., 107, 12446–12450. doi:10.1073/pnas.1002116107. arXiv:0912.0746.CrossRefGoogle ScholarPubMed
Ambainis, A. (2004). Quantum search algorithms. SIGACT News, 35, 22–35. doi:10.1145/992287.992296. arXiv:quant-ph/0504012.CrossRefGoogle Scholar
Ambainis, A. (2007). Quantum walk algorithm for element distinctness. SIAM J. Comp., 37, 210–239. doi:10.1137/S0097539705447311. Earlier version in FOCS’04. arXiv:quant-ph/0311001.CrossRefGoogle Scholar
Ambainis, A. (2012). Variable time amplitude amplification and quantum algorithms for linear algebra problems. Pages 636–647 of: STACS. doi:10.4230/LIPIcs.STACS.2012.636. arXiv:1010.4458.CrossRefGoogle Scholar
Ambainis, A., and Kokainis, M. (2017). Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games. Pages 989–1002 of: STOC. doi:10.1145/3055399.3055444. arXiv:1704.06774.CrossRefGoogle Scholar
Ambainis, A., Balodis, K., Iraids, J., et al. (2019). Quantum speedups for exponential-time dynamic programming algorithms. Pages 1783–1793 of: SODA. doi:10.1137/1.9781611975482.107. arXiv:2104.14384.CrossRefGoogle Scholar
Ambainis, A., Kokainis, M., and Vihrovs, J. (2023). Improved algorithm and lower bound for variable time quantum search. arXiv:2302.06749.Google Scholar
Amin, M. H., Andriyash, E., Rolfe, J., et al. (2018). Quantum Boltzmann machine. Phys. Rev. X, 8, 021050. doi:10.1103/PhysRevX.8.021050. arXiv:1601.02036.Google Scholar
An, D., and Lin, L. (2022). Quantum linear system solver based on timeoptimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Trans. Quantum Comput., 3. doi:10.1145/3498331. arXiv:1909.05500.CrossRefGoogle Scholar
An, D., and Trivisa, K. (2023). Quantum algorithms for linear and non-linear fractional reaction–diffusion equations. arXiv:2310.18900.Google Scholar
An, D., Linden, N., Liu, J.-P., et al. (2021). Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance. Quantum, 5, 481. doi:10.22331/q-2021-06-24-481. arXiv:2012.06283.CrossRefGoogle Scholar
An, D., Fang, D., and Lin, L. (2021). Time-dependent unbounded Hamiltonian simulation with vector norm scaling. Quantum, 5, 459. doi:10.22331/q-2021-05-26-459. arXiv:2012.13105.CrossRefGoogle Scholar
An, D., Liu, J.-P., Wang, D., and Zhao, Q. (2022). A theory of quantum differential equation solvers: Limitations and fast-forwarding. arXiv:2211.05246.Google Scholar
An, D., Liu, J.-P., and Lin, L. (2023). Linear combination of Hamiltonian simulation for nonunitary dynamics with optimal state preparation cost. Phys. Rev. Lett., 131, 150603. doi:10.1103/PhysRevLett.131.150603. arXiv:2303.01029.CrossRefGoogle ScholarPubMed
An, D., Childs, A. M., and Lin, L. (2023). Quantum algorithm for linear non-unitary dynamics with near-optimal dependence on all parameters. arXiv:2312.03916.Google Scholar
Andersen, E. D., and Andersen, K. D. (2000). The Mosek interior point optimizer for linear programming: An implementation of the homogeneous algorithm. Pages 197–232 of: High Performance Optimization. doi:10.1007/978-1-4757-3216-0_8.CrossRefGoogle Scholar
Anschuetz, E., Olson, J., Aspuru-Guzik, A., and Cao, Y. (2019). Variational quantum factoring. Pages 74–85 of: Quantum Technology and Optimization Problems. doi:10.1007/978-3-030-14082-3_7. arXiv:1808.08927.CrossRefGoogle Scholar
Anschuetz, E. R., and Cao, Y. (2019). Realizing quantum Boltzmann machines through eigenstate thermalization. arXiv:1903.01359.Google Scholar
Anschuetz, E. R., and Kiani, B. T. (2022). Quantum variational algorithms are swamped with traps. Nat. Commun., 13, 7760. doi:10.1038/s41467-022-35364-5. arXiv:2205.05786.CrossRefGoogle ScholarPubMed
Anwar, H., Brown, B. J., Campbell, E. T., and Browne, D. E. (2014). Fast decoders for qudit topological codes. New J. Phys., 16, 063038. doi:10.1088/1367-2630/16/6/063038. arXiv:1311.4895.CrossRefGoogle Scholar
Aoki, H., Tsuji, N., Eckstein, M., et al. (2014). Nonequilibrium dynamical mean-field theory and its applications. Rev. Mod. Phys., 86, 779–837. doi:10.1103/RevModPhys.86.779. arXiv:1310.5329.CrossRefGoogle Scholar
Aoki, Y., Blum, T., Colangelo, G., et al. (2022). FLAG review 2021. Eur. Phys. J. C, 82, 869. arXiv:2111.09849.CrossRefGoogle Scholar
van Apeldoorn, J., and Gilyén, A. (2019). Improvements in quantum SDP-solving with applications. Pages 99:1–99:15 of: ICALP. doi:10.4230/LIPIcs.ICALP.2019.99. arXiv:1804.05058.Google Scholar
van Apeldoorn, J., and Gilyén, A. (2019). Quantum algorithms for zero-sum games. arXiv:1904.03180.Google Scholar
van Apeldoorn, J., Gilyén, A., Gribling, S., and de Wolf, R. (2020). Convex optimization using quantum oracles. Quantum, 4, 220. doi:10.22331/q-2020-01-13-220. arXiv:1809.00643.CrossRefGoogle Scholar
van Apeldoorn, J., Gilyén, A., Gribling, S., and de Wolf, R. (2020). Quantum SDP-solvers: Better upper and lower bounds. Quantum, 4, 230. doi:10.22331/q-2020-02-14-230. Earlier version in FOCS’17. arXiv:1705.01843.CrossRefGoogle Scholar
van Apeldoorn, J., Cornelissen, A., Gilyén, A., and Nannicini, G. (2023). Quantum tomography using state-preparation unitaries. Pages 1265–1318 of: SODA. doi:10.1137/1.9781611977554.ch47. arXiv:2207.08800.CrossRefGoogle Scholar
Apers, S., and de Wolf, R. (2020). Quantum speedup for graph sparsification, cut approximation and Laplacian solving. Pages 637–648 of: FOCS. doi:10.1109/FOCS46700.2020.00065. arXiv:1911.07306.CrossRefGoogle Scholar
Apers, S., and Gribling, S. (2023). Quantum speedups for linear programming via interior point methods. arXiv:2311.03215.Google Scholar
Apers, S., Gilyén, A., and Jeffery, S. (2021). A unified framework of quantum walk search. Pages 6:1–6:13 of: STACS. doi:10.4230/LIPIcs.STACS.2021.6. arXiv:1912.04233.CrossRefGoogle Scholar
Apers, S., Gribling, S., Sen, S., and Szabó, D. (2023). A (simple) classical algorithm for estimating Betti numbers. Quantum, 7, 1202. doi:10.22331/q-2023-12-06-1202. arXiv:2211.09618.CrossRefGoogle Scholar
Arad, I., and Landau, Z. (2010). Quantum computation and the evaluation of tensor networks. SIAM J. Comp., 39, 3089–3121. doi:10.1137/080739379. arXiv:0805.0040.CrossRefGoogle Scholar
Argüello-Luengo, J., González-Tudela, A., Shi, T., et al. (2019). Analogue quantum chemistry simulation. Nature, 574, 215–218. doi:10.1038/s41586-019-1614-4. arXiv:1807.09228.CrossRefGoogle ScholarPubMed
Arora, S., and Kale, S. (2007). A combinatorial, primal-dual approach to semidefinite programs. Pages 227–236 of: STOC. doi:10.1145/1250790.1250823.CrossRefGoogle Scholar
Arora, S., Hazan, E., and Kale, S. (2005). Fast algorithms for approximate semidefinite programming using the multiplicative weights update method. Pages 339–348 of: FOCS. doi:10.1109/SFCS.2005.35.CrossRefGoogle Scholar
Arora, S., Hazan, E., and Kale, S. (2012). The multiplicative weights update method: a meta-algorithm and applications. Theory Comput., 8, 121–164. doi:10.4086/toc.2012.v008a006.CrossRefGoogle Scholar
Arovas, D. P., Berg, E., Kivelson, S. A., and Raghu, S. (2022). The Hubbard model. Annu. Rev. Condens. Matter Phys., 13, 239–274. doi:10.1146/annurev-conmatphys-031620-102024. arXiv:2103.12097.CrossRefGoogle Scholar
Arrasmith, A., Holmes, Z., Cerezo, M., and Coles, P. J. (2022). Equivalence of quantum barren plateaus to cost concentration and narrow gorges. Quantum Sci. Technol., 7, 045015. doi:10.1088/2058-9565/ac7d06. arXiv:2104.05868.CrossRefGoogle Scholar
Arrazola, J. M., Delgado, A., Bardhan, B. R., and Lloyd, S. (2020). Quantum-inspired algorithms in practice. Quantum, 4, 307. doi:10.22331/q-2020-08-13-307. arXiv:1905.10415.CrossRefGoogle Scholar
Arunachalam, S., Gheorghiu, V., Jochym-O’Connor, T., et al. (2015). On the robustness of bucket brigade quantum RAM. New J. Phys., 17, 123010. doi:10.1088/1367-2630/17/12/123010. arXiv:1502.03450.CrossRefGoogle Scholar
Arute, F., Arya, K., Babbush, R., et al. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574, 505–510. doi:10.1038/s41586-019-1666-5.CrossRefGoogle ScholarPubMed
Arute, F., Arya, K., Babbush, R., et al. (2020). Observation of separated dynamics of charge and spin in the Fermi–Hubbard model. arXiv:2010.07965.Google Scholar
Ashikhmin, A., Lai, C. Y., and Brun, T. A. (2020). Quantum data-syndrome codes. IEEE J. Sel. Areas Commun., 38, 449–462. doi:10.1109/JSAC.2020.2968997. arXiv:1907.01393.CrossRefGoogle Scholar
Aspuru-Guzik, A., Dutoi, A. D., Love, P. J., and Head-Gordon, M. (2005). Simulated quantum computation of molecular energies. Science, 309, 1704–1707. doi:10.1126/science.1113479. arXiv:0604193.CrossRefGoogle ScholarPubMed
Atas, Y. Y., Zhang, J., Lewis, R., et al. (2021). SU(2) hadrons on a quantum computer via a variational approach. Nat. Commun., 12, 6499. doi:10.1038/s41467-021-26825-4. arXiv:2102.08920.CrossRefGoogle Scholar
Augustino, B., Terlaky, T., and Zuluaga, L. F. (2022). An inexact-feasible quantum interior point method for second-order cone optimization. Tech. rept. 21T-009. Department of Industrial and Systems Engineering, Lehigh University.Google Scholar
Augustino, B., Leng, J., Nannicini, G., et al. (2023). A quantum central path algorithm for linear optimization. arXiv:2311.03977.Google Scholar
Augustino, B., Nannicini, G., Terlaky, T., and Zuluaga, L. F. (2023). Quantum interior point methods for semidefinite optimization. Quantum, 7, 1110. doi:10.22331/q-2023-09-11-1110. arXiv:2112.06025.CrossRefGoogle Scholar
Augustino, B., Nannicini, G., Terlaky, T., and Zuluaga, L. (2023). Solving the semidefinite relaxation of QUBOs in matrix multiplication time, and faster with a quantum computer. arXiv:2301.04237.Google Scholar
Babbush, R., McClean, J., Wecker, D., et al. (2015). Chemical basis of Trotter– Suzuki errors in quantum chemistry simulation. Phys. Rev. A, 91, 022311. doi:10.1103/PhysRevA.91.022311. arXiv:1410.8159.CrossRefGoogle Scholar
Babbush, R., Berry, D. W., Kivlichan, I. D., et al. (2016). Exponentially more precise quantum simulation of fermions in second quantization. New J. Phys., 18, 033032. doi:10.1088/1367-2630/18/3/033032. arXiv:1506.01020.CrossRefGoogle Scholar
Babbush, R., Berry, D. W., Sanders, Y. R., et al. (2017). Exponentially more precise quantum simulation of fermions in the configuration interaction representation. Quantum Sci. Technol., 3, 015006. doi:10.1088/2058-9565/aa9463. arXiv:1506.01029.Google Scholar
Babbush, R., Gidney, C., Berry, D. W., et al. (2018). Encoding electronic spectra in quantum circuits with linear T complexity. Phys. Rev. X, 8, 041015. doi:10.1103/PhysRevX.8.041015. arXiv:1805.03662.Google Scholar
Babbush, R., Wiebe, N., Mcclean, J., et al. (2018). Low-depth quantum simulation of materials. Phys. Rev. X, 8, 011044. doi:10.1103/PhysRevX.8.011044. arXiv:1706.00023.Google Scholar
Babbush, R., Berry, D. W., McClean, J. R., and Neven, H. (2019). Quantum simulation of chemistry with sublinear scaling in basis size. npj Quant. Inf., 5, 92. doi:10.1038/s41534-019-0199-y. arXiv:1807.09802.Google Scholar
Babbush, R., Berry, D. W., and Neven, H. (2019). Quantum simulation of the Sachdev–Ye–Kitaev model by asymmetric qubitization. Phys. Rev. A, 99, 040301. doi:10.1103/PhysRevA.99.040301. arXiv:1806.02793.CrossRefGoogle Scholar
Babbush, R., McClean, J. R., Newman, M., et al. (2021). Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum, 2, 010103. doi:10.1103/PRXQuantum.2.010103. arXiv:2011.04149.CrossRefGoogle Scholar
Babbush, R., Berry, D. W., Kothari, R., et al. (2023). Exponential quantum speedup in simulating coupled classical oscillators. arXiv:2303.13012.Google Scholar
Babbush, R., Huggins, W. J., Berry, D. W., et al. (2023). Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods. Nat. Commun., 14, 4058. doi:10.1038/s41467-023-39024-0. arXiv:2301.01203.CrossRefGoogle ScholarPubMed
Bagherimehrab, M., Sanders, Y. R., Berry, D. W., et al. (2022). Nearly optimal quantum algorithm for generating the ground state of a free quantum field theory. PRX Quantum, 3, 020364. doi:10.1103/PRXQuantum.3.020364. arXiv:2110.05708.CrossRefGoogle Scholar
Bagherimehrab, M., Nakaji, K., Wiebe, N., and Aspuru-Guzik, A. (2023). Fast quantum algorithm for differential equations. arXiv:2306.11802.Google Scholar
Baiardi, A., Stein, C. J., Barone, V., and Reiher, M. (2017). Vibrational density matrix renormalization group. J. Chem. Theory Comput., 13, 3764–3777. doi:10.1021/acs.jctc.7b00329. arXiv:1703.09313.CrossRefGoogle ScholarPubMed
Baker, J. S., and Radha, S. K. (2022). Wasserstein solution quality and the quantum approximate optimization algorithm: A portfolio optimization case study. arXiv:2202.06782.Google Scholar
Bakshi, A., and Tang, E. (2024). An improved classical singular value transformation for quantum machine learning. Pages 2398–2453 of: SODA. doi:10.1137/1.9781611977912.86. arXiv:2303.01492.CrossRefGoogle Scholar
Banaszek, K., Cramer, M., and Gross, D. (2013). Focus on quantum tomography. New J. Phys., 15, 125020. doi:10.1088/1367-2630/15/12/125020.CrossRefGoogle Scholar
Banchi, L., Pereira, J., and Pirandola, S. (2021). Generalization in quantum machine learning: A quantum information standpoint. PRX Quantum, 2, 040321. doi:10.1103/PRXQuantum.2.040321. arXiv:2102.08991.CrossRefGoogle Scholar
Banegas, G., and Bernstein, D. J. (2018). Low-communication parallel quantum multi-target preimage search. Pages 325–335 of: SAC. ePrint:2017/789.Google Scholar
Banuls, M.-C., Pérez-García, D., Wolf, M. M., et al. (2008). Sequentially generated states for the study of two-dimensional systems. Phys. Rev. A, 77, 052306. doi:10.1103/PhysRevA.77.052306. arXiv:0802.2472.CrossRefGoogle Scholar
Banuls, M. C., Cichy, K., Cirac, J. I., et al. (2019). Tensor networks and their use for lattice gauge theories. Page 022 of: LATTICE. doi:10.22323/1.334.0022. arXiv:1810.12838.CrossRefGoogle Scholar
Bañuls, M. C., Blatt, R., Catani, J., et al. (2020). Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D, 74, 165. doi:10.1140/epjd/e2020-100571-8. arXiv:1911.00003.CrossRefGoogle Scholar
Bao, N., Hayden, P., Salton, G., and Thomas, N. (2015). Universal quantum computation by scattering in the Fermi–Hubbard model. New J. Phys., 17, 093028. doi:10.1088/1367-2630/17/9/093028. arXiv:1409.3585.CrossRefGoogle Scholar
Barahona, F. (1982). On the computational complexity of Ising spin glass models. J. Phys. A, 15, 3241–3253. doi:10.1088/0305-4470/15/10/028.CrossRefGoogle Scholar
Barker, E. (2020). Recommendation for key management: Part 1—general. Tech. rept. SP 800-57 Part 1 Rev. 5. National Institute of Standards and Technology, Gaithersburg, MD. doi:10.6028/NIST.SP.800-57pt1r5.Google Scholar
Barker, E., and Dang, Q. (2015). Recommendation for key management, part 3: Application-specific key management guidance. Tech. rept. SP 800-57 Part 3 Rev. 1. National Institute of Standards and Technology, Gaithersburg, MD. doi:10.6028/NIST.SP.800-57pt3r1.Google Scholar
Barmes, I., and Bosch, B. (2019). Quantum computers and the bitcoin blockchain. https://deloitte.com/nl/nl/pages/innovatie/artikelen/quantum-computers-and-the-bitcoin-blockchain.html, accessed: 2023-09-30.Google Scholar
Barmes, I., Bosch, B., and Verdonk, M. (2022). Quantum risk to the Ethereum blockchain—a bump in the road or a brick wall? https://deloitte.com/nl/nl/pages/risk/articles/quantum-risk-to-the-ethereum-blockchain.html, accessed: 2023-09-30.Google Scholar
Barone, V., Alessandrini, S., Biczysko, M., et al. (2021). Computational molecular spectroscopy. Nat. Rev. Methods Primers, 1, 38. doi:10.1038/s43586-021-00034-1.CrossRefGoogle Scholar
Barrett, B. R., Navratil, P., and Vary, J. P. (2013). Ab initio no core shell model. Prog. Part. Nucl. Phys., 69, 131–181. doi:10.1016/j.ppnp.2012.10.003.CrossRefGoogle Scholar
Bärtschi, A., Caravelli, F., Coffrin, C., et al. (2024). Potential applications of quantum computing at Los Alamos National Laboratory. arXiv:2406.06625.Google Scholar
Bauer, B., Bravyi, S., Motta, M., and Chan, G. K.-L. (2020). Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev., 120, 12685–12717. doi:10.1021/acs.chemrev.9b00829. arXiv:2001.03685.CrossRefGoogle ScholarPubMed
Bauer, C. W., Nachman, B., and Freytsis, M. (2021). Simulating collider physics on quantum computers using effective field theories. Phys. Rev. Lett., 127, 212001. doi:10.1103/PhysRevLett.127.212001. arXiv:2102.05044.CrossRefGoogle ScholarPubMed
Bauer, C. W., Davoudi, Z., Balantekin, A. B., et al. (2023). Quantum simulation for high-energy physics. PRX Quantum, 4, 027001. doi:10.1103/PRXQuantum.4.027001. arXiv:2204.03381.CrossRefGoogle Scholar
Bauer, C. W., Davoudi, Z., Klco, N., and Savage, M. J. (2023). Quantum simulation of fundamental particles and forces. Nat. Rev. Phys., 5, 420–432. doi:10.1038/s42254-023-00599-8.CrossRefGoogle Scholar
Bausch, J. (2022). Fast black-box quantum state preparation. Quantum, 6. doi:10.22331/q-2022-08-04-773. arXiv:2009.10709.CrossRefGoogle Scholar
Bausch, J., Senior, A. W., Heras, F. J. H., et al. (2023). Learning to decode the surface code with a recurrent, transformer-based neural network. arXiv:2310.05900.Google Scholar
Beane, S., Detmold, W., Orginos, K., and Savage, M. (2011). Nuclear physics from lattice QCD. Prog. Part. Nuc. Phys., 66, 1–40. doi:10.1016/j.ppnp.2010.08.002. arXiv:1004.2935.Google Scholar
Beauregard, S. (2003). Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Inf. Comput., 3, 175–185. doi:10.26421/QIC3.2-8. arXiv:quant-ph/0205095.Google Scholar
Beck, D., Carlson, J., Davoudi, Z., et al. (2023). Quantum information science and technology for nuclear physics: Input into U.S. long-range planning, 2023. arXiv:2303.00113.Google Scholar
Beckman, D., Chari, A. N., Devabhaktuni, S., and Preskill, J. (1996). Efficient networks for quantum factoring. Phys. Rev. A, 54, 1034–1063. doi:10.1103/PhysRevA.54.1034. arXiv:quant-ph/9602016.CrossRefGoogle ScholarPubMed
Beer, K., Bondarenko, D., Farrelly, T., et al. (2020). Training deep quantum neural networks. Nat. Commun., 11, 808. doi:10.1038/s41467-020-14454-2. arXiv:1902.10445.CrossRefGoogle ScholarPubMed
Bellonzi, N., Kunitsa, A., Cantin, J. T., et al. (2024). Feasibility of accelerating homogeneous catalyst discovery with fault-tolerant quantum computers. arXiv:2406.06335.Google Scholar
Ben-Or, M., Gottesman, D., and Hassidim, A. (2013). Quantum refrigerator. arXiv:1301.1995.Google Scholar
Bender, M., Bernard, R., Bertsch, G., et al. (2020). Future of nuclear fission theory. J. Phys. G, 47, 113002. doi:10.1088/1361-6471/abab4f. arXiv:2005.10216.CrossRefGoogle Scholar
Benedetti, M., Realpe-Gómez, J., Biswas, R., and Perdomo-Ortiz, A. (2017). Quantum-assisted learning of hardware-embedded probabilistic graphical models. Phys. Rev. X, 7, 041052. doi:10.1103/PhysRevX.7.041052. arXiv:1609.02542.Google Scholar
Benedetti, M., Garcia-Pintos, D., Perdomo, O., et al. (2019). A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quant. Inf., 5, 1–9. doi:10.1038/s41534-019-0157-8. arXiv:1801.07686.Google Scholar
Benedetti, M., Lloyd, E., Sack, S., and Fiorentini, M. (2019). Parameterized quantum circuits as machine learning models. Quantum Sci. Technol., 4, 043001. doi:10.1088/2058-9565/ab4eb5. arXiv:1906.07682.CrossRefGoogle Scholar
Benedetti, M., Fiorentini, M., and Lubasch, M. (2021). Hardware-efficient variational quantum algorithms for time evolution. Phys. Rev. Res., 3, 033083. doi:10.1103/PhysRevResearch.3.033083. arXiv:2009.12361.CrossRefGoogle Scholar
Benioff, P. (1980). The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys., 22, 563–591. doi:10.1007/BF01011339.CrossRefGoogle Scholar
Bennett, C. H., and Brassard, G. (2014). Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci., 560, 7–11. doi:10.1016/j.tcs.2014.05.025. arXiv:2003.06557.CrossRefGoogle Scholar
Bennett, C. H., Bernstein, E., Brassard, G., and Vazirani, U. (1997). Strengths and weaknesses of quantum computing. SIAM J. Comp., 26, 1510–1523. doi:10.1137/S0097539796300933. arXiv:quant-ph/9701001.CrossRefGoogle Scholar
Bergholm, V., Izaac, J., Schuld, M., et al. (2018). Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv:1811.04968. https://pennylane.ai/codebook, accessed: 2024-12-01.Google Scholar
van den Berg, E., and Temme, K. (2020). Circuit optimization of Hamiltonian simulation by simultaneous diagonalization of Pauli clusters. Quantum, 4, 322. doi:10.22331/q-2020-09-12-322. arXiv:2003.13599.CrossRefGoogle Scholar
Bermudez, A., Xu, X., Nigmatullin, R., et al. (2017). Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation. Phys. Rev. X, 7, 041061. doi:10.1103/physrevx.7.041061. arXiv:1705.02771.Google Scholar
Bernstein, D. J., and Lange, T. (2017). Post-quantum cryptography. Nature, 549, 188–194. doi:10.1038/nature23461. ePrint:2017/314.CrossRefGoogle ScholarPubMed
Bernstein, D. J., Engels, S., Lange, T., et al. (2016). Faster elliptic-curve discrete logarithms on FPGAs. ePrint:2016/382.Google Scholar
Bernstein, D. J., Biasse, J.-F., and Mosca, M. (2017). A lowresource quantum factoring algorithm. Pages 330–346 of: PQCrypto. doi:10.1007/978-3-319-59879-6_19. ePrint:2017/352.CrossRefGoogle Scholar
Bernstein, E., and Vazirani, U. (1997). Quantum complexity theory. SIAM J. Comp., 26, 1411–1473. doi:10.1137/S0097539796300921. Earlier version in STOC’93.CrossRefGoogle Scholar
Berntson, B. K., and Sünderhauf, C. (2024). Complementary polynomials in quantum signal processing. arXiv:2406.04246.Google Scholar
Berry, D. W. (2014). High-order quantum algorithm for solving linear differential equations. J. Phys. A, 47, 105301. doi:10.1088/1751-8113/47/10/105301.CrossRefGoogle Scholar
Berry, D. W., and Costa, C. S., P. (2024). Quantum algorithm for timedependent differential equations using Dyson series. Quantum, 8, 1369. doi:10.22331/q-2024-06-13-1369. arXiv:2212.03544.CrossRefGoogle Scholar
Berry, D. W., and Childs, A. M. (2012). Black-box Hamiltonian simulation and unitary implementation. Quantum Inf. Comput., 12, 29–62. doi:10.26421/QIC12.1-2. arXiv:0910.4157.Google Scholar
Berry, D. W., Ahokas, G., Cleve, R., and Sanders, B. C. (2007). Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys., 270, 359–371. doi:10.1007/s00220-006-0150-x. arXiv:quant-ph/0508139.CrossRefGoogle Scholar
Berry, D. W., Childs, A. M., Cleve, R., et al. (2014). Exponential improvement in precision for simulating sparse Hamiltonians. Pages 283–292 of: STOC. doi:10.1145/2591796.2591854. arXiv:1312.1414.CrossRefGoogle Scholar
Berry, D. W., Childs, A. M., and Kothari, R. (2015). Hamiltonian simulation with nearly optimal dependence on all parameters. Pages 792–809 of: FOCS. doi:10.1109/FOCS.2015.54. arXiv:1501.01715.CrossRefGoogle Scholar
Berry, D. W., Childs, A. M., Cleve, R., et al. (2015). Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett., 114, 090502. doi:10.1103/PhysRevLett.114.090502. arXiv:1412.4687.CrossRefGoogle ScholarPubMed
Berry, D. W., Childs, A. M., Ostrander, A., and Wang, G. (2017). Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys., 356, 1057–1081. doi:10.1007/s00220-017-3002-y. arXiv:1701.03684.CrossRefGoogle Scholar
Berry, D. W., Kieferová, M., Scherer, A., et al. (2018). Improved techniques for preparing eigenstates of fermionic Hamiltonians. npj Quant. Inf., 4, 22. doi:10.1038/s41534-018-0071-5. arXiv:1711.10460.Google Scholar
Berry, D. W., Gidney, C., Motta, M., et al. (2019). Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low rank factorization. Quantum, 3, 208. doi:10.22331/q-2019-12-02-208. arXiv:1902.02134.CrossRefGoogle Scholar
Berry, D. W., Childs, A. M., Su, Y., et al. (2020). Time-dependent Hamiltonian simulation with L1-norm scaling. Quantum, 4, 254. doi:10.22331/q-2020-04-20-254. arXiv:1906.07115.CrossRefGoogle Scholar
Berry, D. W., Rubin, N. C., Elnabawy, A. O., et al. (2023). Quantum simulation of realistic materials in first quantization using non-local pseudopotentials. arXiv:2312.07654.Google Scholar
Berry, D. W., Su, Y., Gyurik, C., et al. (2024). Analyzing prospects for quantum advantage in topological data analysis. PRX Quantum, 5, 010319. doi:10.1103/PRXQuantum.5.010319. arXiv:2209.13581.CrossRefGoogle Scholar
Berry, D. W., Tong, Y., Khattar, T., et al. (2024). Rapid initial state preparation for the quantum simulation of strongly correlated molecules. arXiv:2409.11748.Google Scholar
Beullens, W. (2022). Breaking rainbow takes a weekend on a laptop. Pages 464–479 of: CRYPTO. doi:10.1007/978-3-031-15979-4_16. ePrint:2022/214.CrossRefGoogle Scholar
Beverland, M. E., Kubica, A., and Svore, K. M. (2021). Cost of universality: A comparative study of the overhead of state distillation and code switching with color codes. PRX Quantum, 2, 020341. doi:10.1103/PRXQuantum.2.020341. arXiv:2101.02211.CrossRefGoogle Scholar
Beverland, M. E., Murali, P., Troyer, M., et al. (2022). Assessing requirements to scale to practical quantum advantage. arXiv:2211.07629.Google Scholar
Bharti, K., Cervera-Lierta, A., Kyaw, T. H., et al. (2022). Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94, 015004. doi:10.1103/RevModPhys.94.015004. arXiv:2101.08448.CrossRefGoogle Scholar
Bhaskar, M. K., Hadfield, S., Papageorgiou, A., and Petras, I. (2016). Quantum algorithms and circuits for scientific computing. Quantum Inf. Comput., 16. doi:10.26421/QIC16.3-4-2. arXiv:1511.08253.Google Scholar
Biamonte, J., and Bergholm, V. (2017). Tensor networks in a nutshell. arXiv:1708.00006.Google Scholar
Biamonte, J., Wittek, P., Pancotti, N., et al. (2017). Quantum machine learning. Nature, 549, 195–202. doi:10.1038/nature23474. arXiv:1611.09347.CrossRefGoogle ScholarPubMed
Bilgin, E., and Boixo, S. (2010). Preparing thermal states of quantum systems by dimension reduction. Phys. Rev. Lett., 105, 170405. doi:10.1103/PhysRevLett.105.170405. arXiv:1008.4162.CrossRefGoogle ScholarPubMed
Binder, S., Ekström, A., Hagen, G., et al. (2016). Effective field theory in the harmonic oscillator basis. Phys. Rev. C, 93, 044332. doi:10.1103/PhysRevC.93.044332. arXiv:1512.03802.CrossRefGoogle Scholar
