from II - Social Constructivist Views of Mathematics
From the Editors
Reuben Hersh is probably the best-known proponent of social constructivism as a philosophy of mathematics, which was implicit in his two books with Philip Davis and made explicit in his own What is Mathematics, Really? His viewpoint results in his reading widely, not only philosophers of mathematics, but also sociologists, anthropologists, linguists, and others who have something to say about how mathematics develops. He tends to expand the topics generally considered part of the philosophy of mathematics. In this chapter, he explores several topics from a social constructivist viewpoint: why the existence and nature of mathematical objects are important, why it is important to study mathematical practice from a scientific perspective, and the apparent timelessness of mathematical results.
Reuben Hersh is an Emeritus Professor of Mathematics and Statistics at the University of New Mexico (www.math.unm.edu/~rhersh/). His mathematical work has been primarily in partial differential equations and random evolutions. In addition to his research work, he has written a number of expository articles, including “Non-Cantorian set theory” (with Paul J. Cohen), Scientific American (1967), “Nonstandard analysis” (with M. Davis), Scientific American (1972), “How to classify differential polynomials,” American Mathematical Monthly (1973), and “Hilbert's tenth problem” (with M. Davis), Scientific American (1973) (which won the Chauvenet prize). His two books with Philip Davis, The Mathematical Experience (1980) and Descartes' Dream (1986), explore certain questions in the philosophy of mathematics, and the role of mathematics in society.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.