Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T13:02:22.742Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

1 - Proof: Its Nature and Significance

from I - Proof and How it is Changing

Michael Detlefsen
Affiliation:
University of Notre Dame
Bonnie Gold
Affiliation:
Monmouth University
Roger A. Simons
Affiliation:
Rhode Island College
Get access

Summary

From the Editors

In our first chapter, Michael Detlefsen carefully examines the historical tension between inductive and deductive methods in mathematics, and relates it to the current discussion of the roles of each in the development of mathematics. He then turns to the question of whether, in fact, formalization of proofs actually increases either understanding or reliability of proofs. He also summarizes recent work on diagrammatic reasoning in mathematics, and the possible roles of visual experience in proofs.

We have chosen this as the first chapter in the book because we believe it is a fine, careful examination of these questions that virtually every reader of this volume will benefit from reading. For those of us who teach mathematics, an awareness of the fluctuations in the role of proof, and what is considered a proof, can be of use in the classroom. Such awareness can give us both a context in which to set our students' attempts at proof and a historical background we can impart to our students. An awareness of the importance of inductive methods in the development of mathematics is also worth transmitting to our students. In particular, making students aware of the current discussion in the mathematical community about the role of computers in mathematics can help them realize that mathematics is still a growing subject, even if most of the mathematics they study at the undergraduate level is centuries old.

Type
Chapter
Information
Proof and Other Dilemmas
Mathematics and Philosophy
, pp. 3 - 32
Publisher: Mathematical Association of America
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×