Bittel, L., and Kliesch, M. (2021). Training variational quantum algorithms is NP-hard. Phys. Rev. Lett., 127, 120502. doi:10.1103/PhysRevLett.127.120502. arXiv:2101.07267.CrossRefGoogle ScholarPubMed
Blais, A., Grimsmo, A. L., Girvin, S. M., and Wallraff, A. (2021). Circuit quantum electrodynamics. Rev. Mod. Phys., 93, 025005. doi:10.1103/RevModPhys.93.025005. arXiv:2005.12667.CrossRefGoogle Scholar
Blanchet, J., Szegedy, M., and Wang, G. (2024). Quadratic speed-up in infinite variance quantum Monte Carlo. arXiv:2401.07497.Google Scholar
Bloch, I., Dalibard, J., and Nascimbène, S. (2012). Quantum simulations with ultracold quantum gases. Nat. Phys., 8, 267–276. doi:10.1038/nphys2259.CrossRefGoogle Scholar
Blunt, N. S., Camps, J., Crawford, O., et al. (2022). Perspective on the current state-of-the-art of quantum computing for drug discovery applications. J. Chem. Theory Comput., 18, 7001–7023. doi:10.1021/acs.jctc.2c00574. arXiv:2206.00551.CrossRefGoogle ScholarPubMed
Blunt, N. S., Caune, L., Izsák, R., et al. (2023). Statistical phase estimation and error mitigation on a superconducting quantum processor. PRX Quantum, 4, 040341. doi:10.1103/PRXQuantum.4.040341. arXiv:2304.05126.CrossRefGoogle Scholar
Bogdanov, A., Khovratovich, D., and Rechberger, C. (2011). Biclique cryptanalysis of the full AES. Pages 344–371 of: ASIACRYPT. doi:10.1007/978-3-642-25385-0_19. ePrint:2011/449.CrossRefGoogle Scholar
Boixo, S., and Somma, R. D. (2010). Necessary condition for the quantum adiabatic approximation. Phys. Rev. A, 81, 032308. doi:10.1103/PhysRevA.81.032308. arXiv:0911.1362.CrossRefGoogle Scholar
Boixo, S., Knill, E., and Somma, R. D. (2010). Fast quantum algorithms for traversing paths of eigenstates. arXiv:1005.3034.Google Scholar
Bolte, J., Boustany, R., Pauwels, E., and Pesquet-Popescu, B. (2022). Nonsmooth automatic differentiation: A cheap gradient principle and other complexity results. arXiv:2206.01730.Google Scholar
Bolusani, S., Besanc¸on, M., Bestuzheva, K., et al. (2024). The SCIP optimization suite 9.0. arXiv:2402.17702.Google Scholar
Bombín, H. (2015). Gauge color codes: Optimal transversal gates and gauge fixing in topological stabilizer codes. New J. Phys., 17, 083002. doi:10.1088/1367-2630/17/8/083002. arXiv:1311.0879.CrossRefGoogle Scholar
Bombín, H. (2015). Single-shot fault-tolerant quantum error correction. Phys. Rev. X, 5, 031043. doi:10.1103/physrevx.5.031043. arXiv:1404.5504.Google Scholar
Bombín, H. (2018). 2D quantum computation with 3D topological codes. arXiv:1810.09571.Google Scholar
Bombín, H., and Martin-Delgado, M. (2007). Exact topological quantum order in d = 3 and beyond: Branyons and brane-net condensates. Phys. Rev. B, 75, 075103. doi:10.1103/PhysRevB.75.075103. arXiv:cond-mat/0607736.CrossRefGoogle Scholar
Bombín, H., and Martin-Delgado, M. A. (2006). Topological quantum distillation. Phys. Rev. Lett., 97, 180501. doi:10.1103/PhysRevLett.97.180501. arXiv:quant-ph/0605138.CrossRefGoogle ScholarPubMed
Bombín, H., Dawson, C., Liu, Y.-H., et al. (2023). Modular decoding: Parallelizable real-time decoding for quantum computers. arXiv:2303.04846.Google Scholar
Bombín, H. G. D.-C., and Poulin, D. (2012). Universal topological phase of two-dimensional stabilizer codes. New J. Phys., 14, 073048. doi:10.1088/1367-2630/14/7/073048. arXiv:1103.4606.CrossRefGoogle Scholar
Bonfà, P., Frassineti, J., Isah, M. M., et al. (2021). UNDI: An open-source library to simulate muon-nuclear interactions in solids. Comput. Phys. Commun., 260, 107719. doi:10.1016/j.cpc.2020.107719.CrossRefGoogle Scholar
Bonilla Ataides, J. P., Tuckett, D. K., Bartlett, S. D., et al. (2021). The XZZX surface code. Nat. Commun., 12, 2172. doi:10.1038/s41467-021-22274-1. arXiv:2009.07851.CrossRefGoogle ScholarPubMed
Bosse, J. L., and Montanaro, A. (2022). Probing ground-state properties of the kagome antiferromagnetic Heisenberg model using the variational quantum eigensolver. Phys. Rev. B, 105, 094409. doi:10.1103/PhysRevB.105.094409. arXiv:2108.08086.CrossRefGoogle Scholar
Boudot, F., Gaudry, P., Guillevic, A., et al. (2020). Comparing the difficulty of factorization and discrete logarithm: A 240-digit experiment. Pages 62–91 of: CRYPTO. doi:10.1007/978-3-030-56880-1_3. arXiv:2006.06197.CrossRefGoogle Scholar
Bouland, A., van Dam, W., Joorati, H., et al. (2020). Prospects and challenges of quantum finance. arXiv:2011.06492.Google Scholar
Bouland, A., Dandapani, A., and Prakash, A. (2023). A quantum spectral method for simulating stochastic processes, with applications to Monte Carlo. arXiv:2303.06719.Google Scholar
Bouland, A., Getachew, Y. M., Jin, Y., et al. (2023). Quantum speedups for zero-sum games via improved dynamic Gibbs sampling. Pages 2932–2952 of: ICML. arXiv:2301.03763.Google Scholar
Boulebnane, S., and Montanaro, A. (2024). Solving Boolean satisfiability problems with the quantum approximate optimization algorithm. PRX Quantum, 5, 030348. doi:10.1103/PRXQuantum.5.030348. arXiv:2208.06909.CrossRefGoogle Scholar
Boyd, S., and Vandenberghe, L. (2004). Convex optimization. Cambridge University Press. doi:10.1017/CBO9780511804441.Google Scholar
Brandão, F. G. S. L., and Svore, K. M. (2017). Quantum speedups for solving semidefinite programs. Pages 415–426 of: FOCS. doi:10.1109/FOCS.2017.45. arXiv:1609.05537.CrossRefGoogle Scholar
Brandão, F. G. S. L., Kalev, A., Li, T., et al. (2019). Quantum SDP solvers: Large speed-ups, optimality, and applications to quantum learning. Pages 27:1–27:14 of: ICALP. doi:10.4230/LIPIcs.ICALP.2019.27. arXiv:1710.02581.Google Scholar
Brandão, F. G. S. L., Kueng, R., and Franc¸a, D. S. (2022). Faster quantum and classical SDP approximations for quadratic binary optimization. Quantum, 6, 625. doi:10.22331/q-2022-01-20-625. arXiv:1909.04613.Google Scholar
Brandhofer, S., Braun, D., Dehn, V., et al. (2023). Benchmarking the performance of portfolio optimization with QAOA. Quantum Inf. Process., 22, 1–27. doi:10.1007/s11128-022-03766-5. arXiv:2207.10555.Google Scholar
van den Brand, J., Lee, Y. T., Sidford, A., and Song, Z. (2020). Solving tall dense linear programs in nearly linear time. Pages 775–788 of: STOC. doi:10.1145/3357713.3384309. arXiv:2002.02304.CrossRefGoogle Scholar
Brassard, G., Høyer, P., Mosca, M., and Tapp, A. (2002). Quantum amplitude amplification and estimation. Pages 53–74 of: Quantum computation and quantum information: A millennium volume, vol. 305. doi:10.1090/conm/305/05215. arXiv:quant-ph/0005055.CrossRefGoogle Scholar
Bravo-Prieto, C., LaRose, R., Cerezo, M., et al. (2019). Variational quantum linear solver. arXiv:1909.05820.Google Scholar
Bravyi, S. (2015). Monte Carlo simulation of stoquastic Hamiltonians. Quantum Inf. Comput., 15, 1122–1140. doi:10.26421/QIC15.13-14-3. arXiv:1402.2295.Google Scholar
Bravyi, S., and Cross, A. (2015). Doubled color codes. arXiv:1509.03239.Google Scholar
Bravyi, S., and Kitaev, A. (2005). Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A, 71, 022316. doi:10.1103/physreva.71.022316. arXiv:quant-ph/0403025.CrossRefGoogle Scholar
Bravyi, S., and Terhal, B. (2010). Complexity of stoquastic frustration-free Hamiltonians. SIAM J. Comp., 39, 1462–1485. doi:10.1137/08072689X. arXiv:0806.1746.CrossRefGoogle Scholar
Bravyi, S., Suchara, M., and Vargo, A. (2014). Efficient algorithms for maximum likelihood decoding in the surface code. Phys. Rev. A, 90, 032326. doi:10.1103/PhysRevA.90.032326. arXiv:1405.4883.CrossRefGoogle Scholar
Bravyi, S., Englbrecht, M., König, R., and Peard, N. (2018). Correcting coherent errors with surface codes. npj Quant. Inf., 4. doi:10.1038/s41534-018-0106-y.Google Scholar
Bravyi, S., Kliesch, A., Koenig, R., and Tang, E. (2020). Obstacles to variational quantum optimization from symmetry protection. Phys. Rev. Lett., 125, 260505. doi:10.1103/PhysRevLett.125.260505. arXiv:1910.08980.CrossRefGoogle ScholarPubMed
Bravyi, S., Chowdhury, A., Gosset, D., and Wocjan, P. (2022). Quantum Hamiltonian complexity in thermal equilibrium. Nat. Phys., 18, 1367–1370. doi:10.1038/s41567-022-01742-5. arXiv:2110.15466.CrossRefGoogle Scholar
Bravyi, S. B., and Kitaev, A. Y. (1998). Quantum codes on a lattice with boundary. arXiv:quant-ph/9811052.Google Scholar
Bravyi, S. B., and Kitaev, A. Y. (2002). Fermionic quantum computation. Ann. Phys., 298, 210–226. doi:10.1006/aphy.2002.6254. arXiv:quant-ph/0003137.CrossRefGoogle Scholar
Brenner, S. C., and Scott, L. R. (2008). The mathematical theory of finite element methods. Springer. doi:10.1007/978-0-387-75934-0.Google Scholar
Breuckmann, N. P., and Eberhardt, J. N. (2021). Balanced product quantum codes. IEEE Trans. Inf. Theory, 67, 6653–6674. doi:10.1109/tit.2021.3097347. arXiv:2012.09271.CrossRefGoogle Scholar
Breuckmann, N. P., Duivenvoorden, K., Michels, D., and Terhal, B. M. (2017). Local decoders for the 2D and 4D toric code. Quantum Inf. Comput., 17, 0181. doi:10.26421/QIC17.3-4-1. arXiv:1609.00510.Google Scholar
Bridgeman, J. C., and Chubb, C. T. (2017). Hand-waving and interpretive dance: An introductory course on tensor networks. J. Phys. A, 50, 223001. doi:10.1088/1751-8121/aa6dc3. arXiv:1603.03039.CrossRefGoogle Scholar
Bridgeman, J. C., Kubica, A., and Vasmer, M. (2024). Lifting topological codes: Three-dimensional subsystem codes from two-dimensional anyon models. PRX Quantum, 5. doi:10.1103/prxquantum.5.020310. arXiv:2305.06365.CrossRefGoogle Scholar
Browaeys, A., and Lahaye, T. (2020). Many-body physics with individually controlled Rydberg atoms. Nat. Phys., 16, 132–142. doi:10.1038/s41567-019-0733-z. arXiv:2002.07413.CrossRefGoogle Scholar
Brown, A. R., Gharibyan, H., Leichenauer, S., et al. (2023). Quantum gravity in the lab. I. Teleportation by size and traversable wormholes. PRX Quantum, 4, 010320. doi:10.1103/PRXQuantum.4.010320. arXiv:1911.06314.CrossRefGoogle Scholar
Brown, B. J. (2023). Conservation laws and quantum error correction: Towards a generalised matching decoder. IEEE BITS Inf. Theory Mag., 1–12. doi:10.1109/MBITS.2023.3246025. arXiv:2207.06428.Google Scholar
Brown, B. J., Laubscher, K., Kesselring, M. S., and Wootton, J. R. (2017). Poking holes and cutting corners to achieve Clifford gates with the surface code. Phys. Rev. X, 7, 021029. doi:10.1103/PhysRevX.7.021029. arXiv:1609.04673.Google Scholar
Brüstle, N., and Wiebe, N. (2024). Quantum and classical algorithms for nonlinear unitary dynamics. arXiv:2407.07685.Google Scholar
Bruzewicz, C. D., Chiaverini, J., McConnell, R., and Sage, J. M. (2019). Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev., 6, 021314. doi:10.1063/1.5088164. arXiv:1904.04178.CrossRefGoogle Scholar
Bădescu, C., and O’Donnell, R. (2021). Improved quantum data analysis. Pages 1398–1411 of: STOC. doi:10.1145/3406325.3451109. arXiv:2011.10908.CrossRefGoogle Scholar
Buhrman, H., Patro, S., and Speelman, F. (2021). A framework of quantum strong exponential-time hypotheses. Pages 19:1–19:19 of: STACS, vol. 187. doi:10.4230/LIPIcs.STACS.2021.19. arXiv:1911.05686.CrossRefGoogle Scholar
Bürgisser, P., Franks, C., Garg, A., et al. (2018). Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes. Pages 883–897 of: FOCS. doi:10.1109/FOCS.2018.00088. arXiv:1804.04739.CrossRefGoogle Scholar
von Burg, V., Low, G. H., Häner, T., et al. (2021). Quantum computing enhanced computational catalysis. Phys. Rev. Res., 3, 033055. doi:10.1103/PhysRevResearch.3.033055. arXiv:2007.14460.CrossRefGoogle Scholar
Byrnes, T., and Yamamoto, Y. (2006). Simulating lattice gauge theories on a quantum computer. Phys. Rev. A, 73, 022328. doi:10.1103/PhysRevA.73.022328. arXiv:quant-ph/0510027.CrossRefGoogle Scholar
Cade, C., and Crichigno, P. M. (2021). Complexity of supersymmetric systems and the cohomology problem. arXiv:2107.00011.Google Scholar
Cade, C., Mineh, L., Montanaro, A., and Stanisic, S. (2020). Strategies for solving the Fermi–Hubbard model on near-term quantum computers. Phys. Rev. B, 102, 235122. doi:10.1103/PhysRevB.102.235122. arXiv:1912.06007.CrossRefGoogle Scholar
Cade, C., Folkertsma, M., Niesen, I., and Weggemans, J. (2022). Quantum algorithms for community detection and their empirical run-times. arXiv:2203.06208.Google Scholar
Cade, C., Folkertsma, M., Niesen, I., and Weggemans, J. (2023). Quantifying Grover speed-ups beyond asymptotic analysis. Quantum, 7, 1133. doi:10.22331/q-2023-10-10-1133. arXiv:2203.04975.CrossRefGoogle Scholar
Cai, Z. (2020). Resource estimation for quantum variational simulations of the Hubbard model. Phys. Rev. Appl., 14, 014059. doi:10.1103/PhysRevApplied.14.014059. arXiv:1910.02719.CrossRefGoogle Scholar
Calabrese, P., and Cardy, J. (2005). Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. Theory Exp., 04010. doi:10.1088/1742-5468/2005/04/P04010. arXiv:cond-mat/0503393.Google Scholar
Calabro, C., Impagliazzo, R., and Paturi, R. (2009). The complexity of satisfiability of small depth circuits. Pages 75–85 of: Parameterized and Exact Computation. doi:10.1007/978-3-642-11269-0_6.CrossRefGoogle Scholar
Calderbank, A. R., and Shor, P. W. (1996). Good quantum error-correcting codes exist. Phys. Rev. A, 54, 1098–1105. doi:10.1103/physreva.54.1098. arXiv:quant-ph/9512032.CrossRefGoogle ScholarPubMed
Campbell, E. (2019). Random compiler for fast Hamiltonian simulation. Phys. Rev. Lett., 123. doi:10.1103/physrevlett.123.070503. arXiv:1811.08017.CrossRefGoogle ScholarPubMed
Campbell, E., Khurana, A., and Montanaro, A. (2019). Applying quantum algorithms to constraint satisfaction problems. Quantum, 3, 167. doi:10.22331/q-2019-07-18-167. arXiv:1810.05582.CrossRefGoogle Scholar
Campbell, E. T. (2019). A theory of single-shot error correction for adversarial noise. Quantum Sci. Technol., 4, 025006. doi:10.1088/2058-9565/aafc8f. arXiv:1805.09271.CrossRefGoogle Scholar
Campbell, E. T. (2021). Early fault-tolerant simulations of the Hubbard model. Quantum Sci. Technol., 7, 015007. doi:10.1088/2058-9565/ac3110. arXiv:2012.09238.Google Scholar
Campbell, E. T., Terhal, B. M., and Vuillot, C. (2017). Roads towards fault-tolerant universal quantum computation. Nature, 549, 172–179. doi:10.1038/nature23460. arXiv:1612.07330.CrossRefGoogle ScholarPubMed
Camps, D., Lin, L., Van Beeumen, R., and Yang, C. (2024). Explicit quantum circuits for block encodings of certain sparse matrices. SIAM J. Matrix Anal. Appl., 45, 801–827. doi:10.1137/22M1484298. arXiv:2203.10236.CrossRefGoogle Scholar
Cao, Y., Papageorgiou, A., Petras, I., et al. (2013). Quantum algorithm and circuit design solving the poisson equation. New J. Phys., 15, 013021. doi:10.1088/1367-2630/15/1/013021. arXiv:1207.2485.CrossRefGoogle Scholar
Cao, Y., Romero, J., Olson, J. P., et al. (2019). Quantum chemistry in the age of quantum computing. Chem. Rev., 119, 10856–10915. doi:10.1021/acs.chemrev.8b00803. arXiv:1812.09976.CrossRefGoogle ScholarPubMed
Carbone, A., Cipollone, A., Barbieri, C., et al. (2013). Self-consistent Green’s functions formalism with three-body interactions. Phys. Rev. C, 88, 054326. doi:10.1103/PhysRevC.88.054326. arXiv:1310.3688.CrossRefGoogle Scholar
Carena, M., Lamm, H., Li, Y.-Y., and Liu, W. (2021). Lattice renormalization of quantum simulations. Phys. Rev. D, 104, 094519. doi:10.1103/PhysRevD.104.094519. arXiv:2107.01166.CrossRefGoogle Scholar
Carlson, J., Gandolfi, S., Pederiva, F., et al. (2015). Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys., 87, 1067. doi:10.1103/RevModPhys.87.1067. arXiv:1412.3081.CrossRefGoogle Scholar
Carlson, J., Savage, M. J., Gerber, R., et al. (2017). Nuclear physics exascale requirements review: An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Nuclear Physics, June 15–17, 2016, Gaithersburg, Maryland. Tech. rept. OSTI 1906717. U.S. Department of Energy Office of Scientific and Technical Information. doi:10.2172/1369223.Google ScholarPubMed
Caro, M. C., Gil-Fuster, E., Meyer, J. J., et al. (2021). Encoding-dependent generalization bounds for parametrized quantum circuits. Quantum, 5, 582. doi:10.22331/q-2021-11-17-582. arXiv:2106.03880.CrossRefGoogle Scholar
Caro, M. C., Huang, H.-Y., Cerezo, M., et al. (2022). Generalization in quantum machine learning from few training data. Nat. Commun., 13, 4919. doi:10.1038/s41467-022-32550-3. arXiv:2111.05292.CrossRefGoogle ScholarPubMed
Caro, M. C., Huang, H.-Y., Ezzell, N., et al. (2023). Out-of-distribution generalization for learning quantum dynamics. Nat. Commun., 14, 3751. doi:10.1038/s41467-023-39381-w. arXiv:2204.10268.CrossRefGoogle ScholarPubMed
CarringtonJr, T. (2017). Perspective: Computing (ro-)vibrational spectra of molecules with more than four atoms. J. Chem. Phys., 146, 120902. doi:10.1063/1.4979117.CrossRefGoogle ScholarPubMed
Casares, P. A. M., Campos, R., and Martin-Delgado, M. A. (2022). TFermion: A non-Clifford gate cost assessment library of quantum phase estimation algorithms for quantum chemistry. Quantum, 6, 768. doi:10.22331/q-2022-07-20-768. arXiv:2110.05899.CrossRefGoogle Scholar
Castryck, W., and Decru, T. (2023). An efficient key recovery attack on SIDH. Pages 423–447 of: EUROCRYPT. doi:10.1007/978-3-031-30589-4_15. ePrint:2022/975.CrossRefGoogle Scholar
Cerezo, M., Sone, A., Volkoff, T., et al. (2021). Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun., 12, 1–12. doi:10.1038/s41467-021-21728-w. arXiv:2001.00550.CrossRefGoogle ScholarPubMed
Cerezo, M., Arrasmith, A., Babbush, R., et al. (2021). Variational quantum algorithms. Nat. Rev. Phys., 625–644. doi:10.1038/s42254-021-00348-9. arXiv:2012.09265.CrossRefGoogle Scholar
Cerezo, M., Verdon, G., Huang, H.-Y., et al. (2022). Challenges and opportunities in quantum machine learning. Nat. Comput. Sci., 2, 567–576. doi:10.1038/s43588-022-00311-3. arXiv:2303.09491.CrossRefGoogle ScholarPubMed
Cerezo, M., Larocca, M., García-Martín, D., et al. (2023). Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing. arXiv:2312.09121.Google Scholar
Cerjan, C. (1993). Numerical grid methods and their application to Schrödinger’s equation. Vol. 412. Springer Science & Business Media. doi:10.1007/978-94-015-8240-7.CrossRefGoogle Scholar
Chakrabarti, S., Childs, A. M., Li, T., and Wu, X. (2020). Quantum algorithms and lower bounds for convex optimization. Quantum, 4, 221. doi:10.22331/q-2020-01-13-221. arXiv:1809.01731.CrossRefGoogle Scholar
Chakrabarti, S., Krishnakumar, R., Mazzola, G., et al. (2021). A threshold for quantum advantage in derivative pricing. Quantum, 5, 463. doi:10.22331/q-2021-06-01-463. arXiv:2012.03819.CrossRefGoogle Scholar
Chakrabarti, S., Minssen, P., Yalovetzky, R., and Pistoia, M. (2022). Universal quantum speedup for branch-and-bound, branch-and-cut, and tree-search algorithms. arXiv:2210.03210.Google Scholar
Chakraborty, S., Gilyén, A., and Jeffery, S. (2019). The power of block-encoded matrix powers: Improved regression techniques via faster Hamiltonian simulation. Pages 33:1–33:14 of: ICALP. doi:10.4230/LIPIcs.ICALP.2019.33. arXiv:1804.01973.Google Scholar
Chamberland, C., and Cross, A. W. (2019). Fault-tolerant magic state preparation with flag qubits. Quantum, 3, 143. doi:10.22331/q-2019-05-20-143. arXiv:1811.00566.CrossRefGoogle Scholar
Chamberland, C., Noh, K., Arrangoiz-Arriola, P., et al. (2022). Building a fault-tolerant quantum computer using concatenated cat codes. PRX Quantum, 3, 010329. doi:10.1103/PRXQuantum.3.010329. arXiv:2012.04108.CrossRefGoogle Scholar
Chamberland, C., Goncalves, L., Sivarajah, P., et al. (2023). Techniques for combining fast local decoders with global decoders under circuit-level noise. Quantum Sci. Technol., 8, 045011. doi:10.1088/2058-9565/ace64d. arXiv:2208.01178.CrossRefGoogle Scholar
Chan, G. K.-L. (2024). Spiers memorial lecture: Quantum chemistry, classical heuristics, and quantum advantage. Faraday Discuss., 254, 11–52. doi:10.1039/D4FD00141A. arXiv:2407.11235.CrossRefGoogle ScholarPubMed
Chan, H. H. S., Meister, R., Jones, T., et al. (2023). Grid-based methods for chemistry simulations on a quantum computer. Sci. Adv., 9, eabo7484. doi:10.1126/sciadv.abo7484. arXiv:2202.05864.CrossRefGoogle ScholarPubMed
Chao, R., and Reichardt, B. W. (2020). Flag fault-tolerant error correction for any stabilizer code. PRX Quantum, 1. doi:10.1103/prxquantum.1.010302. arXiv:1912.09549.CrossRefGoogle Scholar
Chao, R., Ding, D., Gilyén, A., et al. (2020). Finding angles for quantum signal processing with machine precision. arXiv:2003.02831.Google Scholar
Chen, C.-F., and Brandão, F. G. S. L. (2021). Fast thermalization from the eigenstate thermalization hypothesis. arXiv:2112.07646.Google Scholar
Chen, C.-F., and Brandão, F. G. S. L. (2024). Average-case speedup for product formulas. Commun. Math. Phys., 405, 32. doi:10.1007/s00220-023-04912-5. arXiv:2111.05324.CrossRefGoogle Scholar
Chen, C.-F., Huang, H.-Y., Kueng, R., and Tropp, J. A. (2021). Concentration for random product formulas. PRX Quantum, 2. doi:10.1103/prxquantum.2.040305. arXiv:2008.11751.CrossRefGoogle Scholar
Chen, C.-F., Kastoryano, M. J., and Gilyén, A. (2023). An efficient and exact noncommutative quantum Gibbs sampler. arXiv:2311.09207.Google Scholar
Chen, C.-F., Kastoryano, M. J., Brandão, F. G. S. L., and Gilyén, A. (2023). Quantum thermal state preparation. arXiv:2303.18224.Google Scholar
Chen, C.-F., Lucas, A., and Yin, C. (2023). Speed limits and locality in many-body quantum dynamics. Rep. Prog. Phys., 86, 116001. doi:10.1088/1361-6633/acfaae. arXiv:2303.07386.Google Scholar
Chen, J., Stoudenmire, E., and White, S. R. (2023). Quantum Fourier transform has small entanglement. PRX Quantum, 4, 040318. doi:10.1103/PRXQuantum.4.040318. arXiv:2210.08468.CrossRefGoogle Scholar
Chen, L., Jordan, S., Liu, Y.-K., et al. (2016). Report on post-quantum cryptography. Tech. rept. NISTIR 8105. National Institute of Standards and Technology, Gaithersburg, MD. doi:10.6028/NIST.IR.8105.CrossRefGoogle Scholar
Chen, M.-H., Yu, C.-H., Gao, J.-L., et al. (2022). Quantum algorithm for Gaussian process regression. Phys. Rev. A, 106, 012406. doi:10.1103/PhysRevA.106.012406. arXiv:2106.06701.CrossRefGoogle Scholar
Chen, S., Cotler, J., Huang, H.-Y., and Li, J. (2022). Exponential separations between learning with and without quantum memory. Pages 574–585 of: FOCS. doi:10.1109/FOCS52979.2021.00063. arXiv:2111.05881.CrossRefGoogle Scholar
Chen, Y., and de Wolf, R. (2023). Quantum algorithms and lower bounds for linear regression with norm constraints. Pages 38:1–38:21 of: ICALP. doi:10.4230/LIPIcs.ICALP.2023.38. arXiv:2110.13086.Google Scholar
Chen, Y., Gilyén, A., and de Wolf, R. (2025). A quantum speed-up for approximating the top eigenvectors of a matrix. In: SODA. Accepted, arXiv:2405.14765.Google Scholar
Chen, Z.-Y., Xue, C., Chen, S.-M., et al. (2022). Quantum approach to accelerate finite volume method on steady computational fluid dynamics problems. Quantum Inf. Process., 21, 137. doi:10.1007/s11128-022-03478-w. arXiv:2102.03557.CrossRefGoogle Scholar
Chen, Z.-Y., Xue, C., Sun, T.-P., et al. (2023). An efficient and error-resilient protocol for quantum random access memory with generalized data size. arXiv:2303.05207.Google Scholar
Chepurko, N., Clarkson, K., Horesh, L., et al. (2022). Quantum-inspired algorithms from randomized numerical linear algebra. Pages 3879–3900 of: ICML, vol. 162. arXiv:2011.04125.Google Scholar
Chia, N.-H., Gilyén, A. P., Li, T., et al. (2022). Sampling-based sublinear lowrank matrix arithmetic framework for dequantizing quantum machine learning. J. ACM, 69, 1–72. doi:10.1145/3549524. Earlier version in STOC’20. arXiv:1910.06151.CrossRefGoogle Scholar
Chiang, C.-F., and Wocjan, P. (2010). Quantum algorithm for preparing thermal Gibbs states-detailed analysis. Pages 138–147 of: Quantum Cryptography and Computing, vol. 26. doi:10.3233/978-1-60750-547-1-138. arXiv:1001.1130.CrossRefGoogle Scholar
Chiesa, A., Tacchino, F., Grossi, M., et al. (2019). Quantum hardware simulating four-dimensional inelastic neutron scattering. Nat. Phys., 15, 455–459. doi:10.1038/s41567-019-0437-4. arXiv:1809.07974.CrossRefGoogle Scholar
Childs, A., Jao, D., and Soukharev, V. (2014). Constructing elliptic curve isogenies in quantum subexponential time. J. Math. Cryptol., 8, 1–29. doi:10.1515/jmc-2012-0016. arXiv:1012.4019.CrossRefGoogle Scholar
Childs, A. M. (2010). On the relationship between continuousand discrete-time quantum walk. Commun. Math. Phys., 294, 581–603. doi:10.1007/s00220-009-0930-1. arXiv:0810.0312.CrossRefGoogle Scholar
Childs, A. M. (2022). Lecture notes on quantum algorithms. https://cs.umd.edu/˜amchilds/qa/, accessed: 2024-12-01.Google Scholar
Childs, A. M., and van Dam, W. (2010). Quantum algorithms for algebrai problems. Rev. Mod. Phys., 82, 1–52. doi:10.1103/RevModPhys.82.1. arXiv:0812.0380.CrossRefGoogle Scholar
Childs, A. M., and Kothari, R. (2011). Simulating sparse Hamiltonians with star decompositions. Pages 94–103 of: TQC. doi:10.1007/978-3-642-18073-6_8. arXiv:1003.3683.CrossRefGoogle Scholar
Childs, A. M., and Liu, J.-P. (2020). Quantum spectral methods for differential equations. Commun. Math. Phys., 375, 1427–1457. doi:10.1007/s00220-020-03699-z. arXiv:1901.00961.CrossRefGoogle Scholar
Childs, A. M., and Su, Y. (2019). Nearly optimal lattice simulation by product formulas. Phys. Rev. Lett., 123, 050503. doi:10.1103/PhysRevLett.123.050503. arXiv:1901.00564.CrossRefGoogle ScholarPubMed
Childs, A. M., and Wiebe, N. (2012). Hamiltonian simulation using linear combinations of unitary operations. Quantum Inf. Comput., 12, 901–924. doi:10.26421/QIC12.11-12. arXiv:1202.5822.Google Scholar
Childs, A. M., Kothari, R., and Somma, R. D. (2017). Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comp., 46, 1920–1950. doi:10.1137/16M1087072. arXiv:1511.02306.CrossRefGoogle Scholar
Childs, A. M., Maslov, D., Nam, Y., et al. (2018). Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci., 115, 9456–9461. doi:10.1073/pnas.1801723115. arXiv:1711.10980.CrossRefGoogle ScholarPubMed
Childs, A. M., Ostrander, A., and Su, Y. (2019). Faster quantum simulation by randomization. Quantum, 3, 182. doi:10.22331/q-2019-09-02-182. arXiv:1805.08385.CrossRefGoogle Scholar
Childs, A. M., Liu, J.-P., and Ostrander, A. (2021). High-precision quantum algorithms for partial differential equations. Quantum, 5, 574. doi:10.22331/q-2021-11-10-574. arXiv:2002.07868.CrossRefGoogle Scholar
Childs, A. M., Su, Y., Tran, M. C., et al. (2021). Theory of Trotter error with commutator scaling. Phys. Rev. X, 11. doi:10.1103/physrevx.11.011020. arXiv:1912.08854.Google Scholar
Childs, A. M., Leng, J., Li, T., et al. (2022). Quantum simulation of realspace dynamics. Quantum, 6, 860. doi:10.22331/q-2022-11-17-860. arXiv:2203.17006.CrossRefGoogle Scholar
Cho, C. H., Berry, D. W., and Hsieh, M.-H. (2022). Doubling the order of approximation via the randomized product formula. arXiv:2210.11281.Google Scholar
Chowdhury, A. N., and Somma, R. D. (2017). Quantum algorithms for Gibbs sampling and hitting-time estimation. Quantum Inf. Comput., 17, 41–64. doi:10.26421/QIC17.1-2. arXiv:1603.02940.Google Scholar
Chowdhury, A. N., Somma, R. D., and SubaŞı, Y. (2021). Computing partition functions in the one-clean-qubit model. Phys. Rev. A, 103, 032422. doi:10.1103/PhysRevA.103.032422. arXiv:1910.11842.CrossRefGoogle Scholar
Chubb, C. T. (2021). General tensor network decoding of 2D Pauli codes. arXiv:2101.04125.Google Scholar
Ciavarella, A., Klco, N., and Savage, M. J. (2021). Trailhead for quantum simulation of SU(3) Yang–Mills lattice gauge theory in the local multiplet basis. Phys. Rev. D, 103, 094501. doi:10.1103/PhysRevD.103.094501. arXiv:2101.10227.CrossRefGoogle Scholar
Ciliberto, C., Herbster, M., Ialongo, A. D., et al. (2018). Quantum machine learning: A classical perspective. Proc. R. Soc. A, 474, 20170551. doi:10.1098/rspa.2017.0551. arXiv:1707.08561.CrossRefGoogle ScholarPubMed
Cirstoiu, C., Holmes, Z., Iosue, J., et al. (2020). Variational fast forwarding for quantum simulation beyond the coherence time. npj Quant. Inf., 6, 82. doi:10.1038/s41534-020-00302-0. arXiv:1910.04292.Google Scholar
Clader, B. D., Jacobs, B. C., and Sprouse, C. R. (2013). Preconditioned quantum linear system algorithm. Phys. Rev. Lett., 110, 250504. doi:10.1103/PhysRevLett.110.250504. arXiv:1301.2340.CrossRefGoogle ScholarPubMed
Clader, B. D., Dalzell, A. M., Stamatopoulos, N., et al. (2022). Quantum resources required to block-encode a matrix of classical data. IEEE Trans. Quantum Eng., 3, 1–23. doi:10.1109/TQE.2022.3231194. arXiv:2206.03505.CrossRefGoogle Scholar
Cleve, R., and Wang, C. (2017). Efficient quantum algorithms for simulating Lindblad evolution. Pages 17:1–17:14 of: ICALP. doi:10.4230/LIPIcs.ICALP.2017.17. arXiv:1612.09512.Google Scholar
Cleve, R., and Watrous, J. (2000). Fast parallel circuits for the quantum Fourier transform. Pages 526–536 of: FOCS. doi:10.1109/SFCS.2000.892140. arXiv:quant-ph/0006004.CrossRefGoogle Scholar
Cleve, R., Ekert, A., Macchiavello, C., and Mosca, M. (1998). Quantum algorithms revisited. Proc. R. Soc. A, 454, 339–354. doi:10.1098/rspa.1998.0164. arXiv:quant-ph/9708016.CrossRefGoogle Scholar
Clinton, L., Bausch, J., and Cubitt, T. (2021). Hamiltonian simulation algorithms for near-term quantum hardware. Nat. Commun., 12, 4989. doi:10.1038/s41467-021-25196-0. arXiv:2003.06886.CrossRefGoogle ScholarPubMed
Clinton, L., Cubitt, T., Flynn, B., et al. (2024). Towards nearterm quantum simulation of materials. Nat. Commun., 15, 211. doi:10.1038/s41467-023-43479-6. arXiv:2205.15256.CrossRefGoogle ScholarPubMed
Coecke, B., and Kissinger, A. (2017). Picturing quantum processes. Cambridge University Press. doi:10.1017/9781316219317.Google Scholar
Cohen, L. Z., Kim, I. H., Bartlett, S. D., and Brown, B. J. (2022). Low-overhead fault-tolerant quantum computing using long-range connectivity. Sci. Adv., 8. doi:10.1126/sciadv.abn1717.CrossRefGoogle ScholarPubMed
Cohen, M. B., Lee, Y. T., and Song, Z. (2021). Solving linear programs in the current matrix multiplication time. J. ACM, 68. doi:10.1145/3424305. arXiv:1810.07896.CrossRefGoogle Scholar
Commeau, B., Cerezo, M., Holmes, Z., et al. (2020). Variational Hamiltonian diagonalization for dynamical quantum simulation. arXiv:2009.02559.Google Scholar
Cong, I., Choi, S., and Lukin, M. D. (2019). Quantum convolutional neural networks. Nat. Phys., 15, 1273–1278. doi:10.1038/s41567-019-0648-8. arXiv:1810.03787.CrossRefGoogle Scholar
Coppersmith, D., Gamarnik, D., Hajiaghayi, M., and Sorkin, G. B. (2004). Random MAX SAT, random MAX CUT, and their phase transitions. Rand. Struct. Algorithms, 24, 502–545. doi:10.1002/rsa.20015. Earlier version in SODA’03. arXiv:math/0306047.Google Scholar
Cornelissen, A., and Hamoudi, Y. (2023). A sublinear-time quantum algorithm for approximating partition functions. Pages 1245–1264 of: SODA. doi:10.1137/1.9781611977554.ch46. arXiv:2207.08643.CrossRefGoogle Scholar
Cornelissen, A., and Jerbi, S. (2021). Quantum algorithms for multivariate Monte Carlo estimation. arXiv:2107.03410.Google Scholar
Cornelissen, A., Hamoudi, Y., and Jerbi, S. (2022). Near-optimal quantum algorithms for multivariate mean estimation. Pages 33–43 of: STOC. doi:10.1145/3519935.3520045. arXiv:2111.09787.CrossRefGoogle Scholar
Cornuejols, G., and Tütüncü, R. (2006). Optimization methods in finance. Vol. 5. Cambridge University Press.CrossRefGoogle Scholar
Costa, P. C., Jordan, S., and Ostrander, A. (2019). Quantum algorithm for simulating the wave equation. Phys. Rev. A, 99, 012323. doi:10.1103/PhysRevA.99.012323.CrossRefGoogle Scholar
Costa, P. C., An, D., Sanders, Y. R., et al. (2022). Optimal scaling quantum linear-systems solver via discrete adiabatic theorem. PRX Quantum, 3, 040303. doi:10.1103/PRXQuantum.3.040303. arXiv:2111.08152.CrossRefGoogle Scholar
Costa, P. C. S., An, D., Babbush, R., and Berry, D. (2023). The discrete adiabatic quantum linear system solver has lower constant factors than the randomized adiabatic solver. arXiv:2312.07690.Google Scholar
Costa, P. C. S., Schleich, P., Morales, M. E. S., and Berry, D. W. (2023). Further improving quantum algorithms for nonlinear differential equations via higherorder methods and rescaling. arXiv:2312.09518.Google Scholar
Cotler, J. S., Gur-Ari, G., Hanada, M., et al. (2017). Black holes and random matrices. J. High Energy Phys., 2017, 1–54. doi:10.1007/JHEP05(2017)118. arXiv:1611.04650.CrossRefGoogle Scholar
Cramer, M., Plenio, M. B., Flammia, S. T., et al. (2010). Efficient quantum state tomography. Nat. Commun., 1, 149. doi:10.1038/ncomms1147. arXiv:1101.4366.CrossRefGoogle ScholarPubMed
Cramer, R., Ducas, L., and Wesolowski, B. (2017). Short Stickelberger class relations and application to Ideal-SVP. Pages 324–348 of: EUROCRYPT. ePrint:2016/885.Google Scholar
Crichigno, M., and Kohler, T. (2022). Clique homology is QMA1-hard. arXiv:2209.11793.Google Scholar
Criger, B., and Ashraf, I. (2018). Multi-path summation for decoding 2d topological codes. Quantum, 2, 102. doi:10.22331/q-2018-10-19-102. arXiv:1709.02154.CrossRefGoogle Scholar
Crooks, G. E. (2019). Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition. arXiv:1905.13311.Google Scholar
Crosson, E., and Harrow, A. W. (2016). Simulated quantum annealing can be exponentially faster than classical simulated annealing. Pages 714–723 of: FOCS. doi:10.1109/FOCS.2016.81. arXiv:1601.03030.CrossRefGoogle Scholar
Crosson, E., and Lidar, D. (2021). Prospects for quantum enhancement with diabatic quantum annealing. Nat. Rev. Phys., 3, 466–489. doi:10.1038/s42254-021-00313-6. arXiv:2008.09913.CrossRefGoogle Scholar
Crosson, E., and Slezak, S. (2020). Classical simulation of high temperature quantum Ising models. doi:10.48550/arXiv.2002.02232. arXiv:2002.02232.CrossRefGoogle Scholar
Cunningham, J., and Roland, J. (2024). Eigenpath traversal by poissondistributed phase randomisation. arXiv:2406.03972.Google Scholar
Daley, A. J., Bloch, I., Kokail, C., et al. (2022). Practical quantum advantage in quantum simulation. Nature, 607, 667–676. doi:10.1038/s41586-022-04940-6.CrossRefGoogle ScholarPubMed
Dalzell, A. M. (2024). A shortcut to an optimal quantum linear system solver. arXiv:2406.12086.Google Scholar
Dalzell, A. M., Clader, B. D., Salton, G., et al. (2023). End-to-end resource analysis for quantum interior-point methods and portfolio optimization. PRX Quantum, 4, 040325. doi:10.1103/PRXQuantum.4.040325. arXiv:2211.12489.CrossRefGoogle Scholar
Dalzell, A. M., Pancotti, N., Campbell, E. T., and Brandão, F. G. (2023). Mind the gap: Achieving a super-Grover quantum speedup by jumping to the end. Pages 1131–1144 of: STOC. doi:10.1145/3564246.3585203. arXiv:2212.01513.CrossRefGoogle Scholar
Damm, C., Holzer, M., and McKenzie, P. (2002). The complexity of tensor calculus. Comput. Complex., 11, 54–89. doi:10.1007/s00037-000-0170-4.CrossRefGoogle Scholar
Darmawan, A. S., and Poulin, D. (2017). Tensor-network simulations of the surface code under realistic noise. Phys. Rev. Lett., 119, 040502. doi:10.1103/PhysRevLett.119.040502. arXiv:1607.06460.CrossRefGoogle ScholarPubMed
Davoudi, Z., Detmold, W., Shanahan, P., et al. (2021). Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes. Phys. Rep., 900, 1–74. doi:10.1016/j.physrep.2020.10.004.CrossRefGoogle Scholar
Davoudi, Z., Neil, E. T., Bauer, C. W., et al. (2022). Report of the Snowmass 2021 topical group on lattice gauge theory. Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). arXiv:2209.10758.Google Scholar
Davoudi, Z., Shaw, A. F., and Stryker, J. R. (2023). General quantum algorithms for Hamiltonian simulation with applications to a non-abelian lattice gauge theory. Quantum, 7, 1213. doi:10.22331/q-2023-12-20-1213. arXiv:2212.14030.CrossRefGoogle Scholar
de Beaudrap, N., and Horsman, D. (2020). The ZX calculus is a language for surface code lattice surgery. Quantum, 4, 218. doi:10.22331/q-2020-01-09-218. arXiv:1704.08670.CrossRefGoogle Scholar
De Palma, G., Marvian, M., Rouzé, C., and Franc¸a, D. S. (2023). Limitations of variational quantum algorithms: A quantum optimal transport approach. PRX Quantum, 4, 010309. doi:10.1103/PRXQuantum.4.010309. arXiv:2204.03455.CrossRefGoogle Scholar
Dean, D. J. (2007). Beyond the nuclear shell model. Phys. Today, 60, 48–53. doi:10.1063/1.2812123.CrossRefGoogle Scholar
Delfosse, N., and Nickerson, N. H. (2021). Almost-linear time decoding algorithm for topological codes. Quantum, 5, 595. doi:10.22331/q-2021-12-02-595. arXiv:1709.06218.CrossRefGoogle Scholar
Delfosse, N., Reichardt, B. W., and Svore, K. M. (2022). Beyond single-shot fault-tolerant quantum error correction. IEEE Trans. Inf. Theory, 68, 287–301. doi:10.1109/tit.2021.3120685. arXiv:2002.05180.CrossRefGoogle Scholar
Delgado, A., Hamilton, K. E., Date, P., et al. (2022). Quantum computing for data analysis in high-energy physics. arXiv:2203.08805.Google Scholar
Delgado, A., Casares, P. A. M., dos Reis, R., et al. (2022). Simulating key properties of lithium-ion batteries with a fault-tolerant quantum computer. Phys. Rev. A, 106, 032428. doi:10.1103/PhysRevA.106.032428. arXiv:2204.11890.CrossRefGoogle Scholar
Deng, C., Sun, F., Qian, X., et al. (2019). TIE: Energy-efficient tensor trainbased inference engine for deep neural network. Pages 264–278 of: ISCA. doi:10.1145/3307650.3322258.CrossRefGoogle Scholar
Dennis, E., Kitaev, A., Landahl, A., and Preskill, J. (2002). Topological quantum memory. J. Math. Phys., 43, 4452–4505. doi:10.1063/1.1499754. arXiv:quant-ph/0110143.CrossRefGoogle Scholar
Derby, C., Klassen, J., Bausch, J., and Cubitt, T. (2021). Compact fermion to qubit mappings. Phys. Rev. B, 104, 035118. doi:10.1103/PhysRevB.104.035118. arXiv:2003.06939.CrossRefGoogle Scholar
Derrida, B. (1980). Random-energy model: Limit of a family of disordered models. Phys. Rev. Lett., 45, 79–82. doi:10.1103/PhysRevLett.45.79.CrossRefGoogle Scholar
Deutsch, D. (1985). Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. A, 400, 97–117. doi:10.1098/rspa.1985.0070.Google Scholar
Deutsch, D., and Jozsa, R. (1992). Rapid solution of problems by quantum computation. Proc. R. Soc. A, 439, 553–558. doi:10.1098/rspa.1992.0167.Google Scholar
Devoret, M. H., and Schoelkopf, R. J. (2013). Superconducting circuits for quantum information: An outlook. Science, 339, 1169–1174. doi:10.1126/science.123193.CrossRefGoogle ScholarPubMed
Di Matteo, O., Gheorghiu, V., and Mosca, M. (2020). Fault-tolerant resource estimation of quantum random-access memories. IEEE Trans. Quantum Eng., 1, 1–13. doi:10.1109/TQE.2020.2965803. arXiv:1902.01329.CrossRefGoogle Scholar
Ding, C., Bao, T.-Y., and Huang, H.-L. (2022). Quantum-inspired support vector machine. IEEE Trans. Neural Netw. Learn. Syst., 33, 7210–7222. doi:10.1109/TNNLS.2021.3084467. arXiv:1906.08902.CrossRefGoogle ScholarPubMed
Ding, Z., Chen, C.-F., and Lin, L. (2024). Single-ancilla ground state preparation via Lindbladians. Phys. Rev. Res., 6, 033147. doi:10.1103/PhysRevResearch.6.033147. arXiv:2308.15676.CrossRefGoogle Scholar
Dinur, I., Evra, S., Livne, R., et al. (2022). Locally testable codes with constant rate, distance, and locality. Pages 357–374 of: STOC. doi:10.1145/3519935.3520024. arXiv:2111.04808.CrossRefGoogle Scholar
DiVincenzo, D. P., and Aliferis, P. (2007). Effective fault-tolerant quantum computation with slow measurements. Phys. Rev. Lett., 98. doi:10.1103/physrevlett.98.020501.CrossRefGoogle ScholarPubMed
Dodin, I. Y., and Startsev, E. A. (2021). On applications of quantum computing to plasma simulations. Phys. Plasmas, 28, 092101. doi:10.1063/5.0056974. arXiv:2005.14369.CrossRefGoogle Scholar
Domahidi, A., Chu, E., and Boyd, S. (2013). ECOS: An SOCP solver for embedded systems. Pages 3071–3076 of: ECC. doi:10.23919/ECC.2013.6669541.CrossRefGoogle Scholar
Dong, Y., Meng, X., Whaley, K. B., and Lin, L. (2021). Efficient phasefactor evaluation in quantum signal processing. Phys. Rev. A, 103, 042419. doi:10.1103/PhysRevA.103.042419. arXiv:2002.11649.CrossRefGoogle Scholar
Dong, Y., Gross, J., and Niu, M. Y. (2022). Beyond Heisenberg limit quantum metrology through quantum signal processing. arXiv:2209.11207.Google Scholar
Dong, Y., Lin, L., and Tong, Y. (2022). Ground-state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices. PRX Quantum, 3, 040305. doi:10.1103/PRXQuantum.3.040305. arXiv:2204.05955.CrossRefGoogle Scholar
Dong, Y., Lin, L., Ni, H., and Wang, J. (2022). Infinite quantum signal processing. arXiv:2209.10162.Google Scholar
Dong, Y., Lin, L., Ni, H., and Wang, J. (2023). Robust iterative method for symmetric quantum signal processing in all parameter regimes. arXiv:2307.12468.Google Scholar
Doriguello, J. a. F., Luongo, A., Bao, J., et al. (2022). Quantum algorithm for stochastic optimal stopping problems with applications in finance. Pages 2:1–2:24 of: TQC. doi:10.4230/LIPIcs.TQC.2022.2. arXiv:2111.15332.CrossRefGoogle Scholar
Du, Y., Hsieh, M.-H., Liu, T., and Tao, D. (2020). Expressive power of parametrized quantum circuits. Phys. Rev. Res., 2, 033125. doi:10.1103/PhysRevResearch.2.033125. arXiv:1810.11922.CrossRefGoogle Scholar
Dua, A., Kubica, A., Jiang, L., et al. (2024). Clifford-deformed surface codes. PRX Quantum, 5. doi:10.1103/prxquantum.5.010347. arXiv:2201.07802.CrossRefGoogle Scholar
Duclos-Cianci, G., and Poulin, D. (2010). Fast decoders for topological quantum codes. Phys. Rev. Lett., 104, 050504. doi:10.1103/PhysRevLett.104.050504. arXiv:0911.0581.CrossRefGoogle ScholarPubMed
Dukalski, M. (2021). Toward an application of quantum computing in geophysics. Pages 1–5 of: Fifth EAGE Workshop on High Performance Computing for Upstream, vol. 2021. doi:10.3997/2214-4609.2021612005.CrossRefGoogle Scholar
Dumitrescu, E. F., McCaskey, A. J., Hagen, G., et al. (2018). Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett., 120, 210501. doi:10.1103/PhysRevLett.120.210501. arXiv:1801.03897.CrossRefGoogle ScholarPubMed
Dürr, C., and Høyer, P. (1996). A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014.Google Scholar
Dürr, C., Heiligman, M., Høyer, P., and Mhalla, M. (2006). Quantum query complexity of some graph problems. SIAM J. Comp., 35, 1310–1328. doi:10.1137/050644719. Earlier version in ICALP’04. arXiv:quant-ph/0401091.CrossRefGoogle Scholar
Dürr, S., Fodor, Z., Frison, J., et al. (2008). Ab initio determination of light hadron masses. Science, 322, 1224–1227. doi:10.1126/science.1163233. arXiv:0906.3599.CrossRefGoogle ScholarPubMed
Eastin, B., and Knill, E. (2009). Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett., 102, 110502. doi:10.1103/physrevlett.102.110502. arXiv:0811.4262.CrossRefGoogle ScholarPubMed
Ebadi, S., Wang, T. T., Levine, H., et al. (2021). Quantum phases of matter on a 256-atom programmable quantum simulator. Nature, 595, 227. doi:10.1038/s41586-021-03582-4. arXiv:2012.12281.CrossRefGoogle ScholarPubMed
Edmonds, J. (1965). Paths, trees, and flowers. Can. J. Math., 17, 449–467. doi:10.4153/CJM-1965-045-4.CrossRefGoogle Scholar
Elben, A., Flammia, S. T., Huang, H.-Y., et al. (2023). The randomized measurement toolbox. Nat. Rev. Phys., 5, 9–24. doi:10.1038/s42254-022-00535-2. arXiv:2203.11374.Google Scholar
Elenewski, J. E., Camara, C. M., and Kalev, A. (2024). Prospects for NMR spectral prediction on fault-tolerant quantum computers. arXiv:2406.09340.Google Scholar
Elfving, V. E., Broer, B. W., Webber, M., et al. (2020). How will quantum computers provide an industrially relevant computational advantage in quantum chemistry? arXiv:2009.12472.Google Scholar
Elgart, A., and Hagedorn, G. A. (2012). A note on the switching adiabatic theorem. J. Math. Phys., 53, 102202. doi:10.1063/1.4748968. arXiv:1204.2318.CrossRefGoogle Scholar
Engel, A., Smith, G., and Parker, S. E. (2019). Quantum algorithm for the Vlasov equation. Phys. Rev. A, 100, 062315. doi:10.1103/PhysRevA.100.062315. arXiv:1907.09418.CrossRefGoogle Scholar
Engineering, S., and (SEAR), A. (2024). iMessage with PQ3: The new state of the art in quantum-secure messaging at scale. https://security.apple.com/blog/imessage-pq3/, accessed: 2024-06-05.Google Scholar
Fang, D., Lin, L., and Tong, Y. (2023). Time-marching based quantum solvers for time-dependent linear differential equations. Quantum, 7, 955. doi:10.22331/q-2023-03-20-955. arXiv:2208.06941.CrossRefGoogle Scholar
Farhi, E., and Harrow, A. W. (2016). Quantum supremacy through the quantum approximate optimization algorithm. arXiv:1602.07674.Google Scholar
Farhi, E., and Neven, H. (2018). Classification with quantum neural networks on near term processors. arXiv:1802.06002.Google Scholar
Farhi, E., Goldstone, J., Gutmann, S., and Sipser, M. (2000). Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106.Google Scholar
Farhi, E., Goldstone, J., Gosset, D., et al. (2009). Quantum adiabatic algorithms, small gaps, and different paths. Quantum Inf. Comput., 11, 181–214. doi:10.26421/QIC11.3-4-1. arXiv:0909.4766.Google Scholar
Farhi, E., Goldstone, J., and Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv:1411.4028.Google Scholar
Farhi, E., Gamarnik, D., and Gutmann, S. (2020). The quantum approximate optimization algorithm needs to see the whole graph: A typical case. arXiv:2004.09002.Google Scholar
Farhi, E., Gamarnik, D., and Gutmann, S. (2020). The quantum approximate optimization algorithm needs to see the whole graph: Worst case examples. arXiv:2005.08747.Google Scholar
Farrell, R. C., Illa, M., Ciavarella, A. N., and Savage, M. J. (2024). Quantum simulations of hadron dynamics in the Schwinger model using 112 qubits. arXiv:2401.08044.Google Scholar
Fawzi, O., Grospellier, A., and Leverrier, A. (2018). Constant overhead quantum fault-tolerance with quantum expander codes. In: FOCS. doi:10.1109/focs.2018.00076. arXiv:1808.03821.CrossRefGoogle Scholar
Felser, T., Silvi, P., Collura, M., and Montangero, S. (2020). Two-dimensional quantum-link lattice quantum electrodynamics at finite density. Phys. Rev. X, 10, 041040. doi:10.1103/PhysRevX.10.041040. arXiv:1911.09693.Google Scholar
Felser, T., Trenti, M., Sestini, L., et al. (2021). Quantum-inspired machine learning on high-energy physics data. npj Quant. Inf., 7, 111. doi:10.1038/s41534-021-00443-w. arXiv:2004.13747.Google Scholar
Feynman, R. P. (1982). Simulating physics with computers. Int. J. Th. Phys., 21, 467–488. doi:10.1007/BF02650179.CrossRefGoogle Scholar
Flannigan, S., Pearson, N., Low, G. H., et al. (2022). Propagation of errors and quantitative quantum simulation with quantum advantage. Quantum Sci. Technol., 7, 045025. doi:10.1088/2058-9565/ac88f5. arXiv:2204.13644.CrossRefGoogle Scholar
Focardi, S., Fabozzi, F. J., and Mazza, D. (2020). Quantum option pricing and quantum finance. J. Deriv., 28, 79–98. doi:10.3905/jod.2020.1.111.CrossRefGoogle Scholar
Fomichev, S., Hejazi, K., Zini, M. S., et al. (2024). Initial state preparation for quantum chemistry on quantum computers. PRX Quantum, 5, 040339. doi:10.1103/PRXQuantum.5.040339. arXiv:2310.18410.CrossRefGoogle Scholar
Fomichev, S., Hejazi, K., Loaiza, I., et al. (2024). Simulating X-ray absorption spectroscopy of battery materials on a quantum computer. arXiv:2405.11015.Google Scholar
Fontana, E., Herman, D., Chakrabarti, S., et al. (2024). Characterizing barren plateaus in quantum ansätze with the adjoint representation. Nat. Commun., 15, 7171. doi:10.1038/s41467-024-49910-w. arXiv:2309.07902.CrossRefGoogle ScholarPubMed
Fowler, A. G., and Gidney, C. (2018). Low overhead quantum computation using lattice surgery. arXiv:1808.06709.Google Scholar
Fowler, A. G., Mariantoni, M., Martinis, J. M., and Cleland, A. N. (2012). Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86, 032324. doi:10.1103/PhysRevA.86.032324. arXiv:1208.0928.CrossRefGoogle Scholar
Fradkin, E., Kivelson, S. A., and Tranquada, J. M. (2015). Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys., 87, 457–482. doi:10.1103/RevModPhys.87.457. arXiv:1407.4480.CrossRefGoogle Scholar
Franc¸a, D. S., and Garcia-Patron, R. (2021). Limitations of optimization algorithms on noisy quantum devices. Nat. Phys., 17, 1221–1227. doi:10.1038/s41567-021-01356-3. arXiv:2009.05532.Google Scholar
Franz, M., and Rozali, M. (2018). Mimicking black hole event horizons in atomic and solid-state systems. Nat. Rev. Mater., 3, 491–501. doi:10.1038/s41578-018-0058-z. arXiv:1808.00541.CrossRefGoogle Scholar
Fraxanet, J., Salamon, T., and Lewenstein, M. (2023). The coming decades of quantum simulation. Pages 85–125 of: Sketches of Physics: The Celebration Collection. doi:10.1007/978-3-031-32469-7_4. arXiv:2204.08905.CrossRefGoogle Scholar
Friedman, J. (1998). Computing Betti numbers via combinatorial Laplacians. Algorithmica, 21, 331–346. doi:10.1007/PL00009218.CrossRefGoogle Scholar
Funcke, L., Hartung, T., Jansen, K., and Kühn, S. (2023). Review on quantum computing for lattice field theory. Page 228 of: LATTICE, vol. 430. doi:10.22323/1.430.0228. arXiv:2302.00467.CrossRefGoogle Scholar
Gaitan, F. (2020). Finding flows of a Navier–Stokes fluid through quantum computing. npj Quant. Inf., 6, 61. doi:10.1038/s41534-020-00291-0.Google Scholar
Gaitan, F. (2021). Finding solutions of the Navier–Stokes equations through quantum computing—recent progress, a generalization, and next steps forward. Adv. Quantum Technol., 4, 2100055. doi:10.1002/qute.202100055.CrossRefGoogle Scholar
Garcia-Á lvarez, L., Egusquiza, I. L., Lamata, L., et al. (2017). Digita quantum simulation of minimal AdS/CFT. Phys. Rev. Lett., 119, 040501. doi:10.1103/PhysRevLett.119.040501. arXiv:1607.08560.Google Scholar
García-García, A. M., and Verbaarschot, J. J. M. (2016). Spectral and thermodynamic properties of the Sachdev–Ye–Kitaev model. Phys. Rev. D, 94, 126010. doi:10.1103/PhysRevD.94.126010. arXiv:1610.03816.CrossRefGoogle Scholar
Garg, A., Kothari, R., Netrapalli, P., and Sherif, S. (2021). Near-optimal lower bounds for convex optimization for all orders of smoothness. Pages 29874–29884 of: NeurIPS, vol. 34. arXiv:2112.01118.Google Scholar
Garg, A., Kothari, R., Netrapalli, P., and Sherif, S. (2021). No quantum speedup over gradient descent for non-smooth convex optimization. Pages 53:1–53:20 of: ITCS, vol. 185. doi:10.4230/LIPIcs.ITCS.2021.53. arXiv:2010.01801.CrossRefGoogle Scholar
Ge, Y., Molnár, A., and Cirac, J. I. (2016). Rapid adiabatic preparation of injective projected entangled pair states and Gibbs states. Phys. Rev. Lett., 116, 080503. doi:10.1103/PhysRevLett.116.080503. arXiv:1508.00570.CrossRefGoogle ScholarPubMed
Ge, Y., Tura, J., and Cirac, J. I. (2019). Faster ground state preparation and high-precision ground energy estimation with fewer qubits. J. Math. Phys., 60, 022202. doi:10.1063/1.5027484. arXiv:1712.03193.CrossRefGoogle Scholar
Gehrmann, T., and Malaescu, B. (2022). Precision QCD physics at the LHC. Annu. Rev. Nucl. Part. Sci., 72, 233–258. doi:10.1146/annurev-nucl-101920-014923. arXiv:2111.02319.CrossRefGoogle Scholar
Gentinetta, G., Sutter, D., Zoufal, C., et al. (2023). Quantum kernel alignment with stochastic gradient descent. Pages 256–262 of: QCE, vol. 01. doi:10.1109/QCE57702.2023.00036. arXiv:2304.09899.CrossRefGoogle Scholar
Gentinetta, G., Thomsen, A., Sutter, D., and Woerner, S. (2024). The complexity of quantum support vector machines. Quantum, 8, 1225. doi:10.22331/q-2024-01-11-1225. arXiv:2203.00031.CrossRefGoogle Scholar
Georges, T. N., Bothe, M., Sünderhauf, C., et al. (2024). Quantum simulations of chemistry in first quantization with any basis set. arXiv:2408.03145.Google Scholar
Georgescu, I. M., Ashhab, S., and Nori, F. (2014). Quantum simulation. Rev. Mod. Phys., 86, 153–185. doi:10.1103/RevModPhys.86.153. arXiv:1308.6253.CrossRefGoogle Scholar
Gharibian, S. (2024). Quantum complexity theory. https://groups.uni-paderborn.de/fg-qi/data/QCT_Masterfile.pdf, accessed: 2024-11-19.Google Scholar
Gharibian, S., and Le Gall, F. (2022). Dequantizing the quantum singular value transformation: Hardness and applications to quantum chemistry and the quantum PCP conjecture. Pages 19–32 of: STOC. doi:10.1145/3519935.3519991. arXiv:2111.09079.CrossRefGoogle Scholar
Gibbs, J., Gili, K., Holmes, Z., et al. (2022). Long-time simulations for fixed input states on quantum hardware. npj Quant. Inf., 8, 135. doi:10.1038/s41534-022-00625-0. arXiv:2102.04313.Google Scholar
Gidney, C. (2018). Halving the cost of quantum addition. Quantum, 2, 74. doi:10.22331/q-2018-06-18-74. arXiv:1709.06648.CrossRefGoogle Scholar
Gidney, C. (2021). Stim: A fast stabilizer circuit simulator. Quantum, 5, 497. doi:10.22331/q-2021-07-06-497. arXiv:2103.02202.CrossRefGoogle Scholar
Gidney, C. (2024). Inplace access to the surface code Y basis. Quantum, 8, 1310. doi:10.22331/q-2024-04-08-1310. arXiv:2302.07395.CrossRefGoogle Scholar
Gidney, C., and Ekerå, M. (2021). How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum, 5, 433. doi:10.22331/q-2021-04-15-433. arXiv:1905.09749.CrossRefGoogle Scholar
Gil-Fuster, E., Eisert, J., and Dunjko, V. (2023). On the expressivity of embedding quantum kernels. Mach. Learn.: Sci. Technol., 5, 025003. doi:10.1088/2632-2153/ad2f51. arXiv:2309.14419.Google Scholar
Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numer., 24, 259–328. doi:10.1017/S096249291500001X. arXiv:1304.5472.CrossRefGoogle Scholar
Gilyén, A. (2014). Quantum walk based search methods and algorithmic applications. Master’s thesis, Eötvös Loránd University.Google Scholar
Gilyén, A. (2019). Quantum singular value transformation & its algorithmic applications. PhD thesis, University of Amsterdam.Google Scholar
Gilyén, A., Su, Y., Low, G. H., and Wiebe, N. (2018). Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics [full version]. arXiv:1806.01838.Google Scholar
Gilyén, A., Arunachalam, S., and Wiebe, N. (2019). Optimizing quantum optimization algorithms via faster quantum gradient computation. Pages 1425–1444 of: SODA. doi:10.1137/1.9781611975482.87. arXiv:1711.00465.CrossRefGoogle Scholar
Gilyén, A., Su, Y., Low, G. H., and Wiebe, N. (2019). Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics. Pages 193–204 of: STOC. doi:10.1145/3313276.3316366. arXiv:1806.01838.CrossRefGoogle Scholar
Gilyén, A., Hastings, M. B., and Vazirani, U. (2021). (Sub)Exponential advantage of adiabatic quantum computation with no sign problem. Pages 1357–1369 of: STOC. doi:10.1145/3406325.3451060. arXiv:2011.09495.CrossRefGoogle Scholar
Gilyén, A., Song, Z., and Tang, E. (2022). An improved quantuminspired algorithm for linear regression. Quantum, 6, 754. doi:10.22331/q-2022-06-30-754. arXiv:2009.07268.CrossRefGoogle Scholar
Giovannetti, V., Lloyd, S., and Maccone, L. (2008). Quantum random access memory. Phys. Rev. Lett., 100, 160501. doi:10.1103/PhysRevLett.100.160501. arXiv:0708.1879.CrossRefGoogle ScholarPubMed
Glasserman, P. (2004). Monte Carlo methods in financial engineering. Vol. 53. Springer. doi:10.1007/978-0-387-21617-1.Google Scholar
Glick, J. R., Gujarati, T. P., Córcoles, A. D., et al. (2024). Covariant quantum kernels for data with group structure. Nat. Phys., 20, 479–483. doi:10.1038/s41567-023-02340-9. arXiv:2105.03406.CrossRefGoogle Scholar
Goings, J. J., White, A., Lee, J., et al. (2022). Reliably assessing the electronic structure of cytochrome P450 on today’s classical computers and tomorrow’s quantum computers. Proc. Natl. Acad. Sci., 119, e2203533119. doi:10.1073/pnas.2203533119. arXiv:2202.01244.CrossRefGoogle ScholarPubMed
Gondzio, J. (2012). Interior point methods 25 years later. Eur. J. Oper. Res., 218, 587–601. doi:10.1016/j.ejor.2011.09.017.CrossRefGoogle Scholar
Gong, W., Zhang, C., and Li, T. (2022). Robustness of quantum algorithms for nonconvex optimization. arXiv:2212.02548.Google Scholar
Gonthier, J. F., Radin, M. D., Buda, C., et al. (2022). Measurements as a roadblock to near-term practical quantum advantage in chemistry: Resource analysis. Phys. Rev. Res., 4, 033154. doi:10.1103/PhysRevResearch.4.033154.CrossRefGoogle Scholar
Gonzalez-Conde, J., Rodríguez-Rozas, Á., Solano, E., and Sanz, M. (2021). Simulating option price dynamics with exponential quantum speedup. arXiv:2101.04023.Google Scholar
Quantum, Google AI, Arute, F., Arya, K., et al. (2020). Hartree–Fock on a superconducting qubit quantum computer. Science, 369, 1084–1089. doi:10.1126/science.abb9811. arXiv:2004.04174.Google Scholar
Gorman, D. J., Hemmerling, B., Megidish, E., et al. (2018). Engineering vibrationally assisted energy transfer in a trapped-ion quantum simulator. Phys. Rev. X, 8, 011038. doi:10.1103/PhysRevX.8.011038. arXiv:1709.04064.Google Scholar
Gottesman, D. (1996). Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A, 54, 1862–1868. doi:10.1103/PhysRevA.54.1862. arXiv:quant-ph/9604038.CrossRefGoogle ScholarPubMed
Gottesman, D. (1998). The Heisenberg representation of quantum computers. arXiv:quant-ph/9807006.Google Scholar
Gottesman, D. (2010). An introduction to quantum error correction and faulttolerant quantum computation. Pages 13–58 of: Proceedings of Symposia in Applied Mathematics, vol. 68. arXiv:0904.2557.Google Scholar
Gottesman, D. (2014). Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput., 14, 1338–1372. doi:10.26421/QIC14.15-16-5. arXiv:1310.2984.Google Scholar
Gottesman, D., and Chuang, I. L. (1999). Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402, 390–393. doi:10.1038/46503.CrossRefGoogle Scholar
Gourianov, N., Lubasch, M., Dolgov, S., et al. (2022). A quantum-inspired approach to exploit turbulence structures. Nat. Comput. Sci., 2, 30–37. doi:10.1038/s43588-021-00181-1. arXiv:2106.05782.CrossRefGoogle ScholarPubMed
Gouzien, E., Ruiz, D., Le Régent, F.-M., et al. (2023). Performance analysis of a repetition cat code architecture: Computing 256-bit elliptic curve logarithm in 9 hours with 126133 cat qubits. Phys. Rev. Lett., 131, 040602. doi:10.1103/PhysRevLett.131.040602. arXiv:2302.06639.CrossRefGoogle Scholar
Grant, E., Benedetti, M., Cao, S., et al. (2018). Hierarchical quantum classifiers. npj Quant. Inf., 4, 65. doi:10.1038/s41534-018-0116-9. arXiv:1804.03680.Google Scholar
Grant, E., Humble, T. S., and Stump, B. (2021). Benchmarking quantum annealing controls with portfolio optimization. Phys. Rev. Appl., 15, 014012. doi:10.1103/PhysRevApplied.15.014012. arXiv:2007.03005.CrossRefGoogle Scholar
Grassl, M., Langenberg, B., Roetteler, M., and Steinwandt, R. (2016). Applying Grover’s algorithm to AES: Quantum resource estimates. Pages 29–43 of: PQCrypto. doi:10.1007/978-3-319-29360-8_3. arXiv:1512.04965.CrossRefGoogle Scholar
Gray, J., and Chan, G. K.-L. (2024). Hyperoptimized approximate contraction of tensor networks with arbitrary geometry. Phys. Rev. X, 14, 011009. doi:10.1103/PhysRevX.14.011009. arXiv:2206.07044.Google Scholar
Gray, J., and Kourtis, S. (2021). Hyper-optimized tensor network contraction. Quantum, 5, 410. doi:10.22331/q-2021-03-15-410. arXiv:2002.01935.CrossRefGoogle Scholar
Greenaway, S., Pol, W., and Sim, S. (2024). A case study against QSVT: Assessment of quantum phase estimation improved by signal processing techniques. arXiv:2404.01396.Google Scholar
Griewank, A., and Walther, A. (2008). Evaluating derivatives: Principles and techniques of algorithmic differentiation. SIAM. doi:10.1137/1.9780898717761.Google Scholar
Griffiths, R. B., and Niu, C.-S. (1996). Semiclassical Fourier transform for quantum computation. Phys. Rev. Lett., 76, 3228. doi:10.1103/PhysRevLett.76.3228. arXiv:quant-ph/9511007.CrossRefGoogle ScholarPubMed
Grigoriadis, M. D., and Khachiyan, L. G. (1995). A sublinear-time randomized approximation algorithm for matrix games. Oper. Res. Lett., 18, 53–58. doi:10.1016/0167-6377(95)00032-0.CrossRefGoogle Scholar
Grinko, D., Gacon, J., Zoufal, C., and Woerner, S. (2021). Iterative quantum amplitude estimation. npj Quant. Inf., 7, 52. doi:10.1038/s41534-021-00379-1. arXiv:1912.05559.Google Scholar
Gross, C., and Bloch, I. (2017). Quantum simulations with ultracold atoms in optical lattices. Science, 357, 995–1001. doi:10.1126/science.aal3837.CrossRefGoogle ScholarPubMed
Gross, D., Liu, Y.-K., Flammia, S. T., et al. (2010). Quantum state tomography via compressed sensing. Phys. Rev. Lett., 105, 150401. doi:10.1103/PhysRevLett.105.150401. arXiv:0909.3304.CrossRefGoogle ScholarPubMed
Grover, L., and Rudolph, T. (2002). Creating superpositions that correspond to efficiently integrable probability distributions. arXiv:quant-ph/0208112.Google Scholar
Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Pages 212–219 of: STOC. doi:10.1145/237814.237866. arXiv:quant-ph/9605043.CrossRefGoogle Scholar
Grover, L. K. (2000). Synthesis of quantum superpositions by quantum computation. Phys. Rev. Lett., 85, 1334. doi:10.1103/PhysRevLett.85.1334.CrossRefGoogle ScholarPubMed
Grover, L. K. (2005). Fixed-point quantum search. Phys. Rev. Lett., 95, 150501. doi:10.1103/PhysRevLett.95.150501. arXiv:quant-ph/0503205.CrossRefGoogle ScholarPubMed
Gu, S., Retzker, A., and Kubica, A. (2023). Fault-tolerant quantum architectures based on erasure qubits. arXiv:2312.14060.Google Scholar
Gui, K., Dalzell, A. M., Achille, A., et al. (2024). Spacetime-efficient low-depth quantum state preparation with applications. Quantum, 8, 1257. doi:10.22331/q-2024-02-15-1257. arXiv:2303.02131.CrossRefGoogle Scholar
Gunn, S., and Kornerup, N. (2019). Review of a quantum algorithm for Betti numbers. arXiv:1906.07673.Google Scholar
Optimization, Gurobi. (2024). Gurobi optimizer reference manual. Version 11.0, accessed: 2024-05-09.Google Scholar
Guta, M., Kahn, J., Kueng, R., and Tropp, J. A. (2020). Fast state tomography with optimal error bounds. J. Phys. A, 53, 204001. doi:10.1088/1751-8121/ab8111. arXiv:1809.11162.CrossRefGoogle Scholar
Gysbers, P., Hagen, G., Holt, J. D., et al. (2019). Discrepancy between experimental and theoretical β-decay rates resolved from first principles. Nat. Phys., 15, 428–431. doi:10.1038/s41567-019-0450-7. arXiv:1903.00047.CrossRefGoogle Scholar
Gyurik, C., and Dunjko, V. (2023). Exponential separations between classical and quantum learners. arXiv:2306.16028.Google Scholar
Gyurik, C., Cade, C., and Dunjko, V. (2022). Towards quantum advantage via topological data analysis. Quantum, 6, 855. doi:10.22331/q-2022-11-10-855.CrossRefGoogle Scholar
Gyurik, C., Dunjko, V., et al. (2023). Structural risk minimization for quantum linear classifiers. Quantum, 7, 893. doi:10.22331/q-2023-01-13-893. arXiv:2105.05566.CrossRefGoogle Scholar
Ha, J., Lee, J., and Heo, J. (2022). Resource analysis of quantum computing with noisy qubits for Shor’s factoring algorithms. Quantum Inf. Process., 21, 60. doi:10.1007/s11128-021-03398-1.CrossRefGoogle Scholar
Haah, J. (2019). Product decomposition of periodic functions in quantum signal processing. Quantum, 3, 190. doi:10.22331/q-2019-10-07-190. arXiv:1806.10236.CrossRefGoogle Scholar
Haah, J., Harrow, A. W., Ji, Z., et al. (2017). Sample-optimal tomography of quantum states. IEEE Trans. Inf. Theory, 63, 5628–5641. doi:10.1109/TIT.2017.2719044. arXiv:1508.01797.Google Scholar
Haah, J., Hastings, M. B., Kothari, R., and Low, G. H. (2018). Quantum algorithm for simulating real time evolution of lattice Hamiltonians. Pages 350–360 of: FOCS. doi:10.1109/FOCS.2018.00041. arXiv:1801.03922.CrossRefGoogle Scholar
Haah, J., Kothari, R., O’Donnell, R., and Tang, E. (2023). Query-optimal estimation of unitary channels in diamond distance. arXiv:2302.14066.Google Scholar
Hackbusch, W. (2016). Iterative solution of large sparse systems of equations. 2nd edn. Vol. 95. Springer. doi:10.1007/978-3-319-28483-5.CrossRefGoogle Scholar
Hadfield, S., Wang, Z., O’Gorman, B., et al. (2019). From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms, 12, 34. doi:10.3390/a12020034. arXiv:1709.03489.CrossRefGoogle Scholar
Haferkamp, J., Hangleiter, D., Eisert, J., and Gluza, M. (2020). Contracting projected entangled pair states is average-case hard. Phys. Rev. Res., 2, 013010. doi:10.1103/PhysRevResearch.2.013010. arXiv:1810.00738.CrossRefGoogle Scholar
Hagan, M., and Wiebe, N. (2022). Composite quantum simulations. arXiv:2206.06409.Google Scholar
Hagen, G., Papenbrock, T., Hjorth-Jensen, M., and Dean, D. J. (2014). Coupled-cluster computations of atomic nuclei. Rep. Prog. Phys., 77, 096302. doi:10.1088/0034-4885/77/9/096302. arXiv:1312.7872.CrossRefGoogle ScholarPubMed
Hales, L., and Hallgren, S. (2000). An improved quantum Fourier transform algorithm and applications. Pages 515–525 of: FOCS. doi:10.1109/SFCS.2000.892139.CrossRefGoogle Scholar
Halimeh, J. C., Lang, H., Mildenberger, J., et al. (2021). Gaugesymmetry protection using single-body terms. PRX Quantum, 2, 040311. doi:10.1103/PRXQuantum.2.040311. arXiv:2007.00668.CrossRefGoogle Scholar
Halkier, A., Helgaker, T., Jørgensen, P., et al. (1998). Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett., 286, 243–252. doi:10.1016/S0009-2614(98)00111-0.CrossRefGoogle Scholar
Hammer, H.-W., König, S., and van Kolck, U. (2020). Nuclear effective field theory: Status and perspectives. Rev. Mod. Phys., 92, 025004. doi:10.1103/RevModPhys.92.025004.CrossRefGoogle Scholar
Hamoudi, Y., and Magniez, F. (2019). Quantum Chebyshev’s inequality and applications. Pages 69:1–69:16 of: ICALP. doi:10.4230/LIPIcs.ICALP.2019.69. arXiv:1807.06456.CrossRefGoogle Scholar
Han, J. Y., and Rebentrost, P. (2022). Quantum advantage for multi-option portfolio pricing and valuation adjustments. arXiv:2203.04924.Google Scholar
Häner, T., and Steiger, D. S. (2017). 0.5 petabyte simulation of a 45-qubit quantum circuit. In: SC. doi:10.1145/3126908.3126947. arXiv:1704.01127.CrossRefGoogle Scholar
Häner, T., Roetteler, M., and Svore, K. M. (2017). Factoring using 2n + 2 qubits with Toffoli based modular multiplication. Quantum Inf. Comput., 17, 673–684. doi:10.26421/QIC17.7-8-7. arXiv:1611.07995.Google Scholar
Häner, T., Roetteler, M., and Svore, K. M. (2018). Optimizing quantum circuits for arithmetic. arXiv:1805.12445.Google Scholar
Häner, T., Jaques, S., Naehrig, M., et al. (2020). Improved quantum circuits for elliptic curve discrete logarithms. Pages 425–444 of: PQCrypto. doi:10.1007/978-3-030-44223-1_23. arXiv:2001.09580.CrossRefGoogle Scholar
Hann, C. T., Lee, G., Girvin, S., and Jiang, L. (2021). Resilience of quantum random access memory to generic noise. PRX Quantum, 2, 020311. doi:10.1103/PRXQuantum.2.020311. arXiv:2012.05340.CrossRefGoogle Scholar
Hansen, T. D., Kaplan, H., Zamir, O., and Zwick, U. (2019). Faster k-SAT algorithms using biased-PPSZ. Pages 578–589 of: STOC. doi:10.1145/3313276.3316359.CrossRefGoogle Scholar
Harrow, A. W. (2020). Small quantum computers and large classical data sets. arXiv:2004.00026.Google Scholar
Harrow, A. W., and Wei, A. Y. (2020). Adaptive quantum simulated annealing for Bayesian inference and estimating partition functions. Pages 193–212 of: SODA. doi:10.1137/1.9781611975994.12. arXiv:1907.09965.CrossRefGoogle Scholar
Harrow, A. W., Hassidim, A., and Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 103, 150502. doi:10.1103/PhysRevLett.103.150502. arXiv:0811.3171.CrossRefGoogle ScholarPubMed
Hart, O., Gopalakrishnan, S., and Castelnovo, C. (2021). Logarithmic entanglement growth from disorder-free localization in the two-leg compass ladder. Phys. Rev. Lett., 126, 227202. doi:10.1103/PhysRevLett.126.227202. arXiv:2009.00618.CrossRefGoogle ScholarPubMed
Harvey, D., and van der Hoeven, J. (2021). Integer multiplication in tim o(nlog n). Ann. Math., 193, 563–617. doi:10.4007/annals.2021.193.2.4.CrossRefGoogle Scholar
Hastings, M. (2010). Theoretical computer science stack exchange: The complexity of area-lawed Hamiltonians. https://cstheory.stackexchange.com/questions/3083/the-complexity-of-area-lawed-hamiltonians, accessed: 2024-10-29.Google Scholar
Hastings, M. B. (2007). An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp., 2007, P08024. doi:10.1088/1742-5468/2007/08/P08024. arXiv:0705.2024.CrossRefGoogle Scholar
Hastings, M. B. (2018). A short path quantum algorithm for exact optimization. Quantum, 2, 78. doi:10.22331/q-2018-07-26-78. arXiv:1802.10124.CrossRefGoogle Scholar
Hastings, M. B. (2018). Weaker assumptions for the short path optimization algorithm. doi:10.48550/arXiv.1807.03758. arXiv:1807.03758.CrossRefGoogle Scholar
Hastings, M. B. (2019). Classical and quantum bounded depth approximation algorithms. arXiv:1905.07047.Google Scholar
Hastings, M. B. (2019). The short path algorithm applied to a toy model. Quantum, 3, 145. doi:10.22331/q-2019-05-20-145. arXiv:1901.03884.CrossRefGoogle Scholar
Hastings, M. B. (2020). Classical and quantum algorithms for tensor principal component analysis. Quantum, 4, 237. doi:10.22331/q-2020-02-27-237. arXiv:1907.12724.CrossRefGoogle Scholar
Hastings, M. B. (2020). The power of adiabatic quantum computation with no sign problem. arXiv:2005.03791.Google Scholar
Hastings, M. B., and O’Donnell, R. (2022). Optimizing strongly interacting fermionic Hamiltonians. Pages 776–789 of: STOC. doi:10.1145/3519935.3519960. arXiv:2110.10701.CrossRefGoogle Scholar
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109. doi:10.1093/biomet/57.1.97.CrossRefGoogle Scholar
Havlíček, V., Córcoles, A. D., Temme, K., et al. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567, 209–212. doi:10.1038/s41586-019-0980-2. arXiv:1804.11326.CrossRefGoogle ScholarPubMed
Hayakawa, R. (2022). Quantum algorithm for persistent Betti numbers and topological data analysis. Quantum, 6, 873. doi:10.22331/q-2022-12-07-873. arXiv:2111.00433.CrossRefGoogle Scholar
Heinrich, S. (2002). Quantum summation with an application to integration. J. Complex., 18, 1–50. doi:10.1006/jcom.2001.0629. arXiv:quant-ph/0105116.CrossRefGoogle Scholar
Hejazi, K., Zini, M. S., and Arrazola, J. M. (2024). Better bounds for lowenergy product formulas. arXiv:2402.10362.Google Scholar
Hen, I., and Young, A. P. (2011). Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems. Phys. Rev. E, 84, 061152. doi:10.1103/PhysRevE.84.061152. arXiv:1109.6872.CrossRefGoogle ScholarPubMed
Henderson, J. M., Podzorova, M., Cerezo, M., et al. (2023). Quantum algorithms for geologic fracture networks. Sci. Rep., 13, 2906. doi:10.1038/s41598-023-29643-4. arXiv:2210.11685.CrossRefGoogle ScholarPubMed
Hensel, F., Moor, M., and Rieck, B. (2021). A survey of topological machine learning methods. Front. Artif. Intell., 4, 681108. doi:10.3389/frai.2021.681108.CrossRefGoogle ScholarPubMed
Henstra, F. (2023). The multiplicative weights method in quantum computing. Master’s thesis, Utrecht University.Google Scholar
Herbert, S. (2021). No quantum speedup with Grover–Rudolph state preparation for quantum Monte Carlo integration. Phys. Rev. E, 103, 063302. doi:10.1103/PhysRevE.103.063302. arXiv:2101.02240.CrossRefGoogle ScholarPubMed
Herbert, S. (2022). Quantum Monte Carlo integration: The full advantage in minimal circuit depth. Quantum, 6, 823. doi:10.22331/q-2022-09-29-823. arXiv:2105.09100.CrossRefGoogle Scholar
Hergert, H. (2020). A guided tour of ab initio nuclear many-body theory. Front. Phys., 8. doi:10.3389/fphy.2020.00379. arXiv:2008.05061.CrossRefGoogle Scholar
Herman, D., Shaydulin, R., Sun, Y., et al. (2022). Portfolio optimization via quantum Zeno dynamics on a quantum processor. arXiv:2209.15024.Google Scholar
Herman, D., Googin, C., Liu, X., et al. (2023). Quantum computing for finance. Nat. Rev. Phys., 5, 450–465. doi:10.1038/s42254-023-00603-1. arXiv:2201.02773.CrossRefGoogle Scholar
Hertli, T. (2014). 3-SAT faster and simpler—Unique-SAT bounds for PPSZ hold in general. SIAM J. Comp., 43, 718–729. doi:10.1137/120868177. arXiv:1103.2165.CrossRefGoogle Scholar
Hestenes, M. R., and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand., 49, 409–435.CrossRefGoogle Scholar
Higgott, O. (2022). Pymatching: A Python package for decoding quantum codes with minimum-weight perfect matching. ACM Trans. Quantum Comput., 3. doi:10.1145/3505637. arXiv:2105.13082.CrossRefGoogle Scholar
Higgott, O., and Gidney, C. (2023). Sparse blossom: Correcting a million errors per core second with minimum-weight matching. arXiv:2303.15933.Google Scholar
Higgott, O., Bohdanowicz, T. C., Kubica, A., et al. (2023). Improved decoding of circuit noise and fragile boundaries of tailored surface codes. Phys. Rev. X, 13, 031007. doi:10.1103/PhysRevX.13.031007. arXiv:2203.04948.Google Scholar
Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Comput., 14, 1771–1800. doi:10.1162/089976602760128018.CrossRefGoogle ScholarPubMed
Hoefler, T., Häner, T., and Troyer, M. (2023). Disentangling hype from practicality: On realistically achieving quantum advantage. Commun. ACM, 66, 82–87. doi:10.1145/3571725.CrossRefGoogle Scholar
Hogben, H., Krzystyniak, M., Charnock, G., et al. (2011). Spinach—a software library for simulation of spin dynamics in large spin systems. J. Magn. Reson., 208, 179–194. doi:10.1016/j.jmr.2010.11.008.CrossRefGoogle ScholarPubMed
Holmes, Z., Sharma, K., Cerezo, M., and Coles, P. J. (2022). Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum, 3, 010313. doi:10.1103/PRXQuantum.3.010313. arXiv:2101.02138.CrossRefGoogle Scholar
Horsman, D., Fowler, A. G., Devitt, S., and Meter, R. V. (2012). Surface code quantum computing by lattice surgery. New J. Phys., 14, 123011. doi:10.1088/1367-2630/14/12/123011. arXiv:1111.4022.CrossRefGoogle Scholar
Hoyle, D., and Rattray, M. (2003). PCA learning for sparse high-dimensional data. Europhys. Lett., 62, 117. doi:10.1209/epl/i2003-00370-1.CrossRefGoogle Scholar
Huang, B., Jiang, S., Song, Z., et al. (2022). A faster quantum algorithm for semidefinite programming via robust IPM framework. arXiv:2207.11154.Google Scholar
Huang, B., Jiang, S., Song, Z., et al. (2022). Solving SDP faster: A robust IPM framework and efficient implementation. Pages 233–244 of: FOCS. doi:10.1109/FOCS54457.2022.00029. arXiv:2101.08208.CrossRefGoogle Scholar
Huang, B., Chen, Y.-T., Gupt, B., et al. (2024). Evaluating a quantum-classical quantum Monte Carlo algorithm with matchgate shadows. arXiv:2404.18303.Google Scholar
Huang, H.-Y., Kueng, R., and Preskill, J. (2020). Predicting many properties of a quantum system from very few measurements. Nat. Phys., 16, 1050–1057. doi:10.1038/s41567-020-0932-7. arXiv:2002.08953.CrossRefGoogle Scholar
Huang, H.-Y., Bharti, K., and Rebentrost, P. (2021). Near-term quantum algorithms for linear systems of equations with regression loss functions. New J. Phys., 23, 113021. doi:10.1088/1367-2630/ac325f. arXiv:1909.07344.CrossRefGoogle Scholar
Huang, H.-Y., Broughton, M., Mohseni, M., et al. (2021). Power of data in quantum machine learning. Nat. Commun., 12, 2631. doi:10.1038/s41467-021-22539-9. arXiv:2011.01938.Google ScholarPubMed
Huang, H.-Y., Broughton, M., Cotler, J., et al. (2022). Quantum advantage in learning from experiments. Science, 376, 1182–1186. doi:10.1126/science.abn7293. arXiv:2112.00778.CrossRefGoogle ScholarPubMed
Huang, S., and Brown, K. R. (2021). Between Shor and Steane: A unifying construction for measuring error syndromes. Phys. Rev. Lett., 127. doi:10.1103/physrevlett.127.090505. arXiv:2012.15403.CrossRefGoogle Scholar
Huang, Y. (2021). Two-dimensional local Hamiltonian problem with area laws is QMA-complete. J. Comput. Phys., 443, 110534. doi:10.1016/j.jcp.2021.110534. Earlier version in ISIT’20. arXiv:1411.6614.CrossRefGoogle Scholar
Hubbard, J., and Flowers, B. H. (1963). Electron correlations in narrow energy bands. Proc. R. Soc. A, 276, 238–257. doi:10.1098/rspa.1963.0204.Google Scholar
Hubregtsen, T., Wierichs, D., Gil-Fuster, E., et al. (2022). Training quantum embedding kernels on near-term quantum computers. Phys. Rev. A, 106, 042431. doi:10.1103/PhysRevA.106.042431. arXiv:2105.02276.CrossRefGoogle Scholar
Huggins, W., Patil, P., Mitchell, B., et al. (2019). Towards quantum machine learning with tensor networks. Quantum Sci. Technol., 4, 024001. doi:10.1088/2058-9565/aaea94. arXiv:1803.11537.CrossRefGoogle Scholar
Huggins, W. J., Wan, K., McClean, J., et al. (2022). Nearly optimal quantum algorithm for estimating multiple expectation values. Phys. Rev. Lett., 129, 240501. doi:10.1103/PhysRevLett.129.240501. arXiv:2111.09283.CrossRefGoogle ScholarPubMed
Huggins, W. J., O’Gorman, B. A., Rubin, N. C., et al. (2022). Unbiasing fermionic quantum Monte Carlo with a quantum computer. Nature, 603, 416–420. doi:10.1038/s41586-021-04351-z. arXiv:2106.16235.CrossRefGoogle ScholarPubMed
Huggins, W. J., Leimkuhler, O., Stetina, T. F., and Whaley, K. B. (2024). Efficient state preparation for the quantum simulation of molecules in first quantization. arXiv:2407.00249.Google Scholar
Huh, J. (2011). Unified description of vibronic transitions with coherent states. PhD thesis, Johann Wolfgang Goethe-Universität.Google Scholar
Huh, J., Guerreschi, G. G., Peropadre, B., et al. (2015). Boson sampling for molecular vibronic spectra. Nat. Photonics, 9, 615–620. doi:10.1038/nphoton.2015.153. arXiv:1412.8427.CrossRefGoogle Scholar
Hull, J. (2017). Options, futures, and other derivatives. Pearson.Google Scholar
Hunter-Jones, N. R. (2018). Chaos and randomness in stronglyinteracting quantum systems. PhD thesis, California Institute of Technology. doi:10.7907/BHZ5-HV76.CrossRefGoogle Scholar
Huyghebaert, J., and Raedt, H. D. (1990). Product formula methods for time-dependent Schrodinger problems. J. Phys. A, 23, 5777. doi:10.1088/0305-4470/23/24/019.CrossRefGoogle Scholar
Iijima, N., Imamura, S., Morita, M., et al. (2023). Towards accurate quantum chemical calculations on noisy quantum computers. arXiv:2311.09634.Google Scholar
Impagliazzo, R., Paturi, R., and Zane, F. (2001). Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63, 512–530. doi:10.1006/jcss.2001.1774.CrossRefGoogle Scholar
Information Technology Laboratory. (2001). Advanced Encryption Standard (AES). Tech. rept. FIPS 197. National Institute of Standards and Technology, Gaithersburg, MD. doi:10.6028/NIST.FIPS.197-upd1.Google Scholar
Itani, W., Sreenivasan, K. R., and Succi, S. (2023). Quantum algorithm for lattice Boltzmann (QALB) simulation of incompressible fluids with a nonlinear collision term. arXiv:2304.05915.Google Scholar
Ivanov, A. V., Sünderhauf, C., Holzmann, N., et al. (2023). Quantum computation for periodic solids in second quantization. Phys. Rev. Res., 5, 013200. doi:10.1103/PhysRevResearch.5.013200. arXiv:2210.02403.CrossRefGoogle Scholar
Ivanov, A. V., Patterson, A., Bothe, M., et al. (2024). Quantum computation of electronic structure with projector augmented-wave method and plane wave basis set. arXiv:2408.03159.Google Scholar
Iyer, P., and Poulin, D. (2015). Hardness of decoding quantum stabilizer codes. IEEE Trans. Inf. Theory, 61, 5209–5223. doi:10.1109/TIT.2015.2422294. arXiv:1310.3235.CrossRefGoogle Scholar
Iyer, P., and Poulin, D. (2018). A small quantum computer is needed to optimize fault-tolerant protocols. Quantum Sci. Technol., 3, 030504. doi:10.1088/2058-9565/aab73c. arXiv:1711.04736.CrossRefGoogle Scholar
Jackson, A., Kapourniotis, T., and Datta, A. (2023). Partition-function estimation: Quantum and quantum-inspired algorithms. Phys. Rev. A, 107, 012421. doi:10.1103/PhysRevA.107.012421. arXiv:2208.00930.CrossRefGoogle Scholar
Jang, K., Baksi, A., Kim, H., et al. (2024). Quantum analysis of AES. Pages 51–90 of: Implementation and Analysis of Ciphers in Quantum Computing. doi:10.1007/978-981-97-0025-7. ePrint:2022/683.CrossRefGoogle Scholar
Jansen, S., Ruskai, M.-B., and Seiler, R. (2007). Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys., 48, 102111. doi:10.1063/1.2798382. arXiv:quant-ph/0603175.CrossRefGoogle Scholar
Jaques, S., and Rattew, A. G. (2023). QRAM: A survey and critique. arXiv:2305.10310.Google Scholar
Jarret, M., and Wan, K. (2018). Improved quantum backtracking algorithms using effective resistance estimates. Phys. Rev. A, 97, 022337. doi:10.1103/PhysRevA.97.022337. arXiv:1711.05295.CrossRefGoogle Scholar
Jarret, M., Jordan, S. P., and Lackey, B. (2016). Adiabatic optimization versus diffusion Monte Carlo methods. Phys. Rev. A, 94, 042318. doi:10.1103/PhysRevA.94.042318. arXiv:1607.03389.CrossRefGoogle Scholar
Jennings, D., Lostaglio, M., Lowrie, R. B., et al. (2023). The cost of solving linear differential equations on a quantum computer: Fast-forwarding to explicit resource counts. arXiv:2309.07881.Google Scholar
Jennings, D., Lostaglio, M., Pallister, S., et al. (2023). Efficient quantum linear solver algorithm with detailed running costs. arXiv:2305.11352.Google Scholar
Jerbi, S., Gyurik, C., Marshall, S., et al. (2021). Parametrized quantum policies for reinforcement learning. Pages 28362–28375 of: NeurIPS. arXiv:2103.05577.Google Scholar
Jiang, H., Kathuria, T., Lee, Y. T., et al. (2020). A faster interior point method for semidefinite programming. Pages 910–918 of: FOCS. doi:10.1109/FOCS46700.2020.00089. arXiv:2009.10217.CrossRefGoogle Scholar
Jiang, H., Lee, Y. T., Song, Z., and Wong, S. C.-W. (2020). An improved cutting plane method for convex optimization, convex-concave games, and its applications. Pages 944–953 of: STOC. doi:10.1145/3357713.3384284. arXiv:2004.04250.CrossRefGoogle Scholar
Jiang, Z., Sung, K. J., Kechedzhi, K., et al. (2018). Quantum algorithms to simulate many-body physics of correlated fermions. Phys. Rev. Appl., 9, 44036. doi:10.1103/PhysRevApplied.9.044036. arXiv:1711.05395.CrossRefGoogle Scholar
Jin, C., Netrapalli, P., and Jordan, M. I. (2018). Accelerated gradient descent escapes saddle points faster than gradient descent. Pages 1042–1085 of: COLT, vol. 75. arXiv:1711.10456.Google Scholar
Jin, S., and Liu, N. (2022). Quantum algorithms for computing observables of nonlinear partial differential equations. arXiv:2202.07834.Google Scholar
Jin, S., Liu, N., and Yu, Y. (2022). Quantum simulation of partial differential equations via Schrodingerisation. arXiv:2212.13969.Google Scholar
Jin, S., Liu, N., and Yu, Y. (2022). Time complexity analysis of quantum difference methods for linear high dimensional and multiscale partial differential equations. J. Comput. Phys., 471, 111641. doi:10.1016/j.jcp.2022.111641. arXiv:2202.04537.CrossRefGoogle Scholar
Jin, S., Liu, N., and Yu, Y. (2023). Quantum simulation of partial differential equations: Applications and detailed analysis. Phys. Rev. A, 108, 032603. doi:10.1103/PhysRevA.108.032603. arXiv:2212.14703.CrossRefGoogle Scholar
Jochym-O’Connor, T., and Bartlett, S. D. (2016). Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout. Phys. Rev. A, 93, 022323. doi:10.1103/PhysRevA.93.022323. arXiv:1509.04255.Google Scholar
Jochym-O’Connor, T., Kubica, A., and Yoder, T. J. (2018). Disjointness of stabilizer codes and limitations on fault-tolerant logical gates. Phys. Rev. X, 8, 021047. doi:10.1103/physrevx.8.021047. arXiv:1710.07256.Google Scholar
Jóczik, S., Zimborás, Z., Majoros, T., and Kiss, A. (2022). A cost-efficient approach towards computational fluid dynamics simulations on quantum devices. Appl. Sci., 12, 2873. doi:10.3390/app12062873.CrossRefGoogle Scholar
Joó, B., Jung, C., Christ, N. H., et al. (2019). Status and future perspectives for lattice gauge theory calculations to the exascale and beyond. Eur. Phys. J. A, 55, 199. doi:10.1140/epja/i2019-12919-7. arXiv:1904.09725.CrossRefGoogle Scholar
Jordan, S. (2011). Quantum algorithm zoo. https://quantumalgorithmzoo.org/, accessed: 2024-10-29.Google Scholar
Jordan, S. P. (2005). Fast quantum algorithm for numerical gradient estimation. Phys. Rev. Lett., 95, 050501. doi:10.1103/PhysRevLett.95.050501. arXiv:quant-ph/0405146.CrossRefGoogle ScholarPubMed
Jordan, S. P., Lee, K. S. M., and Preskill, J. (2012). Quantum algorithms for quantum field theories. Science, 336, 1130–1133. doi:10.1126/science.1217069. arXiv:1111.3633.CrossRefGoogle ScholarPubMed
Jordan, S. P., Krovi, H., Lee, K. S. M., and Preskill, J. (2018). BQPcompleteness of scattering in scalar quantum field theory. Quantum, 2, 44. doi:10.22331/q-2018-01-08-44. arXiv:1703.00454.CrossRefGoogle Scholar
Joseph, I. (2020). Koopman–von Neumann approach to quantum simulation of nonlinear classical dynamics. Phys. Rev. Res., 2, 043102. doi:10.1103/PhysRevResearch.2.043102. arXiv:2003.09980.CrossRefGoogle Scholar
Kadowaki, T., and Nishimori, H. (1998). Quantum annealing in the transverse Ising model. Phys. Rev. E, 58, 5355–5363. doi:10.1103/PhysRevE.58.5355. arXiv:cond-mat/9804280.CrossRefGoogle Scholar
Kahanamoku-Meyer, G. D., and Yao, N. Y. (2024). Fast quantum integer multiplication with zero ancillas. arXiv:2403.18006.Google Scholar
Kan, A., and Nam, Y. (2021). Lattice quantum chromodynamics and electrodynamics on a universal quantum computer. arXiv:2107.12769.Google Scholar
Kanagawa, M., Hennig, P., Sejdinovic, D., and Sriperumbudur, B. K. (2018). Gaussian processes and kernel methods: A review on connections and equivalences. arXiv:1807.02582.Google Scholar
Kandala, A., Mezzacapo, A., Temme, K., et al. (2017). Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549, 242–246. doi:10.1038/nature23879. arXiv:1704.05018.CrossRefGoogle ScholarPubMed
Kaneko, K., Miyamoto, K., Takeda, N., and Yoshino, K. (2022). Quantum pricing with a smile: Implementation of local volatility model on quantum computer. EPJ Quantum Technol., 9, 7. doi:10.1140/epjqt/s40507-022-00125-2. arXiv:2007.01467.CrossRefGoogle Scholar
Kang, M., Nuomin, H., Chowdhury, S. N., et al. (2024). Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics. Nat. Rev. Chem., 8, 340–358. doi:10.1038/s41570-024-00595-1. arXiv:2305.03156.CrossRefGoogle ScholarPubMed
Kaplan, D. B. (2011). Chiral symmetry and lattice fermions. Pages 223–272 of: Modern perspectives in lattice QCD: Quantum field theory and high performance computing: Lecture notes of the Les Houches Summer School: Volume 93, August 2009. doi:10.1093/acprof:oso/9780199691609.003.0004. arXiv:0912.2560.CrossRefGoogle Scholar
Kaplan, M., Leurent, G., Leverrier, A., and Naya-Plasencia, M. (2016). Breaking symmetric cryptosystems using quantum period finding. Pages 207–237 of: CRYPTO. doi:10.1007/978-3-662-53008-5_8. arXiv:1602.05973.CrossRefGoogle Scholar
Karamlou, A. H., Simon, W. A., Katabarwa, A., et al. (2021). Analyzing the performance of variational quantum factoring on a superconducting quantum processor. npj Quant. Inf., 7, 156. doi:10.1038/s41534-021-00478-z. arXiv:2012.07825.Google Scholar
Kassal, I., Jordan, S. P., Love, P. J., et al. (2008). Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Natl. Acad. Sci., 105, 18681–18686. doi:10.1073/pnas.0808245105. arXiv:0801.2986.CrossRefGoogle ScholarPubMed
Kastoryano, M., and Pancotti, N. (2022). A highly efficient tensor network algorithm for multi-asset Fourier options pricing. arXiv:2203.02804.Google Scholar
Kastoryano, M. J., and Brandão, F. G. S. L. (2016). Quantum Gibbs samplers: The commuting case. Commun. Math. Phys., 344, 915–957. doi:10.1007/s00220-016-2641-8. arXiv:1409.3435.CrossRefGoogle Scholar
Kattemölle, J., and van Wezel, J. (2022). Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice. Phys. Rev. B, 106, 214429. doi:10.1103/PhysRevB.106.214429.CrossRefGoogle Scholar
Katz, J., and Lindell, Y. (2021). Introduction to modern cryptography: Third edition. CRC Press.Google Scholar
Kaye, P., Laflamme, R., and Mosca, M. (2006). An introduction to quantum computing. Oxford University Press. doi:10.1093/oso/9780198570004.001.0001.Google Scholar
Kempe, J., Kitaev, A., and Regev, O. (2006). The complexity of the local Hamiltonian problem. SIAM J. Comp., 35, 1070–1097. doi:10.1137/S009753970444522. Earlier version in FSTTCS’04. arXiv:quant-ph/0406180.CrossRefGoogle Scholar
Kerenidis, I., and Prakash, A. (2017). Quantum recommendation systems. Pages 49:1–49:21 of: ITCS. doi:10.4230/LIPIcs.ITCS.2017.49. arXiv:1603.08675.CrossRefGoogle Scholar
Kerenidis, I., and Prakash, A. (2020). Quantum gradient descent for linear systems and least squares. Phys. Rev. A, 101, 022316. doi:10.1103/PhysRevA.101.022316. arXiv:1704.04992.CrossRefGoogle Scholar
Kerenidis, I., and Prakash, A. (2020). A quantum interior point method for LPs and SDPs. ACM Trans. Quantum Comput., 1. doi:10.1145/3406306. arXiv:1808.09266.CrossRefGoogle Scholar
Kerenidis, I., Prakash, A., and Szilágyi, D. (2019). Quantum algorithms for portfolio optimization. Pages 147–155 of: AFT. doi:10.1145/3318041.3355465. arXiv:1908.08040.CrossRefGoogle Scholar
Kerenidis, I., Prakash, A., and Szilágyi, D. (2021). Quantum algorithms for second-order cone programming and support vector machines. Quantum, 5, 427. doi:10.22331/q-2021-04-08-427. arXiv:1908.06720.CrossRefGoogle Scholar
Khatri, S., LaRose, R., Poremba, A., et al. (2019). Quantum-assisted quantum compiling. Quantum, 3, 140. doi:10.22331/q-2019-05-13-140. arXiv:1807.00800.CrossRefGoogle Scholar
Kieferová, M., and Wiebe, N. (2017). Tomography and generative training with quantum Boltzmann machines. Phys. Rev. A, 96, 062327. doi:10.1103/PhysRevA.96.062327. arXiv:1612.05204.CrossRefGoogle Scholar
Kieferová, M., Scherer, A., and Berry, D. W. (2019). Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series. Phys. Rev. A, 99, 042314. doi:10.1103/PhysRevA.99.042314. arXiv:1805.00582.CrossRefGoogle Scholar
Kim, I. H., and Swingle, B. (2017). Robust entanglement renormalization on a noisy quantum computer. arXiv:1711.07500.Google Scholar
Kim, I. H., Liu, Y.-H., Pallister, S., et al. (2022). Fault-tolerant resource estimate for quantum chemical simulations: Case study on Li-ion battery electrolyte molecules. Phys. Rev. Res., 4, 023019. doi:10.1103/PhysRevResearch.4.023019. arXiv:2104.10653.CrossRefGoogle Scholar
Kim, S. K., McMahon, P. L., and Olukotun, K. (2010). A large-scale architecture for restricted Boltzmann machines. Pages 201–208 of: FCCM. doi:10.1109/FCCM.2010.38.CrossRefGoogle Scholar
Kimmel, S., Lin, C. Y.-Y., Low, G. H., et al. (2017). Hamiltonian simulation with optimal sample complexity. npj Quant. Inf., 3, 13. doi:10.1038/s41534-017-0013-7. arXiv:1608.00281.Google Scholar
King, R., and Kohler, T. (2023). Promise clique homology on weighted graphs is QMA1-hard and contained in QMA. arXiv:2311.17234.Google Scholar
Kiss, O., Grossi, M., and Roggero, A. (2023). Importance sampling for stochastic quantum simulations. Quantum, 7, 977. doi:10.22331/q-2023-04-13-977. arXiv:2212.05952.CrossRefGoogle Scholar
Kitaev, A. (2015). A simple model of quantum holography. Video of talk: https://www.youtube.com/watch?v=wFH1huu9Jcs (part 1), https://www.youtube.com/watch?v=q8amZLOElB0 (part 2), accessed: 2023-09-30.Google Scholar
Kitaev, A., and Webb, W. A. (2008). Wavefunction preparation and resampling using a quantum computer. arXiv:0801.0342.Google Scholar
Kitaev, A. Y. (1995). Quantum measurements and the abelian stabilizer problem. arXiv:quant-ph/9511026.Google Scholar
Kitaev, A. Y. (1997). Quantum computations: Algorithms and error correction. Russ. Math. Surv., 52, 1191. doi:10.1070/RM1997v052n06ABEH002155.CrossRefGoogle Scholar
Kitaev, A. Y. (2003). Fault-tolerant quantum computation by anyons. Ann. Phys., 303, 2–30. doi:10.1016/S0003-4916(02)00018-0. arXiv:quant-ph/9707021.CrossRefGoogle Scholar
Kitaev, A. Y., Shen, A., Vyalyi, M. N., and Vyalyi, M. N. (2002). Classical and quantum computation. American Mathematical Society.CrossRefGoogle Scholar
Kivlichan, I. D., Wiebe, N., Babbush, R., and Aspuru-Guzik, A. (2017). Bounding the costs of quantum simulation of many-body physics in real space. J. Phys. A, 50, 305301. doi:10.1088/1751-8121/aa77b8. arXiv:1608.05696.CrossRefGoogle Scholar
Kivlichan, I. D., McClean, J., Wiebe, N., et al. (2018). Quantum simulation of electronic structure with linear depth and connectivity. Phys. Rev. Lett., 120, 110501. doi:10.1103/PhysRevLett.120.110501. arXiv:1711.04789.CrossRefGoogle ScholarPubMed
Kivlichan, I. D., Gidney, C., Berry, D. W., et al. (2020). Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via Trotterization. Quantum, 4, 296. doi:10.22331/q-2020-07-16-296. arXiv:1902.10673.CrossRefGoogle Scholar
Klco, N., Dumitrescu, E. F., McCaskey, A. J., et al. (2018). Quantumclassical computation of Schwinger model dynamics using quantum computers. Phys. Rev. A, 98, 032331. doi:10.1103/PhysRevA.98.032331. arXiv:1803.03326.CrossRefGoogle Scholar
Klco, N., Roggero, A., and Savage, M. J. (2022). Standard model physics and the digital quantum revolution: Thoughts about the interface. Rep. Prog. Phys., 85, 064301. doi:10.1088/1361-6633/ac58a4. arXiv:2107.04769.CrossRefGoogle ScholarPubMed
Knill, E. (2004). Fault-tolerant postselected quantum computation: Schemes. arXiv:quant-ph/0402171.Google Scholar
Knill, E. (2005). Quantum computing with realistically noisy devices. Nature, 434, 39–44. doi:10.1038/nature03350. arXiv:quant-ph/0410199.CrossRefGoogle ScholarPubMed
Knill, E., and Laflamme, R. (1998). Power of one bit of quantum information. Phys. Rev. Lett., 81, 5672–5675. doi:10.1103/PhysRevLett.81.5672. arXiv:quant-ph/9802037.CrossRefGoogle Scholar
Knill, E., Laflamme, R., and Zurek, W. H. (1998). Resilient quantum computation: error models and thresholds. Proc. R. Soc. A, 454, 365–384. doi:10.1098/rspa.1998.0166. arXiv:quant-ph/9702058.CrossRefGoogle Scholar
Knill, E., Ortiz, G., and Somma, R. D. (2007). Optimal quantum measurements of expectation values of observables. Phys. Rev. A, 75, 012328. doi:10.1103/PhysRevA.75.012328. arXiv:quant-ph/0607019.CrossRefGoogle Scholar
Knysh, S., and Smelyanskiy, V. (2010). On the relevance of avoided crossings away from quantum critical point to the complexity of quantum adiabatic algorithm. doi:10.48550/arXiv.1005.3011. arXiv:1005.3011.CrossRefGoogle Scholar
Koblitz, N. (1987). Elliptic curve cryptosystems. Math. Comput., 48, 203–209. doi:10.2307/2007884.CrossRefGoogle Scholar
Kogut, J. B. (1979). An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys., 51, 659–713. doi:10.1103/RevModPhys.51.659.CrossRefGoogle Scholar
Kokail, C., Maier, C., van Bijnen, R., et al. (2019). Self-verifying variational quantum simulation of lattice models. Nature, 569, 355–360. doi:10.1038/s41586-019-1177-4. arXiv:1810.03421.CrossRefGoogle ScholarPubMed
Kothari, R., and O’Donnell, R. (2023). Mean estimation when you have the source code; or, quantum Monte Carlo methods. Pages 1186–1215 of: SODA. doi:10.1137/1.9781611977554.ch44. arXiv:2208.07544.CrossRefGoogle Scholar
Kovalev, A. A., and Pryadko, L. P. (2013). Fault tolerance of quantum lowdensity parity check codes with sublinear distance scaling. Phys. Rev. A, 87. doi:10.1103/physreva.87.020304. arXiv:1208.2317.CrossRefGoogle Scholar
Kremenetski, V., Mejuto-Zaera, C., Cotton, S. J., and Tubman, N. M. (2021). Simulation of adiabatic quantum computing for molecular ground states. J. Chem. Phys., 155, 234106. doi:10.1063/5.0060124. arXiv:2103.12059.CrossRefGoogle ScholarPubMed
Kret, E. (2023). Quantum resistance and the Signal protocol. https://signal.org/blog/pqxdh/, accessed: 2024-06-05.Google Scholar
Krovi, H. (2023). Improved quantum algorithms for linear and nonlinear differential equations. Quantum, 7, 913. doi:10.22331/q-2023-02-02-913. arXiv:2202.01054.CrossRefGoogle Scholar
Kubica, A. (2018). The ABCs of the color code: A study of topological quantum codes as toy models for fault-tolerant quantum computation and quantum phases of matter. PhD thesis, Caltech. doi:10.7907/059V-MG69.CrossRefGoogle Scholar
Kubica, A., and Beverland, M. E. (2015). Universal transversal gates with color codes: A simplified approach. Phys. Rev. A, 91, 032330. doi:10.1103/PhysRevA.91.032330. arXiv:1410.0069.CrossRefGoogle Scholar
≥Kubica, A., and Delfosse, N. (2023). Efficient color code decoders in d 2 dimensions from toric code decoders. Quantum, 7, 929. doi:10.22331/q-2023-02-21-929. arXiv:1905.07393.CrossRefGoogle Scholar
Kubica, A., and Demkowicz-Dobrzański, R. (2021). Using quantum metrological bounds in quantum error correction: A simple proof of the approximate Eastin–Knill theorem. Phys. Rev. Lett., 126, 150503. doi:10.1103/physrevlett.126.150503. arXiv:2004.11893.CrossRefGoogle ScholarPubMed
Kubica, A., and Preskill, J. (2019). Cellular-automaton decoders with provable thresholds for topological codes. Phys. Rev. Lett., 123, 020501. doi:10.1103/PhysRevLett.123.020501. arXiv:1809.10145.CrossRefGoogle ScholarPubMed
Kubica, A., and Vasmer, M. (2022). Single-shot quantum error correction with the three-dimensional subsystem toric code. Nat. Commun., 13, 6272. doi:10.1038/s41467-022-33923-4. arXiv:2106.02621.CrossRefGoogle ScholarPubMed
Kubica, A., Yoshida, B., and Pastawski, F. (2015). Unfolding the color code. New J. Phys., 17, 083026. doi:10.1088/1367-2630/17/8/083026. arXiv:1503.02065.CrossRefGoogle Scholar
Kubica, A., Haim, A., Vaknin, Y., et al. (2023). Erasure qubits: Overcoming the T1 limit in superconducting circuits. Phys. Rev. X, 13. doi:10.1103/physrevx.13.041022. arXiv:2208.05461.Google Scholar
Kübler, J., Buchholz, S., and Schölkopf, B. (2021). The inductive bias of quantum kernels. Pages 12661–12673 of: NeurIPS. arXiv:2106.03747.Google Scholar
Kueng, R., Rauhut, H., and Terstiege, U. (2017). Low rank matrix recovery from rank one measurements. Appl. Comput. Harmon. Anal., 42, 88–116. doi:10.1016/j.acha.2015.07.007. arXiv:1410.6913.CrossRefGoogle Scholar
Labib, F., Clader, B. D., Stamatopoulos, N., and Zeng, W. J. (2024). Quantum amplitude estimation from classical signal processing. arXiv:2405.14697.Google Scholar
Lähde, T. A., and Meißner, U.-G. (2019). Nuclear lattice effective field theory: An introduction. Vol. 957. Springer.Google Scholar
Landahl, A. J., and Ryan-Anderson, C. (2014). Quantum computing by colorcode lattice surgery. arXiv:1407.5103.Google Scholar
Lao, L., van Wee, B., Ashraf, I., et al. (2018). Mapping of lattice surgerybased quantum circuits on surface code architectures. Quantum Sci. Technol., 4, 015005. doi:10.1088/2058-9565/aadd1a. arXiv:1805.11127.CrossRefGoogle Scholar
Lapworth, L. (2022). A hybrid quantum-classical CFD methodology with benchmark HHL solutions. arXiv:2206.00419.Google Scholar
Larocca, M., Czarnik, P., Sharma, K., et al. (2022). Diagnosing barren plateaus with tools from quantum optimal control. Quantum, 6, 824. doi:10.22331/q-2022-09-29-824. arXiv:2105.14377.CrossRefGoogle Scholar
Larocca, M., Thanasilp, S., Wang, S., et al. (2024). A review of barren plateaus in variational quantum computing. arXiv:2405.00781.Google Scholar
LaRose, R., and Coyle, B. (2020). Robust data encodings for quantum classifiers. Phys. Rev. A, 102, 032420. doi:10.1103/PhysRevA.102.032420. arXiv:2003.01695.CrossRefGoogle Scholar
Larson, M. G., and Bengzon, F. (2013). The finite element method: Theory, implementation, and applications. Vol. 10. Springer Science & Business Media. doi:10.1007/978-3-642-33287-6.CrossRefGoogle Scholar
LeBlanc, J. P. F., Antipov, A. E., Becca, F., et al. (2015). Solutions of the two-dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms. Phys. Rev. X, 5, 041041. doi:10.1103/PhysRevX.5.041041. arXiv:1505.02290.Google Scholar
Lee, D. (2009). Lattice simulations for fewand many-body systems. Prog. Part. Nuc. Phys., 63, 117–154. doi:10.1016/j.ppnp.2008.12.001.Google Scholar
Lee, J., Huggins, W. J., Head-Gordon, M., and Whaley, K. B. (2018). Generalized unitary coupled cluster wave functions for quantum computation. J. Chem. Theory Comput., 15, 311–324. doi:10.1021/acs.jctc.8b01004. arXiv:1810.02327.Google ScholarPubMed
Lee, J., Berry, D. W., Gidney, C., et al. (2021). Even more efficient quantum computations of chemistry through tensor hypercontraction. PRX Quantum, 2, 030305. doi:10.1103/PRXQuantum.2.030305. arXiv:2011.03494.CrossRefGoogle Scholar
Lee, S., Lee, J., Zhai, H., et al. (2023). Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun., 14, 1952. doi:10.1038/s41467-023-37587-6. arXiv:2208.02199.Google ScholarPubMed
Lee, Y. T., Sidford, A., and Wong, S. C.-W. (2015). A faster cutting plane method and its implications for combinatorial and convex optimization. Pages 1049–1065 of: FOCS. doi:10.1109/FOCS.2015.68. arXiv:1508.04874.CrossRefGoogle Scholar
Lee, Y. T., Sidford, A., and Vempala, S. S. (2018). Efficient convex optimization with membership oracles. Pages 1292–1294 of: COLT. arXiv:1706.07357.Google Scholar
Lemieux, J., Duclos-Cianci, G., Sénéchal, D., and Poulin, D. (2021). Resource estimate for quantum many-body ground-state preparation on a quantum computer. Phys. Rev. A, 103, 052408. doi:10.1103/PhysRevA.103.052408. arXiv:2006.04650.CrossRefGoogle Scholar
Leng, J., Zheng, Y., and Wu, X. (2023). A quantum-classical performance separation in nonconvex optimization. arXiv:2311.00811.Google Scholar
Leng, J., Hickman, E., Li, J., and Wu, X. (2023). Quantum Hamiltonian descent. arXiv:2303.01471.Google Scholar
Lenstra, A. K. (2006). Key lengths. In: Handbook of information security. https://infoscience.epfl.ch/handle/20.500.14299/65745, accessed: 2024-12-01.Google Scholar
Leong, F. Y., Ewe, W.-B., and Koh, D. E. (2022). Variational quantum evolution equation solver. Sci. Rep., 12, 10817. doi:10.1038/s41598-022-14906-3. arXiv:2204.02912.CrossRefGoogle ScholarPubMed
Leverrier, A., and Zémor, G. (2022). Quantum Tanner codes. Pages 872–883 of: FOCS. doi:10.1109/FOCS54457.2022.00117. arXiv:2202.13641.CrossRefGoogle Scholar
Leyton, S. K., and Osborne, T. J. (2008). A quantum algorithm to solve nonlinear differential equations. arXiv:0812.4423.Google Scholar
Li, T., Chakrabarti, S., and Wu, X. (2019). Sublinear quantum algorithms for training linear and kernel-based classifiers. Pages 3815–3824 of: ICML, vol. 97. arXiv:1904.02276.Google Scholar
Li, T., Wang, C., Chakrabarti, S., and Wu, X. 2021 (5). Sublinear classical and quantum algorithms for general matrix games. Pages 8465–8473 of: AAAI, vol. 35. doi:10.1609/aaai.v35i10.17028. arXiv:2012.06519.Google Scholar
Li, X., Govind, N., Isborn, C., et al. (2020). Real-time timedependent electronic structure theory. Chem. Rev., 120, 9951–9993. doi:10.1021/acs.chemrev.0c00223.CrossRefGoogle ScholarPubMed
Li, X., Yin, X., Wiebe, N., et al. (2023). Potential quantum advantage for simulation of fluid dynamics. arXiv:2303.16550.Google Scholar
Li, Y., and Benjamin, S. C. (2017). Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7, 021050. doi:10.1103/PhysRevX.7.021050. arXiv:1611.09301.Google Scholar
Li, Y., and Neufeld, A. (2023). Quantum Monte Carlo algorithm for solving Black–Scholes PDEs for high-dimensional option pricing in finance and its proof of overcoming the curse of dimensionality. arXiv:2301.09241.Google Scholar
Lim, D., and Rebentrost, P. (2024). A quantum online portfolio optimization algorithm. Quantum Inf. Process., 23, 63. doi:10.1007/s11128-024-04256-6. arXiv:2208.14749.CrossRefGoogle Scholar
Lin, L. (2022). Lecture notes on quantum algorithms for scientific computation. arXiv:2201.08309.Google Scholar
Lin, L., and Tong, Y. (2020). Near-optimal ground state preparation. Quantum, 4, 372. doi:10.22331/q-2020-12-14-372. arXiv:2002.12508.CrossRefGoogle Scholar
Lin, L., and Tong, Y. (2020). Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems. Quantum, 4, 361. doi:10.22331/q-2020-11-11-361. arXiv:1910.14596.CrossRefGoogle Scholar
Lin, L., and Tong, Y. (2022). Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers. PRX Quantum, 3, 010318. doi:10.1103/PRXQuantum.3.010318. arXiv:2102.11340.CrossRefGoogle Scholar
Linden, N., and de Wolf, R. (2021). Average-case verification of the quantum Fourier transform enables worst-case phase estimation. arXiv:2109.10215.Google Scholar
Linden, N., Montanaro, A., and Shao, C. (2022). Quantum vs. classical algorithms for solving the heat equation. Commun. Math. Phys., 395, 601–641. doi:10.1007/s00220-022-04442-6. arXiv:2004.06516.CrossRefGoogle Scholar
Litinski, D. (2019). A game of surface codes: Large-scale quantum computing with lattice surgery. Quantum, 3, 128. doi:10.22331/q-2019-03-05-128. arXiv:1808.02892.CrossRefGoogle Scholar
Litinski, D. (2019). Magic state distillation: Not as costly as you think. Quantum, 3, 205. doi:10.22331/q-2019-12-02-205. arXiv:1905.06903.CrossRefGoogle Scholar
Litinski, D. (2023). How to compute a 256-bit elliptic curve private key with only 50 million Toffoli gates. arXiv:2306.08585.Google Scholar
Litinski, D., and Nickerson, N. (2022). Active volume: An architecture for efficient fault-tolerant quantum computers with limited non-local connections. arXiv:2211.15465.Google Scholar
Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Mach. Learn., 2, 285–318. doi:10.1007/BF00116827.CrossRefGoogle Scholar
Liu, H., Ong, Y.-S., Shen, X., and Cai, J. (2020). When Gaussian process meets big data: A review of scalable GPs. IEEE Trans. Neural Netw. Learn. Syst., 31, 4405–4423. doi:10.1109/TNNLS.2019.2957109. arXiv:1807.01065.CrossRefGoogle ScholarPubMed
Liu, J., Li, Z., Zheng, H., et al. (2022). Towards a variational Jordan– Lee–Preskill quantum algorithm. Mach. Learn.: Sci. Technol., 3, 045030. doi:10.1088/2632-2153/aca06b. arXiv:2109.05547.Google Scholar
Liu, J., Najafi, K., Sharma, K., et al. (2023). Analytic theory for the dynamics of wide quantum neural networks. Phys. Rev. Lett., 130, 150601. doi:10.1103/PhysRevLett.130.150601. arXiv:2203.16711.CrossRefGoogle ScholarPubMed
Liu, J., Liu, M., Liu, J.-P., et al. (2024). Towards provably efficient quantum algorithms for large-scale machine-learning models. Nat. Commun., 15, 434. doi:10.1038/s41467-023-43957-x. arXiv:2303.03428.Google ScholarPubMed
Liu, J.-P., Kolden, H. Ø., Krovi, H. K., et al. (2021). Efficient quantum algorithm for dissipative nonlinear differential equations. Proc. Natl. Acad. Sci., 118, e2026805118. doi:10.1073/pnas.2026805118. arXiv:2011.03185.Google ScholarPubMed
Liu, J.-P., An, D., Fang, D., et al. (2023). Efficient quantum algorithm for nonlinear reaction–diffusion equations and energy estimation. Commun. Math. Phys., 404, 963–1020. doi:10.1007/s00220-023-04857-9. arXiv:2205.01141.CrossRefGoogle Scholar
Liu, Y., Arunachalam, S., and Temme, K. (2021). A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys., 17, 1013–1017. doi:10.1038/s41567-021-01287-z. arXiv:2010.02174.CrossRefGoogle Scholar
Lloyd, S. (1996). Universal quantum simulators. Science, 273, 1073–1078. doi:10.1126/science.273.5278.1073.CrossRefGoogle ScholarPubMed
Lloyd, S. (2018). Quantum approximate optimization is computationally universal. arXiv:1812.11075.Google Scholar
Lloyd, S., Mohseni, M., and Rebentrost, P. (2013). Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411.Google Scholar
Lloyd, S., Mohseni, M., and Rebentrost, P. (2014). Quantum principal component analysis. Nat. Phys., 10, 631–633. doi:10.1038/nphys3029. arXiv:1307.0401.CrossRefGoogle Scholar
Lloyd, S., Garnerone, S., and Zanardi, P. (2016). Quantum algorithms for topological and geometric analysis of data. Nat. Commun., 7, 1–7. doi:10.1038/ncomms10138. arXiv:1408.3106.CrossRefGoogle ScholarPubMed
Lloyd, S., De Palma, G., Gokler, C., et al. (2020). Quantum algorithm for nonlinear differential equations. arXiv:2011.06571.Google Scholar
Lloyd, S., Schuld, M., Ijaz, A., et al. (2020). Quantum embeddings for machine learning. arXiv:2001.03622.Google Scholar
Loaiza, I., and Izmaylov, A. F. (2024). Majorana tensor decomposition: A unifying framework for decompositions of fermionic Hamiltonians to linear combination of unitaries. arXiv:2407.06571.Google Scholar
Lopes, P. C. F., Pereira, A. M. B., Clua, E. W. G., and Leiderman, R. (2022). A GPU implementation of the PCG method for large-scale image-based finite element analysis in heterogeneous periodic media. Comput. Methods Appl. Mech. Eng., 399, 115276. doi:10.1016/j.cma.2022.115276.CrossRefGoogle Scholar
Low, G. H. (2019). Hamiltonian simulation with nearly optimal dependence on spectral norm. Pages 491–502 of: STOC. doi:10.1145/3313276.3316386. arXiv:1807.03967.CrossRefGoogle Scholar
Low, G. H., and Chuang, I. L. (2017). Hamiltonian simulation by uniform spectral amplification. arXiv:1707.05391.Google Scholar
Low, G. H., and Chuang, I. L. (2017). Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett., 118, 010501. doi:10.1103/PhysRevLett.118.010501. arXiv:1606.02685.CrossRefGoogle ScholarPubMed
Low, G. H., and Chuang, I. L. (2019). Hamiltonian simulation by qubitization. Quantum, 3, 163. doi:10.22331/q-2019-07-12-163. arXiv:1610.06546.CrossRefGoogle Scholar
Low, G. H., and Wiebe, N. (2018). Hamiltonian simulation in the interaction picture. arXiv:1805.00675.Google Scholar
Low, G. H., Yoder, T. J., and Chuang, I. L. (2016). Methodology of resonant equiangular composite quantum gates. Phys. Rev. X, 6, 041067. doi:10.1103/PhysRevX.6.041067. arXiv:1603.03996.Google Scholar
Low, G. H., Kliuchnikov, V., and Wiebe, N. (2019). Well-conditioned multiproduct Hamiltonian simulation. arXiv:1907.11679.Google Scholar
Low, G. H., Su, Y., Tong, Y., and Tran, M. C. (2023). Com-plexity of implementing Trotter steps. PRX Quantum, 4, 020323. doi:10.1103/PRXQuantum.4.020323. arXiv:2211.09133.CrossRefGoogle Scholar
Low, G. H., Kliuchnikov, V., and Schaeffer, L. (2024). Trading T gates for dirty qubits in state preparation and unitary synthesis. Quantum, 8, 1375. doi:10.22331/q-2024-06-17-1375. arXiv:1812.00954.CrossRefGoogle Scholar
Lowe, A., and Nayak, A. (2022). Lower bounds for learning quantum states with single-copy measurements. arXiv:2207.14438.Google Scholar
Lu, H.-H., Klco, N., Lukens, J. M., et al. (2019). Simulations of subatomic many-body physics on a quantum frequency processor. Phys. Rev. A, 100, 012320. doi:10.1103/PhysRevA.100.012320. arXiv:1810.03959.CrossRefGoogle Scholar
Lubasch, M., Joo, J., Moinier, P., et al. (2020). Variational quantum algorithms for nonlinear problems. Phys. Rev. A, 101, 010301. doi:10.1103/PhysRevA.101.010301. arXiv:1907.09032.CrossRefGoogle Scholar
Lucas, A. (2014). Ising formulations of many NP problems. Front. Phys., 2. doi:10.3389/fphy.2014.00005. arXiv:1302.5843.CrossRefGoogle Scholar
Luo, J., and Li, L. (2024). Circuit complexity of sparse quantum state preparation. arXiv:2406.16142.Google Scholar
Luo, Z., You, Y.-Z., Li, J., et al. (2019). Quantum simulation of the nonFermi-liquid state of Sachdev–Ye–Kitaev model. npj Quant. Inf., 5, 53. doi:10.1038/s41534-019-0166-7. arXiv:1712.06458.Google Scholar
Luongo, A. (2020). Quantum algorithms for data analysis. https://quantumalgorithms.org, accessed: 2024-11-19.Google Scholar
Lusch, B., Kutz, J. N., and Brunton, S. L. (2018). Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun., 9, 4950. doi:10.1038/s41467-018-07210-0. arXiv:1712.09707.CrossRefGoogle ScholarPubMed
Macridin, A., Spentzouris, P., Amundson, J., and Harnik, R. (2018). Digital quantum computation of fermion–boson interacting systems. Phys. Rev. A, 98, 042312. doi:10.1103/PhysRevA.98.042312. arXiv:1805.09928.CrossRefGoogle Scholar
Macridin, A., Spentzouris, P., Amundson, J., and Harnik, R. (2018). Electronphonon systems on a universal quantum computer. Phys. Rev. Lett., 121, 110504. doi:10.1103/PhysRevLett.121.110504. arXiv:1802.07347.CrossRefGoogle ScholarPubMed
Magniez, F., Nayak, A., Roland, J., and Santha, M. (2011). Search via quantum walk. SIAM J. Comp., 40, 142–164. doi:10.1137/090745854. Earlier version in STOC’07. arXiv:quant-ph/0608026.CrossRefGoogle Scholar
Magnifico, G., Felser, T., Silvi, P., and Montangero, S. (2021). Lattice quantum electrodynamics in (3+1)-dimensions at finite density with tensor networks. Nat. Commun., 12, 3600. doi:10.1038/s41467-021-23646-3. arXiv:2011.10658.CrossRefGoogle ScholarPubMed
Magnifico, G., Cataldi, G., Rigobello, M., et al. (2024). Tensor networks for lattice gauge theories beyond one dimension: A roadmap. arXiv:2407.03058.Google Scholar
Mande, N. S., and de Wolf, R. (2023). Tight bounds for quantum phase estimation and related problems. Pages 81:1–81:16 of: ESA, vol. 274. doi:10.4230/LIPIcs.ESA.2023.81. arXiv:2305.04908.CrossRefGoogle Scholar
Manin, Y. I. (2007). Mathematics as metaphor: Selected essays of Yuri I. Manin. Vol. 20. American Mathematical Society.Google Scholar
Manrique, D. Z., Khan, I. T., Yamamoto, K., et al. (2020). Momentum-space unitary coupled cluster and translational quantum subspace expansion for periodic systems on quantum computers. arXiv:2008.08694.Google Scholar
Marino, R., Parisi, G., and Ricci-Tersenghi, F. (2016). The backtracking survey propagation algorithm for solving random k-SAT problems. Nat. Commun., 7, 12996. doi:10.1038/ncomms12996. arXiv:1508.05117.CrossRefGoogle ScholarPubMed
Maris, P., Vary, J. P., Navrátil, P., et al. (2011). Origin of the anomalous long lifetime of 14C. Phys. Rev. Lett., 106, 202502. doi:10.1103/PhysRevLett.106.202502. arXiv:1101.5124.CrossRefGoogle ScholarPubMed
Markov, I. L., and Shi, Y. (2008). Simulating quantum computation by contracting tensor networks. SIAM J. Comp., 38, 963–981. doi:10.1137/050644756. arXiv:quant-ph/0511069.CrossRefGoogle Scholar
Marrero, C. O., Kieferová, M., and Wiebe, N. (2021). Entanglement-induced barren plateaus. PRX Quantum, 2, 040316. doi:10.1103/PRXQuantum.2.040316. arXiv:2010.15968.Google Scholar
Martiel, S., and Remaud, M. (2020). Practical implementation of a quantum backtracking algorithm. Pages 597–606 of: SOFSEM. doi:10.1007/978-3-030-38919-2_49. arXiv:1908.11291.CrossRefGoogle Scholar
Martyn, J. M., Rossi, Z. M., Tan, A. K., and Chuang, I. L. (2021). Grand unification of quantum algorithms. Phys. Rev. X, 2, 040203. doi:10.1103/PRXQuantum.2.040203. arXiv:2105.02859.Google Scholar
Marx, D., and Hutter, J. (2009). Ab initio molecular dynamics: Basic theory and advanced methods. Cambridge University Press.CrossRefGoogle Scholar
Maskara, N., Kubica, A., and Jochym-O’Connor, T. (2019). Advantages of versatile neural-network decoding for topological codes. Phys. Rev. A, 99, 052351. doi:10.1103/PhysRevA.99.052351. arXiv:1802.08680.CrossRefGoogle Scholar
Mathis, S. V., Mazzola, G., and Tavernelli, I. (2020). Toward scalable simulations of lattice gauge theories on quantum computers. Phys. Rev. D, 102, 094501. doi:10.1103/PhysRevD.102.094501. arXiv:2005.10271.CrossRefGoogle Scholar
Matsuzawa, Y., and Kurashige, Y. (2020). Jastrow-type decomposition in quantum chemistry for low-depth quantum circuits. J. Chem. Theory Comput., 16, 944–952. doi:10.1021/acs.jctc.9b00963. arXiv:1909.12410.CrossRefGoogle ScholarPubMed
McArdle, S. (2021). Learning from physics experiments with quantum computers: Applications in muon spectroscopy. PRX Quantum, 2, 020349. doi:10.1103/PRXQuantum.2.020349. arXiv:2012.06602.CrossRefGoogle Scholar
McArdle, S., Mayorov, A., Shan, X., et al. (2019). Digital quantum simulation of molecular vibrations. Chem. Sci., 10, 5725–5735. doi:10.1039/C9SC01313J. arXiv:1811.04069.CrossRefGoogle ScholarPubMed
McArdle, S., Jones, T., Endo, S., et al. (2019). Variational ansatz-based quantum simulation of imaginary time evolution. npj Quant. Inf., 5, 75. doi:10.1038/s41534-019-0187-2. arXiv:1804.03023.Google Scholar
McArdle, S., Endo, S., Aspuru-Guzik, A., et al. (2020). Quantum computational chemistry. Rev. Mod. Phys., 92, 015003. doi:10.1103/RevModPhys.92.015003. arXiv:1808.10402.CrossRefGoogle Scholar
McArdle, S., Campbell, E., and Su, Y. (2022). Exploiting fermion number in factorized decompositions of the electronic structure Hamiltonian. Phys. Rev. A, 105, 012403. doi:10.1103/PhysRevA.105.012403. arXiv:2107.07238.CrossRefGoogle Scholar
McArdle, S., Gilyén, A., and Berta, M. (2022). Quantum state preparation without coherent arithmetic. arXiv:2210.14892.Google Scholar
McArdle, S., Gilyén, A., and Berta, M. (2022). A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits. arXiv:2209.12887.Google Scholar
McClean, J. R., Boixo, S., Smelyanskiy, V. N., et al. (2018). Barren plateaus in quantum neural network training landscapes. Nat. Commun., 9, 1–6. doi:10.1038/s41467-018-07090-4. arXiv:1803.11173.CrossRefGoogle ScholarPubMed
McKeever, C., and Lubasch, M. (2023). Classically optimized Hamiltonian simulation. Phys. Rev. Res., 5, 023146. doi:10.1103/PhysRevResearch.5.023146. arXiv:2205.11427.Google Scholar
McLachlan, A. D. (1964). A variational solution of the time-dependent Schrodinger equation. Mol. Phys., 8, 39–44. doi:10.1080/00268976400100041.CrossRefGoogle Scholar
Meister, R., Benjamin, S. C., and Campbell, E. T. (2022). Tailoring term truncations for electronic structure calculations using a linear combination of unitaries. Quantum, 6, 637. doi:10.22331/q-2022-02-02-637. arXiv:2007.11624.CrossRefGoogle Scholar
Merton, R. C. (1972). An analytic derivation of the efficient portfolio frontier. J. Financial Quant. Anal., 7, 1851–1872. doi:10.2307/2329621.CrossRefGoogle Scholar
Meurice, Y., Sakai, R., and Unmuth-Yockey, J. (2022). Tensor lattice field theory for renormalization and quantum computing. Rev. Mod. Phys., 94, 025005. doi:10.1103/RevModPhys.94.025005. arXiv:2010.06539.CrossRefGoogle Scholar
Mi, X., Michailidis, A. A., Shabani, S., et al. (2024). Stable quantum-correlated many-body states through engineered dissipation. Science, 383, 1332–1337. doi:10.1126/science.adh9932. arXiv:2304.13878.CrossRefGoogle ScholarPubMed
Miller, V. S. (1986). Use of elliptic curves in cryptography. Pages 417–426 of: CRYPTO. doi:10.1007/3-540-39799-X_31.CrossRefGoogle Scholar
Milosavljević, N., Morozov, D., and Skraba, P. (2011). Zigzag persistent homology in matrix multiplication time. Pages 216–225 of: SoCG. doi:10.1145/1998196.1998229.CrossRefGoogle Scholar
Mischaikow, K., and Nanda, V. (2013). Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput. Geom., 50, 330–353. doi:10.1007/s00454-013-9529-6.CrossRefGoogle Scholar
Mitarai, K., Negoro, M., Kitagawa, M., and Fujii, K. (2018). Quantum circuit learning. Phys. Rev. A, 98, 032309. doi:10.1103/PhysRevA.98.032309. arXiv:1803.00745.CrossRefGoogle Scholar
Miyamoto, K., and Kubo, K. (2021). Pricing multi-asset derivatives by finitedifference method on a quantum computer. IEEE Trans. Quantum Eng., 3, 1–25. doi:10.1109/TQE.2021.3128643. arXiv:2109.12896.Google Scholar
Miyamoto, K., and Shiohara, K. (2020). Reduction of qubits in a quantum algorithm for Monte Carlo simulation by a pseudo-random-number generator. Phys. Rev. A, 102, 022424. doi:10.1103/PhysRevA.102.022424. arXiv:1911.12469.CrossRefGoogle Scholar
Mizuta, K. (2023). Optimal/nearly-optimal simulation of multi-periodic timedependent Hamiltonians. arXiv:2301.06232.Google Scholar
Mizuta, K., and Fujii, K. (2023). Optimal Hamiltonian simulation for timeperiodic systems. Quantum, 7, 962. doi:10.22331/q-2023-03-28-962. arXiv:2209.05048.CrossRefGoogle Scholar
Mohammadisiahroudi, M., Fakhimi, R., and Terlaky, T. (2022). Efficient use of quantum linear system algorithms in interior point methods for linear optimization. arXiv:2205.01220.Google Scholar
Mohammadisiahroudi, M., Wu, Z., Augustino, B., et al. (2022). Quantumenhanced regression analysis using state-of-the-art QLSAs and QIPMs. Pages 375–380 of: SEC. doi:10.1109/SEC54971.2022.00055.CrossRefGoogle Scholar
Montanaro, A. (2015). Quantum speedup of Monte Carlo methods. Proc. R. Soc. A, 471. doi:10.1098/rspa.2015.0301. arXiv:1504.06987.CrossRefGoogle ScholarPubMed
Montanaro, A. (2016). Quantum algorithms: An overview. npj Quant. Inf., 2, 15023. doi:10.1038/npjqi.2015.23. arXiv:1511.04206.Google Scholar
Montanaro, A. (2018). Quantum-walk speedup of backtracking algorithms. Theory Comput., 14, 1–24. doi:10.4086/toc.2018.v014a015. arXiv:1509.02374.CrossRefGoogle Scholar
Montanaro, A. (2020). Quantum speedup of branch-and-bound algorithms. Phys. Rev. Res., 2, 013056. doi:10.1103/PhysRevResearch.2.013056. arXiv:1906.10375.CrossRefGoogle Scholar
Montanaro, A., and Pallister, S. (2016). Quantum algorithms and the finite element method. Phys. Rev. A, 93, 032324. doi:10.1103/PhysRevA.93.032324. arXiv:1512.05903.CrossRefGoogle Scholar
Monteiro, R. D., and Tsuchiya, T. (2000). Polynomial convergence of primaldual algorithms for the second-order cone program based on the MZ-family of directions. Math. Program., 88, 61–83. doi:10.1007/PL00011378.CrossRefGoogle Scholar
Moradi, S., Trad, D., and Innanen, K. A. (2018). Quantum computing in geophysics: Algorithms, computational costs, and future applications. In: 2018 SEG International Exposition and Annual Meeting. doi:10.1190/segam2018-2998507.1.CrossRefGoogle Scholar
Morales, M. E., Biamonte, J., and Zimborás, Z. (2020). On the universality of the quantum approximate optimization algorithm. Quantum Inf. Process., 19, 1–26. doi:10.1007/s11128-020-02748-9. arXiv:1909.03123.CrossRefGoogle Scholar
MOSEK ApS. (2023). MOSEK portfolio optimization cookbook: Releas 1.3.0. https://docs.mosek.com/MOSEKPortfolioCookbook-a4paper.pdf, accessed: 2023-10-04.Google Scholar
Motlagh, D., and Wiebe, N. (2024). Generalized quantum signal processing. PRX Quantum, 5, 020368. doi:10.1103/PRXQuantum.5.020368. arXiv:2308.01501.CrossRefGoogle Scholar
Motta, M., and Rice, J. E. (2022). Emerging quantum computing algorithms for quantum chemistry. WIREs Comput. Mol. Sci., 12, e1580. doi:10.1002/wcms.1580. arXiv:2109.02873.CrossRefGoogle Scholar
Motta, M., Ceperley, D. M., Chan, G. K.-L., et al. (2017). Towards the solution of the many-electron problem in real materials: Equation of state of the hydrogen chain with state-of-the-art many-body methods. Phys. Rev. X, 7, 031059. doi:10.1103/PhysRevX.7.031059. arXiv:1705.01608.Google Scholar
Motta, M., Genovese, C., Ma, F., et al. (2020). Ground-state properties of the hydrogen chain: Dimerization, insulator-to-metal transition, and magnetic phases. Phys. Rev. X, 10, 031058. doi:10.1103/PhysRevX.10.031058. arXiv:1911.01618.Google Scholar
Motta, M., Ye, E., McClean, J. R., et al. (2021). Low rank representations for quantum simulation of electronic structure. npj Quant. Inf., 7, 1–7. doi:10.1038/s41534-021-00416-z. arXiv:1808.02625.Google Scholar
Mottonen, M., and Vartiainen, J. J. (2005). Decompositions of general quantum gates. arXiv:quant-ph/0504100.Google Scholar
Moussa, J. E. (2016). Transversal Clifford gates on folded surface codes. Phys. Rev. A, 94, 042316. doi:10.1103/PhysRevA.94.042316. arXiv:1603.02286.Google Scholar
Moylett, A. E., Linden, N., and Montanaro, A. (2017). Quantum speedup of the traveling-salesman problem for bounded-degree graphs. Phys. Rev. A, 95, 032323. doi:10.1103/PhysRevA.95.032323. arXiv:1612.06203.CrossRefGoogle Scholar
Mugel, S., Kuchkovsky, C., Sanchez, E., et al. (2022). Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks. Phys. Rev. Res., 4, 013006. doi:10.1103/PhysRevResearch.4.013006. arXiv:2007.00017.CrossRefGoogle Scholar
Muñoz-Coreas, E., and Thapliyal, H. (2018). T-count and qubit optimized quantum circuit design of the non-restoring square root algorithm. ACM J. Emerg. Technol. Comput. Syst., 14, 1–15. doi:10.1145/3264816. arXiv:1712.08254.CrossRefGoogle Scholar
Nagaj, D., Wocjan, P., and Zhang, Y. (2009). Fast amplification of QMA. Quantum Inf. Comput., 9, 1053–1068. doi:10.26421/QIC9.11-12. arXiv:0904.1549.Google Scholar
Nagata, K. (2022). Finite-density lattice QCD and sign problem: Current status and open problems. Prog. Part. Nuc. Phys., 127, 103991. doi:10.1016/j.ppnp.2022.103991. arXiv:2108.12423.Google Scholar
Nakaji, K., Bagherimehrab, M., and Aspuru-Guzik, A. (2023). qSWIFT: Highorder randomized compiler for Hamiltonian simulation. arXiv:2302.14811.Google Scholar
Nam, Y., Su, Y., and Maslov, D. (2020). Approximate quantum Fourier transform with o(n log(n)) T gates. npj Quant. Inf., 6, 26. doi:10.1038/s41534-020-0257-5. arXiv:1803.04933.Google Scholar
Navrátil, P., and Quaglioni, S. (2022). Ab initio nuclear reaction theory with applications to astrophysics. Pages 1–46 of: Handbook of nuclear physics. doi:10.1007/978-981-15-8818-1_7-1. arXiv:2204.01187.CrossRefGoogle Scholar
Nemirovski, A. S., and Todd, M. J. (2008). Interior-point methods for optimization. Acta Numer., 17, 191–234. doi:10.1017/S0962492906370018.CrossRefGoogle Scholar
Nesterov, Y. (2018). Lectures on convex optimization. Springer. doi:10.1007/978-3-319-91578-4.Google Scholar
Nezami, S., Lin, H. W., Brown, A. R., et al. (2023). Quantum gravity in the lab. II. Teleportation by size and traversable wormholes. PRX Quantum, 4, 010321. doi:10.1103/PRXQuantum.4.010321. arXiv:2102.01064.CrossRefGoogle Scholar
Nguyen, N., Watts, T. W., Link, B., et al. (2024). Quantum computing for corrosion-resistant materials and anti-corrosive coatings design. arXiv:2406.18759.Google Scholar
Nielsen, M. A., and Chuang, I. L. (2000). Quantum computation and quantum information. Cambridge University Press. doi:10.1017/CBO9780511976667.Google Scholar
Niroula, P., Shaydulin, R., Yalovetzky, R., et al. (2022). Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer. Sci. Rep., 12, 1–14. doi:10.1038/s41598-022-20853-w. arXiv:2206.06290.CrossRefGoogle ScholarPubMed
Novikau, I., Startsev, E. A., and Dodin, I. Y. (2022). Quantum signal processing for simulating cold plasma waves. Phys. Rev. A, 105, 062444. doi:10.1103/PhysRevA.105.062444. arXiv:2112.06086.CrossRefGoogle Scholar
Novo, L., and Berry, D. W. (2017). Improved Hamiltonian simulation via a truncated Taylor series and corrections. Quantum Inf. Comput., 17, 623–635. doi:10.26421/QIC17.7-8-5. arXiv:1611.10033.Google Scholar
O’Brien, T. E., Streif, M., Rubin, N. C., et al. (2022). Efficient quantum computation of molecular forces and other energy gradients. Phys. Rev. Res., 4, 043210. doi:10.1103/PhysRevResearch.4.043210. arXiv:2111.12437.Google Scholar
O’Brien, T. E., Ioffe, L. B., Su, Y., et al. (2022). Quantum computation of molecular structure using data from challenging-to-classicallysimulate nuclear magnetic resonance experiments. PRX Quantum, 3, 030345. doi:10.1103/PRXQuantum.3.030345. arXiv:2109.02163.CrossRefGoogle ScholarPubMed
O’Donnell, R., and Wright, J. (2016). Efficient quantum tomography. Pages 899–912 of: STOC. doi:10.1145/2897518.2897544. arXiv:1508.01907.CrossRefGoogle Scholar
O’Gorman, B., Irani, S., Whitfield, J., and Fefferman, B. (2022). Intractability of electronic structure in a fixed basis. PRX Quantum, 3, 020322. doi:10.1103/PRXQuantum.3.020322. arXiv:2103.08215.CrossRefGoogle Scholar
O’Gorman, J., and Campbell, E. T. (2017). Quantum computation with realistic magic-state factories. Phys. Rev. A, 95, 032338. doi:10.1103/PhysRevA.95.032338. arXiv:1605.07197.Google Scholar
Oh, C., Liu, M., Alexeev, Y., et al. (2024). Classical algorithm for simulating experimental Gaussian boson sampling. Nat. Phys., 20, 1461–1468. doi:10.1038/s41567-024-02535-8. arXiv:2306.03709.CrossRefGoogle Scholar
Oh, C., Lim, Y., Wong, Y., et al. (2024). Quantum-inspired classical algorithms for molecular vibronic spectra. Nat. Phys., 20, 225–231. doi:10.1038/s41567-023-02308-9. arXiv:2202.01861.CrossRefGoogle Scholar
Oka, T., and Kitamura, S. (2019). Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys., 10, 387–408. doi:10.1146/annurev-conmatphys-031218-013423. arXiv:1804.03212.CrossRefGoogle Scholar
Ollitrault, P. J., Baiardi, A., Reiher, M., and Tavernelli, I. (2020). Hardware efficient quantum algorithms for vibrational structure calculations. Chem. Sci., 11, 6842–6855. doi:10.1039/D0SC01908A. arXiv:2003.12578.CrossRefGoogle ScholarPubMed
Orsucci, D., and Dunjko, V. (2021). On solving classes of positive-definite quantum linear systems with quadratically improved runtime in the condition number. Quantum, 5, 573. doi:10.22331/q-2021-11-08-573. arXiv:2101.11868.CrossRefGoogle Scholar
Orús, R. (2019). Tensor networks for complex quantum systems. Nat. Rev. Phys., 1, 538–550. doi:10.1038/s42254-019-0086-7. arXiv:1812.04011.CrossRefGoogle Scholar
Orús, R., and Vidal, G. (2009). Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction. Phys. Rev. B, 80, 094403. doi:10.1103/PhysRevB.80.094403. arXiv:0905.3225.CrossRefGoogle Scholar
Otgonbaatar, S., and Kranzlmüller, D. 2023 (7). Quantum-inspired tensor network for earth science. Pages 788–791 of: IGARSS. doi:10.1109/IGARSS52108.2023.10282577. arXiv:2301.07528.Google Scholar
Otten, M., Watts, T. W., Johnson, S. D., et al. (2024). Quantum resources required for binding affinity calculations of amyloid beta. arXiv:2406.18744.Google Scholar
Otter, N., Porter, M. A., Tillmann, U., et al. (2017). A roadmap for the computation of persistent homology. EPJ Data Sci., 6, 1–38. doi:10.1140/epjds/s13688-017-0109-5. arXiv:1506.08903.CrossRefGoogle ScholarPubMed
Ouyang, Y., White, D. R., and Campbell, E. T. (2020). Compilation by stochastic Hamiltonian sparsification. Quantum, 4, 235. doi:10.22331/q-2020-02-27-235. arXiv:1910.06255.CrossRefGoogle Scholar
Oz, F., Vuppala, R. K., Kara, K., and Gaitan, F. (2022). Solving Burgers’ equation with quantum computing. Quantum Inf. Process., 21, 1–13. doi:10.1007/s11128-021-03391-8.CrossRefGoogle Scholar
Ozols, M., Roetteler, M., and Roland, J. (2013). Quantum rejection sampling. ACM Trans. Comput. Theory, 5. doi:10.1145/2493252.2493256. arXiv:1103.2774.CrossRefGoogle Scholar
Paini, M., and Kalev, A. (2019). An approximate description of quantum states. arXiv:1910.10543.Google Scholar
Palmer, S., Sahin, S., Hernandez, R., et al. (2021). Quantum portfolio optimization with investment bands and target volatility. arXiv:2106.06735.Google Scholar
Palmer, S., Karagiannis, K., Florence, A., et al. (2022). Financial index tracking via quantum computing with cardinality constraints. arXiv:2208.11380.Google Scholar
Pan, F., and Zhang, P. (2021). Simulating the sycamore quantum supremacy circuits. arXiv:2103.03074.Google Scholar
Panteleev, P., and Kalachev, G. (2022). Asymptotically good quantum and locally testable classical LDPC codes. Pages 375–388 of: STOC. doi:10.1145/3519935.3520017. arXiv:2111.03654.CrossRefGoogle Scholar
Park, J. W., Al-Saadon, R., MacLeod, M. K., et al. (2020). Multireference electron correlation methods: Journeys along potential energy surfaces. Chem. Rev., 120, 5878–5909. doi:10.1021/acs.chemrev.9b00496. arXiv:1911.06836.CrossRefGoogle ScholarPubMed
Patel, D., Tan, S. J. S., SubaŞı, Y., and Sornborger, A. T. (2024). Optimal coherent quantum phase estimation via tapering. arXiv:2403.18927.Google Scholar
Patel, R., Hsing, C.-W., Sahin, S., et al. (2022). Quantum-inspired tensor neural networks for partial differential equations. arXiv:2208.02235.Google Scholar
Peikert, C. (2020). He gives c-sieves on the CSIDH. Pages 463–492 of: EUROCRYPT. doi:10.1007/978-3-030-45724-2_16. ePrint:2019/725.CrossRefGoogle Scholar
Penuel, J., Katabarwa, A., Johnson, P. D., et al. (2024). Feasibility of accelerating incompressible computational fluid dynamics simulations with faulttolerant quantum computers. arXiv:2406.06323.Google Scholar
Peruzzo, A., McClean, J., Shadbolt, P., et al. (2014). A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 5. doi:10.1038/ncomms5213. arXiv:1304.3061.CrossRefGoogle ScholarPubMed
Pirandola, S., Andersen, U. L., Banchi, L., et al. (2020). Advances in quantum cryptography. Adv. Opt. Photon., 12, 1012–1236. doi:10.1364/AOP.361502. arXiv:1906.01645.CrossRefGoogle Scholar
Plesch, M., and Brukner, i. c. v. (2011). Quantum-state preparation with universal gate decompositions. Phys. Rev. A, 83, 032302. doi:10.1103/PhysRevA.83.032302. arXiv:1003.5760.CrossRefGoogle Scholar
Poggi, P. M. (2020). Analysis of lower bounds for quantum control times and their relation to the quantum speed limit. arXiv:2002.11147.Google Scholar
Polkovnikov, A., Sengupta, K., Silva, A., and Vengalattore, M. (2011). Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys., 83, 863–883. doi:10.1103/RevModPhys.83.863. arXiv:1007.5331.CrossRefGoogle Scholar
Poulin, D., and Wocjan, P. (2009). Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. Phys. Rev. Lett., 103, 220502. doi:10.1103/PhysRevLett.103.220502. arXiv:0905.2199.CrossRefGoogle ScholarPubMed
Poulin, D., Qarry, A., Somma, R., and Verstraete, F. (2011). Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. Phys. Rev. Lett., 106, 170501. doi:10.1103/PhysRevLett.106.170501. arXiv:1102.1360.CrossRefGoogle ScholarPubMed
Poulin, D., Hastings, M. B., Wecker, D., et al. (2015). The Trotter step size required for accurate quantum simulation of quantum chemistry. Quantum Info. Comput., 15, 361–384. doi:10.26421/QIC15.5-6-1. arXiv:1406.4920.Google Scholar
Poulin, D., Kitaev, A., Steiger, D. S., et al. (2018). Quantum algorithm for spectral measurement with a lower gate count. Phys. Rev. Lett., 121, 010501. doi:10.1103/PhysRevLett.121.010501. arXiv:1711.11025.CrossRefGoogle ScholarPubMed
Poulsen Nautrup, H., Friis, N., and Briegel, H. J. (2017). Fault-tolerant interface between quantum memories and quantum processors. Nat. Commun., 8. doi:10.1038/s41467-017-01418-2. arXiv:1609.08062.CrossRefGoogle ScholarPubMed
Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79. doi:10.22331/q-2018-08-06-79. arXiv:1801.00862.CrossRefGoogle Scholar
Preskill, J. (2019). Simulating quantum field theory with a quantum computer. doi:10.22323/1.334.0024. arXiv:1811.10085.CrossRefGoogle Scholar
Preskill, J. (2022). Course information for physics 219/computer science 219 quantum computation (formerly physics 229). http://theory.caltech. edu/˜preskill/ph229/, accessed: 2024-11-19.Google Scholar
Proos, J., and Zalka, C. (2003). Shor’s discrete logarithm quantum algorith for elliptic curves. Quantum Inf. Comput., 3, 317–344. arXiv:0301141.Google Scholar
Qin, M., Schafer, T., Andergassen, S., et al. (2022). The Hubbard model: A computational perspective. Annu. Rev. Condens. Matter Phys., 13, 275–302. doi:10.1146/annurev-conmatphys-090921-033948. arXiv:2104.00064.CrossRefGoogle Scholar
Ragavan, S. (2024). Regev factoring beyond Fibonacci: Optimizing prefactors. ePrint:2024/636.Google Scholar
Ragavan, S., and Vaikuntanathan, V. (2024). Space-efficient and noise-robust quantum factoring. arXiv:2310.00899.Google Scholar
Ragone, M., Bakalov, B. N., Sauvage, F., et al. (2023). A unified theory of barren plateaus for deep parametrized quantum circuits. arXiv:2309.09342.Google Scholar
Rahmani, A., and Franz, M. (2019). Interacting Majorana fermions. Rep. Prog. Phys., 82, 084501. doi:10.1088/1361-6633/ab28ef. arXiv:1811.02593.CrossRefGoogle ScholarPubMed
Rajput, A., Roggero, A., and Wiebe, N. (2022). Hybridized methods for quantum simulation in the interaction picture. Quantum, 6, 780. doi:10.22331/q-2022-08-17-780. arXiv:2109.03308.CrossRefGoogle Scholar
Rall, P. (2020). Quantum algorithms for estimating physical quantities using block encodings. Phys. Rev. A, 102, 022408. doi:10.1103/PhysRevA.102.022408. arXiv:2004.06832.CrossRefGoogle Scholar
Rall, P. (2021). Faster coherent quantum algorithms for phase, energy, and amplitude estimation. Quantum, 5, 566. doi:10.22331/q-2021-10-19-566. arXiv:2103.09717.CrossRefGoogle Scholar
Rall, P., and Fuller, B. (2023). Amplitude estimation from quantum signal processing. Quantum, 7, 937. doi:10.22331/q-2023-03-02-937. arXiv:2207.08628.CrossRefGoogle Scholar
Rall, P., Wang, C., and Wocjan, P. (2023). Thermal state preparation via rounding promises. Quantum, 7, 1132. doi:10.22331/q-2023-10-10-1132. arXiv:2210.01670.CrossRefGoogle Scholar
Ramos-Calderer, S., Pérez-Salinas, A., García-Martín, D., et al. (2021). Quantum unary approach to option pricing. Phys. Rev. A, 103, 032414. doi:10.1103/PhysRevA.103.032414. arXiv:1912.01618.CrossRefGoogle Scholar
Rasmussen, C. E., and Williams, C. K. I. (2005). Gaussian processes for machine learning. The MIT Press. doi:10.7551/mitpress/3206.001.0001.Google Scholar
Rattew, A. G., and Koczor, B. (2022). Preparing arbitrary continuous functions in quantum registers with logarithmic complexity. arXiv:2205.00519.Google Scholar
Rattew, A. G., Sun, Y., Minssen, P., and Pistoia, M. (2021). The efficient preparation of normal distributions in quantum registers. Quantum, 5, 609. doi:10.22331/q-2021-12-23-609. arXiv:2009.06601.CrossRefGoogle Scholar
Raussendorf, R. (2012). Key ideas in quantum error correction. Philos. Trans. R. Soc. A, 370, 4541–4565. doi:10.1098/rsta.2011.0494.CrossRefGoogle ScholarPubMed
Raussendorf, R., and Harrington, J. (2007). Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett., 98, 190504. doi:10.1103/PhysRevLett.98.190504. arXiv:quant-ph/0610082.CrossRefGoogle ScholarPubMed
Raussendorf, R., Harrington, J., and Goyal, K. (2007). Topological faulttolerance in cluster state quantum computation. New J. Phys., 9, 199. doi:10.1088/1367-2630/9/6/199. arXiv:quant-ph/0703143.CrossRefGoogle Scholar
Raychowdhury, I., and Stryker, J. R. (2020). Solving Gauss’s law on digital quantum computers with loop-string-hadron digitization. Phys. Rev. Res., 2, 033039. doi:10.1103/PhysRevResearch.2.033039. arXiv:1812.07554.CrossRefGoogle Scholar
Rebentrost, P., and Lloyd, S. (2018). Quantum computational finance: Quantum algorithm for portfolio optimization. arXiv:1811.03975.Google Scholar
Rebentrost, P., Mohseni, M., and Lloyd, S. (2014). Quantum support vector machine for big data classification. Phys. Rev. Lett., 113, 130503. doi:10.1103/PhysRevLett.113.130503. arXiv:1307.0471.CrossRefGoogle ScholarPubMed
Rebentrost, P., Gupt, B., and Bromley, T. R. (2018). Quantum computational finance: Monte Carlo pricing of financial derivatives. Phys. Rev. A, 98, 022321. doi:10.1103/PhysRevA.98.022321. arXiv:1805.00109.CrossRefGoogle Scholar
Rebentrost, P., Luongo, A., Bosch, S., and Lloyd, S. (2022). Quantum computational finance: Martingale asset pricing for incomplete markets. arXiv:2209.08867.Google Scholar
Regev, O. (2023). An efficient quantum factoring algorithm. arXiv:2308.06572.Google Scholar
Reiher, M., Wiebe, N., Svore, K. M., et al. (2017). Elucidating reaction mechanisms on quantum computers. Proc. Natl. Acad. Sci., 114, 7555–7560. doi:10.1073/pnas.1619152114. arXiv:1605.03590.CrossRefGoogle ScholarPubMed
Reiner, J. M., Zanker, S., Schwenk, I., et al. (2018). Effects of gate errors in digital quantum simulations of fermionic systems. Quantum Sci. Technol., 3. doi:10.1088/2058-9565/aad5ba. arXiv:1804.06668.CrossRefGoogle Scholar
Reiner, J. M., Wilhelm-Mauch, F., Schön, G., and Marthaler, M. (2019). Finding the ground state of the Hubbard model by variational methods on a quantum computer with gate errors. Quantum Sci. Technol., 4. doi:10.1088/2058-9565/ab1e85. arXiv:1811.04476.CrossRefGoogle Scholar
Rhodes, M., Kreshchuk, M., and Pathak, S. (2024). Exponential improvements in the simulation of lattice gauge theories using near-optimal techniques. arXiv:2405.10416.Google Scholar
Richard, E., and Montanari, A. (2014). A statistical model for tensor PCA. In: NeurIPS. arXiv:1411.1076.Google Scholar
Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM, 21, 120–126. doi:10.1145/359340.359342.CrossRefGoogle Scholar
Roetteler, M., Naehrig, M., Svore, K. M., and Lauter, K. (2017). Quantum resource estimates for computing elliptic curve discrete logarithms. Pages 241–270 of: ASIACRYPT. doi:10.1007/978-3-319-70697-9_9. arXiv:1706.06752.CrossRefGoogle Scholar
Roggero, A., Li, A. C. Y., Carlson, J., et al. (2020). Quantum computing for neutrino-nucleus scattering. Phys. Rev. D, 101, 074038. doi:10.1103/PhysRevD.101.074038. arXiv:1911.06368.CrossRefGoogle Scholar
Romero, J., and Aspuru-Guzik, A. (2021). Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions. Adv. Quantum Technol., 4, 2000003. doi:10.1002/qute.202000003. arXiv:1901.00848.CrossRefGoogle Scholar
Romero, J., Olson, J. P., and Aspuru-Guzik, A. (2017). Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol., 2, 045001. doi:10.1088/2058-9565/aa8072. arXiv:1612.02806.CrossRefGoogle Scholar
Rosenberg, E., Andersen, T. I., Samajdar, R., et al. (2024). Dynamics of magnetization at infinite temperature in a Heisenberg spin chain. Science, 384, 48–53. doi:10.1126/science.adi7877. arXiv:2306.09333.CrossRefGoogle Scholar
Rosenberg, G., Haghnegahdar, P., Goddard, P., et al. (2016). Solving the optimal trading trajectory problem using a quantum annealer. IEEE Journal of Selected Topics in Signal Processing, 10, 1053–1060. doi:10.1109/JSTSP.2016.2574703. Earlier version in WHPCF’15. arXiv:1508.06182.CrossRefGoogle Scholar
Rosenhaus, V. (2019). An introduction to the SYK model. J. Phys. A, 52, 323001. doi:10.1088/1751-8121/ab2ce1. arXiv:1807.03334.CrossRefGoogle Scholar
Rosenthal, G. (2021). Query and depth upper bounds for quantum unitaries via Grover search. arXiv:2111.07992.Google Scholar
Ross, N. J., and Selinger, P. (2016). Optimal ancilla-free Clifford+T approximation of z-rotations. Quantum Inf. Comput., 16, 901–953. doi:10.26421/QIC16.11-12-1. arXiv:1403.2975.Google Scholar
Rossi, M., Asproni, L., Caputo, D., et al. (2022). Using Shor’s algorithm on near term quantum computers: A reduced version. Quantum Mach. Intell., 4, 18. doi:10.1007/s42484-022-00072-2. arXiv:2112.12647.CrossRefGoogle Scholar
Rubin, N. C., Berry, D. W., Malone, F. D., et al. (2023). Fault-tolerant quantum simulation of materials using Bloch orbitals. PRX Quantum, 4, 040303. doi:10.1103/PRXQuantum.4.040303. arXiv:2302.05531.CrossRefGoogle Scholar
Rubin, N. C., Berry, D. W., Kononov, A., et al. (2024). Quantum computation of stopping power for inertial fusion target design. Proc. Natl. Acad. Sci., 121, e2317772121. doi:10.1073/pnas.2317772121. arXiv:2308.12352.CrossRefGoogle ScholarPubMed
Saad, Y. (2003). Iterative methods for sparse linear systems. 2nd edn. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898718003.CrossRefGoogle Scholar
Sachdev, S., and Ye, J. (1993). Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett., 70, 3339–3342. doi:10.1103/PhysRevLett.70.3339. arXiv:cond-mat/9212030.CrossRefGoogle Scholar
Saffman, M., Walker, T. G., and Mølmer, K. (2010). Quantum information with Rydberg atoms. Rev. Mod. Phys., 82, 2313–2363. doi:10.1103/RevModPhys.82.2313. arXiv:0909.4777.CrossRefGoogle Scholar
Şahinoğlu, B., and Somma, R. D. (2021). Hamiltonian simulation in the lowenergy subspace. npj Quant. Inf., 7. doi:10.1038/s41534-021-00451-w. arXiv:2006.02660.Google Scholar
Sakamoto, K., Morisaki, H., Haruna, J., et al. (2024). End-to-end complexity for simulating the Schwinger model on quantum computers. Quantum, 8, 1474. doi:10.22331/q-2024-09-17-1474. arXiv:2311.17388.CrossRefGoogle Scholar
Salakhutdinov, R., and Larochelle, H. (2010). Efficient learning of deep Boltzmann machines. Pages 693–700 of: AISTATS.Google Scholar
Sanders, Y. R., Low, G. H., Scherer, A., and Berry, D. W. (2019). Black-box quantum state preparation without arithmetic. Phys. Rev. Lett., 122, 020502. doi:10.1103/PhysRevLett.122.020502. arXiv:1807.03206.CrossRefGoogle ScholarPubMed
Sanders, Y. R., Berry, D. W., Costa, P. C., et al. (2020). Compilation of faulttolerant quantum heuristics for combinatorial optimization. PRX Quantum, 1, 020312. doi:10.1103/PRXQuantum.1.020312. arXiv:2007.07391.CrossRefGoogle Scholar
Santagati, R., Aspuru-Guzik, A., Babbush, R., et al. (2024). Drug design on quantum computers. Nat. Phys., 20, 549–557. doi:10.1038/s41567-024-02411-5. arXiv:2301.04114.CrossRefGoogle Scholar
Sawaya, N. P., Menke, T., Kyaw, T. H., et al. (2020). Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians. npj Quant. Inf., 6, 1–13. doi:10.1038/s41534-020-0278-0. arXiv:1909.12847.Google Scholar
Sawaya, N. P. D., and Huh, J. (2019). Quantum algorithm for calculating molecular vibronic spectra. J. Phys. Chem. Lett., 10, 3586–3591. doi:10.1021/acs.jpclett.9b01117. arXiv:1812.10495.CrossRefGoogle ScholarPubMed
Sawaya, N. P. D., Paesani, F., and Tabor, D. P. (2021). Nearand long-term quantum algorithmic approaches for vibrational spectroscopy. Phys. Rev. A, 104, 062419. doi:10.1103/PhysRevA.104.062419. arXiv:2009.05066.CrossRefGoogle Scholar
Schäfer, T., Wentzell, N., Šimkovic, F., et al. (2021). Tracking the footprints of spin fluctuations: A multimethod, multimessenger study of the two-dimensional Hubbard model. Phys. Rev. X, 11, 011058. doi:10.1103/PhysRevX.11.011058. arXiv:2006.10769.Google Scholar
Schatzki, L., Larocca, M., Nguyen, Q. T., et al. (2024). Theoretical guarantees for permutation-equivariant quantum neural networks. npj Quant. Inf., 10, 12. doi:10.1038/s41534-024-00804-1. arXiv:2210.09974.Google Scholar
Scherer, A., Valiron, B., Mau, S.-C., et al. (2017). Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target. Quantum Inf. Process., 16, 1–65. doi:10.1007/s11128-016-1495-5. arXiv:1505.06552.CrossRefGoogle Scholar
Schmidhuber, A., and Lloyd, S. (2023). Complexity-theoretic limitations on quantum algorithms for topological data analysis. PRX Quantum, 4, 040349. doi:10.1103/PRXQuantum.4.040349. arXiv:2209.14286.CrossRefGoogle Scholar
Schmidhuber, A., O’Donnell, R., Kothari, R., and Babbush, R. (2024). Quartic quantum speedups for planted inference. arXiv:2406.19378.Google Scholar
Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer theorem. Pages 416–426 of: COLT. doi:10.1007/3-540-44581-1_27.CrossRefGoogle Scholar
Scholl, P., Schuler, M., Williams, H. J., et al. (2021). Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature, 595, 233–238. doi:10.1038/s41586-021-03585-1. arXiv:2012.12268.CrossRefGoogle ScholarPubMed
Schollwöck, U. (2011). The density-matrix renormalization group in the age of matrix product states. Ann. Phys., 326, 96–192. doi:10.1016/j.aop.2010.09.012. arXiv:1008.3477.CrossRefGoogle Scholar
Schöning, U. (1999). A probabilistic algorithm for k-SAT and constraint satisfaction problems. Pages 410–414 of: FOCS. doi:10.1109/SFFCS.1999.814612.CrossRefGoogle Scholar
Schubert, A., and Mendl, C. B. (2023). Trotter error with commutator scaling for the Fermi–Hubbard model. Phys. Rev. B, 108, 195105. doi:10.1103/PhysRevB.108.195105. arXiv:2306.10603.CrossRefGoogle Scholar
Schuch, N., and Verstraete, F. (2009). Computational complexity of interacting electrons and fundamental limitations of density functional theory. Nat. Phys., 5, 732–735. doi:10.1038/nphys1370. arXiv:0712.0483.CrossRefGoogle Scholar
Schuch, N., Wolf, M. M., Verstraete, F., and Cirac, J. I. (2007). Computational complexity of projected entangled pair states. Phys. Rev. Lett., 98, 140506. doi:10.1103/PhysRevLett.98.140506. arXiv:quant-ph/0611050.CrossRefGoogle ScholarPubMed
Schuch, N., Wolf, M. M., Verstraete, F., and Cirac, J. I. (2008). Entropy scaling and simulability by matrix product states. Phys. Rev. Lett., 100, 030504. doi:10.1103/PhysRevLett.100.030504. arXiv:0705.0292.CrossRefGoogle ScholarPubMed
Schuld, M. (2021). Supervised quantum machine learning models are kernel methods. arXiv:2101.11020.Google Scholar
Schuld, M., and Killoran, N. (2019). Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett., 122, 040504. doi:10.1103/PhysRevLett.122.040504. arXiv:1803.07128.CrossRefGoogle ScholarPubMed
Schuld, M., and Killoran, N. (2022). Is quantum advantage the right goal for quantum machine learning? PRX Quantum, 3, 030101. doi:10.1103/PRXQuantum.3.030101. arXiv:2203.01340.CrossRefGoogle Scholar
Schuld, M., and Petruccione, F. (2021). Machine learning with quantum computers. Springer. doi:10.1007/978-3-030-83098-4.CrossRefGoogle Scholar
Schuld, M., Sinayskiy, I., and Petruccione, F. (2016). Prediction by linear regression on a quantum computer. Phys. Rev. A, 94, 022342. doi:10.1103/PhysRevA.94.022342. arXiv:1601.07823.CrossRefGoogle Scholar
Schuld, M., Bergholm, V., Gogolin, C., et al. (2019). Evaluating analytic gradients on quantum hardware. Phys. Rev. A, 99, 032331. doi:10.1103/PhysRevA.99.032331. arXiv:1811.11184.CrossRefGoogle Scholar
Schuld, M., Bocharov, A., Svore, K. M., and Wiebe, N. (2020). Circuit-centric quantum classifiers. Phys. Rev. A, 101, 032308. doi:10.1103/PhysRevA.101.032308. arXiv:1804.00633.CrossRefGoogle Scholar
Sels, D., Dashti, H., Mora, S., et al. (2020). Quantum approximate Bayesian computation for NMR model inference. Nat. Mach. Intell., 2, 396–402. doi:10.1038/s42256-020-0198-x. arXiv:1910.14221.CrossRefGoogle ScholarPubMed
Serbyn, M., Papić, Z., and Abanin, D. A. (2013). Universal slow growth of entanglement in interacting strongly disordered systems. Phys. Rev. Lett., 110, 260601. doi:10.1103/PhysRevLett.110.260601. arXiv:1304.4605.CrossRefGoogle ScholarPubMed
Setia, K., Bravyi, S., Mezzacapo, A., and Whitfield, J. D. (2019). Superfast encodings for fermionic quantum simulation. Phys. Rev. Res., 1, 033033. doi:10.1103/PhysRevResearch.1.033033. arXiv:1810.05274.CrossRefGoogle Scholar
Shang, H., Fan, Y., Shen, L., et al. (2023). Towards practical and massively parallel quantum computing emulation for quantum chemistry. npj Quant. Inf., 9, 33. doi:10.1038/s41534-023-00696-7. arXiv:2303.03681.Google ScholarPubMed
Shao, C., and Montanaro, A. (2022). Faster quantum-inspired algorithms for solving linear systems. ACM Trans. Quantum Comput., 3. doi:10.1145/3520141. arXiv:2103.10309.CrossRefGoogle Scholar
Shao, C., and Xiang, H. (2018). Quantum circulant preconditioner for a linear system of equations. Phys. Rev. A, 98, 062321. doi:10.1103/PhysRevA.98.062321. arXiv:1807.04563.CrossRefGoogle Scholar
Sharma, K., Cerezo, M., Cincio, L., and Coles, P. J. (2022). Trainability of dissipative perceptron-based quantum neural networks. Phys. Rev. Lett., 128, 180505. doi:10.1103/PhysRevLett.128.180505. arXiv:2005.12458.CrossRefGoogle ScholarPubMed
Shaw, A. F., Lougovski, P., Stryker, J. R., and Wiebe, N. (2020). Quantum algorithms for simulating the lattice Schwinger model. Quantum, 4, 306. doi:10.22331/q-2020-08-10-306. arXiv:2002.11146.CrossRefGoogle Scholar
Shaydulin, R., Li, C., Chakrabarti, S., et al. (2023). Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem. arXiv:2308.02342.Google Scholar
Shehab, O., Landsman, K., Nam, Y., et al. (2019). Toward convergence of effective-field-theory simulations on digital quantum computers. Phys. Rev. A, 100, 062319. doi:10.1103/PhysRevA.100.062319.CrossRefGoogle Scholar
Shen, J., Tang, T., and Wang, L.-L. (2011). Spectral methods: Algorithms, analysis and applications. Vol. 41. Springer Science & Business Media. doi:10.1007/978-3-540-71041-7.CrossRefGoogle Scholar
Shende, V. V., Markov, I. L., and Bullock, S. S. (2004). Minimal universal two-qubit controlled-not-based circuits. Phys. Rev. A, 69, 062321. doi:10.1103/PhysRevA.69.062321. arXiv:quant-ph/0308033.CrossRefGoogle Scholar
Shepherd, J. J., Grüneis, A., Booth, G. H., et al. (2012). Convergence of many-body wave-function expansions using a plane-wave basis: From homogeneous electron gas to solid state systems. Phys. Rev. B, 86, 035111. doi:10.1103/PhysRevB.86.035111. arXiv:1202.4990.CrossRefGoogle Scholar
Sherrington, D., and Kirkpatrick, S. (1975). Solvable model of a spin-glass. Phys. Rev. Lett., 35, 1792. doi:10.1103/PhysRevLett.35.1792.CrossRefGoogle Scholar
Shokrian Zini, M., Delgado, A., dos Reis, R., et al. (2023). Quantum simulation of battery materials using ionic pseudopotentials. Quantum, 7, 1049. doi:10.22331/q-2023-07-10-1049. arXiv:2302.07981.CrossRefGoogle Scholar
Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 52, R2493–R2496. doi:10.1103/PhysRevA.52.R2493.CrossRefGoogle ScholarPubMed
Shor, P. W. (1996). Fault-tolerant quantum computation. Pages 56–65 of: FOCS. doi:10.1109/SFCS.1996.548464. arXiv:quant-ph/9605011.CrossRefGoogle Scholar
Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp., 26, 1484–1509. doi:10.1137/S0097539795293172. Earlier version in FOCS’94. arXiv:quant-ph/9508027.CrossRefGoogle Scholar
Shor, P. W. (2022). The early days of quantum computation. arXiv:2208.09964.Google Scholar
Shtanko, O., and Movassagh, R. (2021). Preparing thermal states on noiseless and noisy programmable quantum processors. arXiv:2112.14688.Google Scholar
Simon, D. R. (1997). On the power of quantum computation. SIAM J. Comp., 26, 1474–1483. doi:10.1137/S0097539796298637. Earlier version in FOCS’94.CrossRefGoogle Scholar
Simon, S., Santagati, R., Degroote, M., et al. (2023). Improved precision scaling for simulating coupled quantum-classical dynamics. arXiv:2307.13033.Google Scholar
Skoric, L., Browne, D. E., Barnes, K. M., et al. (2023). Parallel window decoding enables scalable fault tolerant quantum computation. Nat. Commun., 14. doi:10.1038/s41467-023-42482-1.CrossRefGoogle ScholarPubMed
Smolin, J. A., Smith, G., and Vargo, A. (2013). Oversimplifying quantum factoring. Nature, 499, 163–165. doi:10.1038/nature12290.CrossRefGoogle ScholarPubMed
Somma, R., Boixo, S., and Barnum, H. (2007). Quantum simulated annealing. arXiv:0712.1008.Google Scholar
Song, X.-Y., Jian, C.-M., and Balents, L. (2017). Strongly correlated metal built from Sachdev–Ye–Kitaev models. Phys. Rev. Lett., 119, 216601. doi:10.1103/PhysRevLett.119.216601. arXiv:1705.00117.CrossRefGoogle ScholarPubMed
Sparrow, C., Martín-López, E., Maraviglia, N., et al. (2018). Simulating the vibrational quantum dynamics of molecules using photonics. Nature, 557, 660–667. doi:10.1038/s41586-018-0152-9.CrossRefGoogle ScholarPubMed
Stace, T. M., Barrett, S. D., and Doherty, A. C. (2009). Thresholds for topological codes in the presence of loss. Phys. Rev. Lett., 102, 200501. doi:10.1103/PhysRevLett.102.200501. arXiv:0904.3556.CrossRefGoogle ScholarPubMed
Stamatopoulos, N., and Zeng, W. J. (2023). Derivative pricing using quantum signal processing. arXiv:2307.14310.Google Scholar
Stamatopoulos, N., Egger, D. J., Sun, Y., et al. (2020). Option pricing using quantum computers. Quantum, 4, 291. doi:10.22331/q-2020-07-06-291. arXiv:1905.02666.CrossRefGoogle Scholar
Stamatopoulos, N., Mazzola, G., Woerner, S., and Zeng, W. J. (2022). Towards quantum advantage in financial market risk using quantum gradient algorithms. Quantum, 6, 770. doi:10.22331/q-2022-07-20-770. arXiv:2111.12509.CrossRefGoogle Scholar
Stanisic, S., Bosse, J. L., Gambetta, F. M., et al. (2022). Observing ground-state properties of the Fermi–Hubbard model using a scalable algorithm on a quantum computer. Nat. Commun., 13, 5743. doi:10.1038/s41467-022-33335-4. arXiv:2112.02025.CrossRefGoogle ScholarPubMed
Steane, A. M. (1996). Error correcting codes in quantum theory. Phys. Rev. Lett., 77, 793–797. doi:10.1103/PhysRevLett.77.793.CrossRefGoogle ScholarPubMed
Steane, A. M. (1997). Active stabilization, quantum computation, and quantum state synthesis. Phys. Rev. Lett., 78, 2252–2255. doi:10.1103/physrevlett.78.2252. arXiv:quant-ph/9611027.CrossRefGoogle Scholar
Steiger, D. S., and Troyer, M. (2016). Racing in parallel: Quantum versus classical. Pages H44–010 of: APS March Meeting Abstracts, vol. 2016. doi:10.48660/16080019.CrossRefGoogle Scholar
Stetcu, I., Baroni, A., and Carlson, J. (2022). Variational approaches to constructing the many-body nuclear ground state for quantum computing. Phys. Rev. C, 105, 064308. doi:10.1103/PhysRevC.105.064308. arXiv:2110.06098.CrossRefGoogle Scholar
Steudtner, M., Morley-Short, S., Pol, W., et al. (2023). Fault-tolerant quantum computation of molecular observables. arXiv:2303.14118.Google Scholar
Stevenson, P. D. (2023). Comments on quantum computing in nuclear physics. Int. J. Unconv. Comput., 18, 10.Google Scholar
Stroberg, S. R., Bogner, S. K., Hergert, H., and Holt, J. D. (2019). Nonempirical interactions for the nuclear shell model: An update. Ann. Rev. Nucl. Part. Sci., 69, 307–362. doi:10.1146/annurev-nucl-101917-021120.CrossRefGoogle Scholar
Strohmer, T., and Vershynin, R. (2009). A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl., 15, 262–278. doi:10.1007/s00041-008-9030-4. arXiv:math/0702226.CrossRefGoogle Scholar
Stryker, J. R. (2019). Oracles for Gauss’s law on digital quantum computers. Phys. Rev. A, 99, 042301. doi:10.1103/PhysRevA.99.042301. arXiv:1812.01617.CrossRefGoogle Scholar
Su, Y. (2024). Private communication.Google Scholar
Su, Y., Berry, D. W., Wiebe, N., et al. (2021). Fault-tolerant quantum simulations of chemistry in first quantization. PRX Quantum, 2, 040332. doi:10.1103/PRXQuantum.2.040332. arXiv:2105.12767.CrossRefGoogle Scholar
Su, Y., Huang, H. Y., and Campbell, E. T. (2021). Nearly tight Trotterization of interacting electrons. Quantum, 5, 1–58. doi:10.22331/Q-2021-07-05-495. arXiv:2012.09194.CrossRefGoogle Scholar
SubaŞı, Y., Somma, R. D., and Orsucci, D. (2019). Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing. Phys. Rev. Lett., 122, 060504. doi:10.1103/PhysRevLett.122.060504. arXiv:1805.10549.CrossRefGoogle ScholarPubMed
Succi, S., Itani, W., Sreenivasan, K. R., and Steijl, R. (2023). Ensemble fluid simulations on quantum computers. arXiv:2304.05410.Google Scholar
Sugisaki, K., Toyota, K., Sato, K., et al. (2022). Adiabatic state preparation of correlated wave functions with nonlinear scheduling functions and broken-symmetry wave functions. Commun. Chem., 5, 84. doi:10.1038/s42004-022-00701-8.CrossRefGoogle ScholarPubMed
Sun, S.-N., Motta, M., Tazhigulov, R. N., et al. (2021). Quantum computation of finite-temperature static and dynamical properties of spin systems using quantum imaginary time evolution. PRX Quantum, 2, 010317. doi:10.1103/PRXQuantum.2.010317. arXiv:2009.03542.CrossRefGoogle Scholar
Sun, X., Tian, G., Yang, S., et al. (2023). Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 1–1. doi:10.1109/TCAD.2023.3244885. arXiv:2108.06150.CrossRefGoogle Scholar
Sünderhauf, C., Campbell, E., and Camps, J. (2023). Block-encoding structured matrices for data input in quantum computing. arXiv:2302.10949.Google Scholar
Susskind, L. (1977). Lattice fermions. Phys. Rev. D, 16, 3031–3039. doi:10.1103/PhysRevD.16.3031.CrossRefGoogle Scholar
Suykens, J., De Brabanter, J., Lukas, L., and Vandewalle, J. (2002). Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing, 48, 85–105. doi:10.1016/S0925-2312(01)00644-0.CrossRefGoogle Scholar
Suykens, J. A. K., and Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Process. Lett., 9, 293–300. doi:10.1023/A:1018628609742.CrossRefGoogle Scholar
Sweke, R., Kesselring, M. S., van Nieuwenburg, E. P. L., and Eisert, J. (2020). Reinforcement learning decoders for fault-tolerant quantum computation. Mach. Learn.: Sci. Technol., 2, 025005. doi:10.1088/2632-2153/abc609. arXiv:1810.07207.Google Scholar
Szegedy, M. (2004). Quantum speed-up of Markov chain based algorithms. Pages 32–41 of: FOCS. doi:10.1109/FOCS.2004.53. arXiv:quant-ph/0401053.CrossRefGoogle Scholar
Ta-Shma, A. (2013). Inverting well conditioned matrices in quantum logspace. Pages 881–890 of: STOC. doi:10.1145/2488608.2488720.CrossRefGoogle Scholar
Tang, E. (2019). A quantum-inspired classical algorithm for recommendation systems. Pages 217–228 of: STOC. doi:10.1145/3313276.3316310. arXiv:1807.04271.CrossRefGoogle Scholar
Tang, E. (2021). Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions. Phys. Rev. Lett., 127, 060503. doi:10.1103/PhysRevLett.127.060503. arXiv:1811.00414.CrossRefGoogle ScholarPubMed
Tang, E. (2022). Dequantizing algorithms to understand quantum advantage in machine learning. Nat. Rev. Phys., 4, 692–693. doi:10.1038/s42254-022-00511-w.CrossRefGoogle Scholar
Tang, E. (2023). Quantum machine learning without any quantum. PhD thesis, University of Washington.Google Scholar
Tang, E., and Tian, K. (2023). A CS guide to the quantum singular value transformation. arXiv:2302.14324.Google Scholar
Tang, H., Pal, A., Wang, T.-Y., et al. (2021). Quantum computation for pricing the collateralized debt obligations. Quantum Eng., 3, e84. doi:10.1002/que2.84. arXiv:2008.04110.CrossRefGoogle Scholar
Taube, A. G., and Bartlett, R. J. (2006). New perspectives on unitary coupled-cluster theory. Int. J. Quantum Chem., 106, 3393–3401. doi:10.1002/qua.21198.CrossRefGoogle Scholar
Tazhigulov, R. N., Sun, S.-N., Haghshenas, R., et al. (2022). Simulating models of challenging correlated molecules and materials on the sycamore quantum processor. PRX Quantum, 3, 040318. doi:10.1103/PRXQuantum.3.040318. arXiv:2203.15291.CrossRefGoogle Scholar
Temme, K., Osborne, T. J., Vollbrecht, K. G., et al. (2011). Quantum Metropolis sampling. Nature, 471, 87–90. doi:10.1038/nature09770. arXiv:0911.3635.CrossRefGoogle ScholarPubMed
Terhal, B. M. (2015). Quantum error correction for quantum memories. Rev. Mod. Phys., 87, 307–346. doi:10.1103/revmodphys.87.307. arXiv:1302.3428.CrossRefGoogle Scholar
Terhal, B. M., and Burkard, G. (2005). Fault-tolerant quantum computation for local non-Markovian noise. Phys. Rev. A, 71, 012336. doi:10.1103/physreva.71.012336. arXiv:quant-ph/0402104.CrossRefGoogle Scholar
Tews, I., Davoudi, Z., Ekström, A., et al. (2020). New ideas in constraining nuclear forces. J. Phys. G, 47, 103001. doi:10.1088/1361-6471/ab9079. arXiv:2001.03334.CrossRefGoogle Scholar
Thanasilp, S., Wang, S., Cerezo, M., and Holmes, Z. (2022). Exponential concentration and untrainability in quantum kernel methods. arXiv:2208.11060.Google Scholar
Thomas, P. S., CarringtonJr., T., Agarwal, J., and Schaefer III, H. F. (2018). Using an iterative eigensolver and intertwined rank reduction to compute vibrational spectra of molecules with more than a dozen atoms: Uracil and naphthalene. J. Chem. Phys., 149, 064108. doi:10.1063/1.5039147.CrossRefGoogle ScholarPubMed
Tong, Y., An, D., Wiebe, N., and Lin, L. (2021). Fast inversion, preconditioned quantum linear system solvers, fast Green’s-function computation, and fast evaluation of matrix functions. Phys. Rev. A, 104, 032422. doi:10.1103/PhysRevA.104.032422. arXiv:2008.13295.CrossRefGoogle Scholar
Tong, Y., Albert, V. V., McClean, J. R., et al. (2022). Provably accurate simulation of gauge theories and bosonic systems. Quantum, 6, 816. doi:10.22331/q-2022-09-22-816. arXiv:2110.06942.CrossRefGoogle Scholar
Torlai, G., and Melko, R. G. (2017). Neural decoder for topological codes. Phys. Rev. Lett., 119, 030501. doi:10.1103/PhysRevLett.119.030501. arXiv:1610.04238.CrossRefGoogle ScholarPubMed
Tran, M. C., Guo, A. Y., Su, Y., et al. (2019). Locality and digital quantum simulation of power-law interactions. Phys. Rev. X, 9, 031006. doi:10.1103/PhysRevX.9.031006. arXiv:1808.05225.Google ScholarPubMed
Tran, M. C., Su, Y., Carney, D., and Taylor, J. M. (2021). Faster digital quantum simulation by symmetry protection. PRX Quantum, 2, 010323. doi:10.1103/PRXQuantum.2.010323. arXiv:2006.16248.CrossRefGoogle Scholar
Trenev, D., Ollitrault, P. J., Harwood, S. M., et al. (2023). Refining resource estimation for the quantum computation of vibrational molecular spectra through Trotter error analysis. arXiv:2311.03719.Google Scholar
Trottenberg, U., Oosterlee, C. W., and Schuller, A. (2000). Multigrid. Elsevier. [997] Troyer, M., and Wiese, U.-J. (2005). Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett., 94, 170201. doi:10.1103/PhysRevLett.94.170201. arXiv:cond-mat/0408370.Google Scholar
Tubman, N. M., Mejuto-Zaera, C., Epstein, J. M., et al. (2018). Postponing the orthogonality catastrophe: Efficient state preparation for electronic structure simulations on quantum devices. arXiv:1809.05523.Google Scholar
Tuckett, D. K., Bartlett, S. D., and Flammia, S. T. (2018). Ultrahigh error threshold for surface codes with biased noise. Phys. Rev. Lett., 120, 050505. doi:10.1103/PhysRevLett.120.050505. arXiv:1708.08474.CrossRefGoogle ScholarPubMed
Turro, F., Chistolini, T., Hashim, A., et al. (2023). Demonstration of a quantumclassical coprocessing protocol for simulating nuclear reactions. Phys. Rev. A, 108, 032417. doi:10.1103/PhysRevA.108.032417.CrossRefGoogle Scholar
Valahu, C. H., Olaya-Agudelo, V. C., MacDonell, R. J., et al. (2023). Direct observation of geometric-phase interference in dynamics around a conical intersection. Nat. Chem., 15, 1503–1508. doi:10.1038/s41557-023-01300-3. arXiv:2211.07320.CrossRefGoogle ScholarPubMed
van Vreumingen, D., Neukart, F., Von Dollen, D., et al. (2019). Quantumassisted finite-element design optimization. arXiv:1908.03947.Google Scholar
Varbanov, B. M., Serra-Peralta, M., Byfield, D., and Terhal, B. M. (2023). Neural network decoder for near-term surface-code experiments. arXiv:2307.03280.Google Scholar
Vasmer, M., and Kubica, A. (2022). Morphing quantum codes. PRX Quantum, 3, 030319. doi:10.1103/PRXQuantum.3.030319. arXiv:2112.01446.CrossRefGoogle Scholar
Vasmer, M., Browne, D. E., and Kubica, A. (2021). Cellular automaton decoders for topological quantum codes with noisy measurements and beyond. Sci. Rep., 11, 2027. doi:10.1038/s41598-021-81138-2. arXiv:2004.07247.CrossRefGoogle ScholarPubMed
Veis, L., and Pittner, J. (2014). Adiabatic state preparation study of methylene. J. Chem. Phys., 140, 214111. doi:10.1063/1.4880755. arXiv:1401.3186.CrossRefGoogle ScholarPubMed
Venkateswaran, R., and O’Donnell, R. (2020). Quantum approximate counting with nonadaptive Grover iterations. arXiv:2010.04370.Google Scholar
Verdon, G., Broughton, M., and Biamonte, J. (2017). A quantum algorithm to train neural networks using low-depth circuits. arXiv:1712.05304.Google Scholar
Verdon, G., Pye, J., and Broughton, M. (2018). A universal training algorithm for quantum deep learning. arXiv:1806.09729.Google Scholar
Verstraete, F., and Cirac, J. I. (2005). Mapping local Hamiltonians of fermions to local Hamiltonians of spins. J. Stat. Mech. Theory Exp., 2005, P09012. doi:10.1088/1742-5468/2005/09/P09012. arXiv:cond-mat/0508353.CrossRefGoogle Scholar
Wan, K. (2021). Exponentially faster implementations of Select(H) for fermionic Hamiltonians. Quantum, 5. doi:10.22331/q-2021-01-12-380. arXiv:2004.04170.CrossRefGoogle Scholar
Wan, K., and Kim, I. (2020). Fast digital methods for adiabatic state preparation. arXiv:2004.04164.Google Scholar
Wan, K., Berta, M., and Campbell, E. T. (2022). Randomized quantum algorithm for statistical phase estimation. Phys. Rev. Lett., 129, 030503. doi:10.1103/PhysRevLett.129.030503. arXiv:2110.12071.CrossRefGoogle ScholarPubMed
Wan, K. H., Dahlsten, O., Kristjánsson, H., et al. (2017). Quantum generalisation of feedforward neural networks. npj Quant. Inf., 3, 36. doi:10.1038/s41534-017-0032-4. arXiv:1612.01045.Google Scholar
Wang, C. S., Curtis, J. C., Lester, B. J., et al. (2020). Efficient multiphoton sampling of molecular vibronic spectra on a superconducting bosonic processor. Phys. Rev. X, 10, 021060. doi:10.1103/PhysRevX.10.021060. arXiv:1908.03598.Google Scholar
Wang, C. S., Frattini, N. E., Chapman, B. J., et al. (2023). Observation of wavepacket branching through an engineered conical intersection. Phys. Rev. X, 13, 011008. doi:10.1103/PhysRevX.13.011008. arXiv:2202.02364.Google Scholar
Wang, D. S., Fowler, A. G., and Hollenberg, L. C. L. (2011). Surface code quantum computing with error rates over 1%. Phys. Rev. A, 83, 020302. doi:10.1103/PhysRevA.83.020302.Google Scholar
Wang, J., Dong, Y., and Lin, L. (2022). On the energy landscape of symmetric quantum signal processing. Quantum, 6, 850. doi:10.22331/q-2022-11-03-850. arXiv:2110.04993.CrossRefGoogle Scholar
Wang, R., Kashinath, K., Mustafa, M., et al. (2020). Towards physics-informed deep learning for turbulent flow prediction. Pages 1457–1466 of: KDD. doi:10.1145/3394486.3403198. arXiv:1911.08655.CrossRefGoogle Scholar
Wang, S., Wang, Z., Cui, G., et al. (2021). Fast black-box quantum state preparation based on linear combination of unitaries. Quantum Inf. Process., 20, 1–14. doi:10.1007/s11128-021-03203-z. arXiv:2105.06230.CrossRefGoogle Scholar
Wang, S., Fontana, E., Cerezo, M., et al. (2021). Noise-induced barren plateaus in variational quantum algorithms. Nat. Commun., 12, 1–11. doi:10.1038/s41467-021-27045-6. arXiv:2007.14384.CrossRefGoogle ScholarPubMed
Wang, S., McArdle, S., and Berta, M. (2024). Qubit-efficient randomized quantum algorithms for linear algebra. PRX Quantum, 5, 020324. doi:10.1103/PRXQuantum.5.020324. arXiv:2302.01873.CrossRefGoogle Scholar
Wang, Z., Wei, S., Long, G.-L., and Hanzo, L. (2022). Variational quantum attacks threaten advanced encryption standard based symmetric cryptography. Sci. China Inf. Sci., 65, 200503. doi:10.1007/s11432-022-3511-5. arXiv:2205.03529.CrossRefGoogle Scholar
Wanner, G., and Hairer, E. (1993). Solving ordinary differential equations I. Vol. 375. Springer Berlin, Heidelberg. doi:10.1007/978-3-540-78862-1.Google Scholar
Wanner, G., and Hairer, E. (1996). Solving ordinary differential equations II. Vol. 375. Springer Berlin, Heidelberg. doi:10.1007/978-3-642-05221-7.Google Scholar
Washington, L. C. (2008). Elliptic curves: Number theory and cryptography, second edition. Chapman and Hall/CRC.CrossRefGoogle Scholar
Watkins, J., Wiebe, N., Roggero, A., and Lee, D. (2022). Timedependent Hamiltonian simulation using discrete clock constructions. arXiv:2203.11353.Google Scholar
Watson, J. D., Bringewatt, J., Shaw, A. F., et al. (2023). Quantum algorithms for simulating nuclear effective field theories. arXiv:2312.05344.Google Scholar
Watts, T. W., Otten, M., Necaise, J. T., et al. (2024). Fullerene-encapsulated cyclic ozone for the next generation of nano-sized propellants via quantum computation. arXiv:2408.13244.Google Scholar
Webber, M., Elfving, V., Weidt, S., and Hensinger, W. K. (2022). The impact of hardware specifications on reaching quantum advantage in the fault tolerant regime. AVS Quantum Sci., 4, 013801. doi:10.1116/5.0073075. arXiv:2108.12371.CrossRefGoogle Scholar
Wecker, D., Hastings, M. B., Wiebe, N., et al. (2015). Solving strongly correlated electron models on a quantum computer. Phys. Rev. A, 92, 062318. doi:10.1103/PhysRevA.92.062318. arXiv:1506.05135.CrossRefGoogle Scholar
Wecker, D., Hastings, M. B., and Troyer, M. (2016). Training a quantum optimizer. Phys. Rev. A, 94, 022309. doi:10.1103/PhysRevA.94.022309. arXiv:1605.05370.CrossRefGoogle Scholar
Wein, A. S., El Alaoui, A., and Moore, C. (2019). The Kikuchi hierarchy and tensor PCA. Pages 1446–1468 of: FOCS. doi:10.1109/FOCS.2019.000-2. arXiv:1904.03858.CrossRefGoogle Scholar
Whitfield, J. D., Biamonte, J., and Aspuru-Guzik, A. (2011). Simulation of electronic structure Hamiltonians using quantum computers. Mol. Phys., 109, 735–750. doi:10.1080/00268976.2011.552441. arXiv:1001.3855.CrossRefGoogle Scholar
Whitfield, J. D., Love, P. J., and Aspuru-Guzik, A. (2013). Computational complexity in electronic structure. Phys. Chem. Chem. Phys., 15, 397–411. doi:10.1039/C2CP42695A. arXiv:1208.3334.CrossRefGoogle ScholarPubMed
Whitlow, J., Jia, Z., Wang, Y., et al. (2023). Quantum simulation of conical intersections using trapped ions. Nat. Chem., 15, 1509–1514. doi:10.1038/s41557-023-01303-0. arXiv:2211.07319.CrossRefGoogle ScholarPubMed
Wiebe, N., and Wossnig, L. (2019). Generative training of quantum Boltzmann machines with hidden units. arXiv:1905.09902.Google Scholar
Wiebe, N., Berry, D., Høyer, P., and Sanders, B. C. (2010). Higher order decompositions of ordered operator exponentials. J. Phys. A, 43, 065203. doi:10.1088/1751-8113/43/6/065203. arXiv:0812.0562.CrossRefGoogle Scholar
Wiebe, N., Braun, D., and Lloyd, S. (2012). Quantum algorithm for data fitting. Phys. Rev. Lett., 109, 050505. doi:10.1103/PhysRevLett.109.050505. arXiv:1204.5242.CrossRefGoogle ScholarPubMed
Wiebe, N., Kapoor, A., and Svore, K. M. (2015). Quantum nearest-neighbor algorithms for machine learning. Quantum Inf. Comput., 15, 318–358. doi:10.26421/QIC15.3-4. arXiv:1401.2142.Google Scholar
Wiebe, N., Kapoor, A., and Svore, K. M. (2016). Quantum deep learning. Quantum Inf. Comput., 16, 541–587. doi:10.26421/QIC16.7-8-1. arXiv:1412.3489.Google Scholar
Wiebe, N., Bocharov, A., Smolensky, P., et al. (2019). Quantum language processing. arXiv:1902.05162.Google Scholar
Wierichs, D., Izaac, J., Wang, C., and Lin, C. Y.-Y. (2022). General parameter-shift rules for quantum gradients. Quantum. doi:10.22331/q-2022-03-30-677. arXiv:2107.12390.CrossRefGoogle Scholar
Wilde, M. M. (2017). Quantum information theory. 2nd edn. Cambridge University Press. doi:10.1017/9781316809976. arXiv:1106.1445.Google Scholar
Wilkinson, J. M., and Blundell, S. J. (2020). Information and decoherence in a muon-fluorine coupled system. Phys. Rev. Lett., 125, 087201. doi:10.1103/PhysRevLett.125.087201. arXiv:2003.02762.CrossRefGoogle Scholar
Williams, K. T., Yao, Y., Li, J., et al. (2020). Direct comparison of manybody methods for realistic electronic Hamiltonians. Phys. Rev. X, 10, 011041. doi:10.1103/PhysRevX.10.011041. arXiv:1910.00045.Google Scholar
Williams, R. (2005). A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci., 348, 357–365. doi:10.1016/j.tcs.2005.09.023. Earlier version in ICALP’04.CrossRefGoogle Scholar
Wocjan, P., and Temme, K. (2023). Szegedy walk unitaries for quantum maps. Commun. Math. Phys., 402, 3201–3231. doi:10.1007/s00220-023-04797-4. arXiv:2107.07365.CrossRefGoogle Scholar
Woerner, S., and Egger, D. J. (2019). Quantum risk analysis. npj Quant. Inf., 5, 15. doi:10.1038/s41534-019-0130-6. arXiv:1806.06893.Google Scholar
Wolf, M. M. (2012). Quantum channels & operations: Guided tour. https:// mediatum.ub.tum.de/download/1701036/1701036.pdf, accessed: 2023-09-30.Google Scholar
de Wolf, R. (2019). Quantum computing: Lecture notes. arXiv:1907.09415. [1052] Wright, M. (2005). The interior-point revolution in optimization: History, recent developments, and lasting consequences. Bull. AMS, 42, 39–56. doi:10.1090/S0273-0979-04-01040-7.Google Scholar
Wright, S. J. (1997). Primal-dual interior-point methods. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611971453.Google Scholar
Wu, D., Rossi, R., Vicentini, F., et al. (2023). Variational benchmarks for quantum many-body problems. arXiv:2302.04919.Google Scholar
Wu, H.-C., Wang, J., and Li, X. (2024). Quantum algorithms for nonlinear dynamics: Revisiting Carleman linearization with no dissipative conditions. arXiv:2405.12714.Google Scholar
Wu, L.-A., Byrd, M. S., and Lidar, D. A. (2002). Polynomial-time simulation of pairing models on a quantum computer. Phys. Rev. Lett., 89, 057904. doi:10.1103/PhysRevLett.89.057904. arXiv:quant-ph/0108110.Google ScholarPubMed
Wu, Y., Kolkowitz, S., Puri, S., and Thompson, J. D. (2022). Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun., 13, 4657. doi:10.1038/s41467-022-32094-6. arXiv:2201.03540.Google ScholarPubMed
Xu, F., Ma, X., Zhang, Q., et al. (2020). Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002. doi:10.1103/RevModPhys.92.025002. arXiv:1903.09051.CrossRefGoogle Scholar
Xu, S., Susskind, L., Su, Y., and Swingle, B. (2020). A sparse model of quantum holography. arXiv:2008.02303.Google Scholar
Xu, X., Sun, J., Endo, S., et al. (2021). Variational algorithms for linear algebra. Sci. Bull., 66, 2181–2188. doi:10.1016/j.scib.2021.06.023. arXiv:1909.03898.CrossRefGoogle ScholarPubMed
Xue, C., Xu, X.-F., Wu, Y.-C., and Guo, G.-P. (2022). Quantum algorithm for solving a quadratic nonlinear system of equations. Phys. Rev. A, 106, 032427. doi:10.1103/PhysRevA.106.032427.CrossRefGoogle Scholar
Yalovetzky, R., Minssen, P., Herman, D., and Pistoia, M. (2021). NISQ-HHL: Portfolio optimization for near-term quantum hardware. arXiv:2110.15958.Google Scholar
Yamada, S., Imamura, T., and Machida, M. (2005). 16.447 TFlops and 159billion-dimensional exact-diagonalization for trapped Fermion–Hubbard model on the Earth simulator. Pages 44–44 of: SC. doi:10.1109/SC.2005.1.CrossRefGoogle Scholar
Yamasaki, H., Subramanian, S., Sonoda, S., and Koashi, M. (2020). Learning with optimized random features: Exponential speedup by quantum machine learning without sparsity and low-rank assumptions. Pages 13674–13687 of: NeurIPS, vol. 33. arXiv:2004.10756.Google Scholar
Ying, L. (2022). Stable factorization for phase factors of quantum signal processing. Quantum, 6, 842. doi:10.22331/q-2022-10-20-842. arXiv:2202.02671.CrossRefGoogle Scholar
Yoder, T. J., and Kim, I. H. (2017). The surface code with a twist. Quantum, 1, 2. doi:10.22331/q-2017-04-25-2. arXiv:1612.04795.CrossRefGoogle Scholar
Yoder, T. J., Low, G. H., and Chuang, I. L. (2014). Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett., 113, 210501. doi:10.1103/PhysRevLett.113.210501. arXiv:1409.3305.CrossRefGoogle ScholarPubMed
Yoshioka, N., Sato, T., Nakagawa, Y. O., et al. (2022). Variational quantum simulation for periodic materials. Phys. Rev. Res., 4, 013052. doi:10.1103/PhysRevResearch.4.013052. arXiv:2008.09492.CrossRefGoogle Scholar
Yoshioka, N., Okubo, T., Suzuki, Y., et al. (2024). Hunting for quantumclassical crossover in condensed matter problems. npj Quant. Inf., 10, 45. doi:10.1038/s41534-024-00839-4. arXiv:2210.14109.Google Scholar
You, X., Chakrabarti, S., Chen, B., and Wu, X. (2023). Analyzing convergence in quantum neural networks: Deviations from neural tangent kernels. Pages 40199–40224 of: ICML, vol. 202. arXiv:2303.14844.Google Scholar
Young, A. P., Knysh, S., and Smelyanskiy, V. N. (2010). First-order phase transition in the quantum adiabatic algorithm. Phys. Rev. Lett., 104, 020502. doi:10.1103/PhysRevLett.104.020502. arXiv:0910.1378.CrossRefGoogle ScholarPubMed
Yu, H., Lu, D., Wu, Q., and Wei, T.-C. (2022). Geometric quantum adiabatic methods for quantum chemistry. Phys. Rev. Res., 4, 033045. doi:10.1103/PhysRevResearch.4.033045. arXiv:2112.15186.CrossRefGoogle Scholar
Yuan, P., and Zhang, S. (2023). Optimal (controlled) quantum state preparation and improved unitary synthesis by quantum circuits with any number of ancillary qubits. Quantum, 7, 956. doi:10.22331/q-2023-03-20-956. arXiv:2202.11302.CrossRefGoogle Scholar
Yuan, X., Endo, S., Zhao, Q., et al. (2019). Theory of variational quantum simulation. Quantum, 3, 191. doi:10.22331/q-2019-10-07-191. arXiv:1812.08767.CrossRefGoogle Scholar
Yuen, H. (2023). An improved sample complexity lower bound for (fidelity) quantum state tomography. Quantum, 7, 890. doi:10.22331/q-2023-01-03-890. arXiv:2206.11185.CrossRefGoogle Scholar
Yung, M.-H., and Aspuru-Guzik, A. (2012). A quantum-quantum Metropolis algorithm. Proc. Natl. Acad. Sci., 109, 754–759. doi:10.1073/pnas.1111758109. arXiv:1011.1468.CrossRefGoogle ScholarPubMed
Zaletel, M. P., and Pollmann, F. (2020). Isometric tensor network states in two dimensions. Phys. Rev. Lett., 124, 037201. doi:10.1103/PhysRevLett.124.037201. arXiv:1902.05100.CrossRefGoogle ScholarPubMed
Zeng, B., Cross, A., and Chuang, I. L. (2011). Transversality versus universality for additive quantum codes. IEEE Trans. Inf. Theory, 57, 6272–6284. doi:10.1109/tit.2011.2161917. arXiv:0706.1382.CrossRefGoogle Scholar
Zhang, C., and Li, T. (2021). Escape saddle points by a simple gradient-descent based algorithm. Pages 8545–8556 of: NeurIPS. arXiv:2111.14069.Google Scholar
Zhang, C., and Li, T. (2023). Quantum lower bounds for finding stationary points of nonconvex functions. Pages 41268–41299 of: ICML, vol. 202. arXiv:2212.03906.Google Scholar
Zhang, C., Leng, J., and Li, T. (2021). Quantum algorithms for escaping from saddle points. Quantum, 5, 529. doi:10.22331/q-2021-08-20-529. arXiv:2007.10253.CrossRefGoogle Scholar
Zhang, J., Feng, F., and Zhang, Q. (2021). Quantum method for finite element simulation of electromagnetic problems. Pages 120–123 of: IMS. doi:10.1109/IMS19712.2021.9574852.CrossRefGoogle Scholar
Zhang, K., Yu, K., and Korepin, V. (2022). Quantum search on noisy intermediate-scale quantum devices. Europhys. Lett., 140, 18002. doi:10.1209/0295-5075/ac90e6. arXiv:2202.00122.CrossRefGoogle Scholar
Zhang, X.-M., and Yuan, X. (2024). Circuit complexity of quantum access models for encoding classical data. npj Quant. Inf., 10, 42. doi:10.1038/s41534-024-00835-8. arXiv:2311.11365.Google Scholar
Zhang, X.-M., Li, T., and Yuan, X. (2022). Quantum state preparation with optimal circuit depth: Implementations and applications. Phys. Rev. Lett., 129, 230504. doi:10.1103/PhysRevLett.129.230504. arXiv:2201.11495.CrossRefGoogle ScholarPubMed
Zhao, Q., and Yuan, X. (2021). Exploiting anticommutation in Hamiltonian simulation. Quantum, 5, 534. doi:10.22331/q-2021-08-31-534. arXiv:2103.07988.CrossRefGoogle Scholar
Zhao, Q., Zhou, Y., Shaw, A. F., et al. (2022). Hamiltonian simulation with random inputs. Phys. Rev. Lett., 129, 270502. doi:10.1103/PhysRevLett.129.270502. arXiv:2111.04773.CrossRefGoogle ScholarPubMed
Zhao, Z., Fitzsimons, J. K., Osborne, M. A., et al. (2019). Quantum algorithms for training Gaussian processes. Phys. Rev. A, 100, 012304. doi:10.1103/PhysRevA.100.012304. arXiv:1803.10520.CrossRefGoogle Scholar
Zhao, Z., Fitzsimons, J. K., and Fitzsimons, J. F. (2019). Quantumassisted Gaussian process regression. Phys. Rev. A, 99, 052331. doi:10.1103/PhysRevA.99.052331. arXiv:1512.03929.CrossRefGoogle Scholar
Zhou, H., Zhao, C., Cain, M., et al. (2024). Algorithmic fault tolerance for fast quantum computing. arXiv:2406.17653.Google Scholar
Zhou, L., Basso, J., and Mei, S. (2024). Statistical estimation in the spiked tensor model via the quantum approximate optimization algorithm. arXiv:2402.19456.Google Scholar
Zobel, J. P., and González, L. (2021). The quest to simulate excitedstate dynamics of transition metal complexes. JACS Au, 1, 1116–1140. doi:10.1021/jacsau.1c00252. arXiv:2106.11912.CrossRefGoogle ScholarPubMed
Zoufal, C., Lucchi, A., and Woerner, S. (2021). Variational quantum Boltzmann machines. Quantum Mach. Intell., 3, 7. doi:10.1007/s42484-020-00033-7. arXiv:2006.06004.CrossRefGoogle Scholar
Žutić, I., Fabian, J., and Das Sarma, S. (2004). Spintronics: Fundamentals and applications. Rev. Mod. Phys., 76, 323–410. doi:10.1103/RevModPhys.76.323. arXiv:cond-mat/0405528.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×