Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T02:01:28.023Z Has data issue: false hasContentIssue false

Chapter 10 - Chemolithotrophy

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Akerman, N. H., Price, R. E., Pichler, T. & Amend, J. P. (2011). Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system. Geobiology 9, 436445.CrossRefGoogle Scholar
Claassens, N. J., Sousa, D. Z., dos Santos, V. A. P. M., de Vos, W. M. & van der Oost, J. (2016). Harnessing the power of microbial autotrophy. Nature Reviews Microbiology 14, 692706.CrossRefGoogle ScholarPubMed
Gadd, G. M., Semple, K. T. & Lappin-Scott, H. M. (2005). Micro-organisms and Earth Systems: Advances in Geomicrobiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Maden, B. E. H. (1995). No soup for starters? Autotrophy and the origins of metabolism. Trends in Biochemical Sciences 20, 337341.CrossRefGoogle ScholarPubMed
Srinivasan, V., Morowitz, H. & Huber, H. (2012). What is an autotroph?Archives of Microbiology 194, 135140.CrossRefGoogle ScholarPubMed
Stevens, T. O. (1997). Lithoautotrophy in the subsurface. FEMS Microbiology Reviews 20, 327337.CrossRefGoogle Scholar
Wood, A. P., Aurikko, J. P. & Kelly, D. P. (2004). A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiology Reviews 28, 335352.CrossRefGoogle ScholarPubMed

Secondary Sources

Elbehti, A., Brasseur, G. & Lemesle-Meunier, D. (2000). First evidence for existence of an uphill electron transfer through the bc1 and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. Journal of Bacteriology 182, 36023606.CrossRefGoogle ScholarPubMed
Jin, Q. & Bethke, C. M. (2003). A new rate law describing microbial respiration. Applied and Environmental Microbiology 69, 23402348.CrossRefGoogle ScholarPubMed
Chen, J., Zheng, J., Li, Y., Hao, H.-h. & Chen, J.-m. (2015). Characteristics of a novel thermophilic heterotrophic bacterium, Anoxybacillus contaminans HA, for nitrification–aerobic denitrification. Applied Microbiology and Biotechnology 99, 1069510702.CrossRefGoogle ScholarPubMed
Costa, E., Perez, J. & Kreft, J. U. (2006). Why is metabolic labour divided in nitrification? Trends in Microbiology 14, 213219.CrossRefGoogle ScholarPubMed
Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P. H. & Wagner, M. (2015). Complete nitrification by Nitrospira bacteria. Nature 528, 504509.CrossRefGoogle ScholarPubMed
Kerou, M., Offre, P., Valledor, L., Abby, S. S., Melcher, M., Nagler, M., Weckwerth, W. & Schleper, C. (2016). Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences of the USA 113, 79377946.CrossRefGoogle ScholarPubMed
Kim, J.-G., Park, S.-J., Sinninghe Damsté, J. S., Schouten, S., Rijpstra, W. I. C., Jung, M.-Y., Kim, S.-J., Gwak, J.-H., Hong, H., Si, O.-J., Lee, S., Madsen, E. L. & Rhee, S.-K. (2016). Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proceedings of the National Academy of Sciences of the USA 113, 78887893.CrossRefGoogle ScholarPubMed
Koch, H., Galushko, A., Albertsen, M., Schintlmeister, A., Gruber-Dorninger, C., Lücker, S., Pelletier, E., Le Paslier, D., Spieck, E., Richter, A., Nielsen, P. H., Wagner, M. & Daims, H. (2014). Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345, 10521054.CrossRefGoogle ScholarPubMed
Nicol, G. W. & Schleper, C. (2006). Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends in Microbiology 14, 207212.CrossRefGoogle ScholarPubMed
Prosser, J. I. & Nicol, G. W. (2012). Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends in Microbiology 20, 523531.CrossRefGoogle ScholarPubMed
van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., Nielsen, P. H., Op den Camp, H. J. M., Kartal, B., Jetten, M. S. M. & Lücker, S. (2015). Complete nitrification by a single microorganism. Nature 528, 555559.CrossRefGoogle ScholarPubMed
Ye, R. W. & Thomas, S. M. (2001). Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology 4, 307312.CrossRefGoogle ScholarPubMed
Dopson, M. & Johnson, D. B. (2012). Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environmental Microbiology 14, 26202631.CrossRefGoogle Scholar
Friedrich, C. G. (1998). Physiology and genetics of sulfur-oxidizing bacteria. Advances in Microbial Physiology, 39, 235289.CrossRefGoogle ScholarPubMed
Ghosh, W. & Dam, B. (2009). Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiology Reviews 33, 9991043.CrossRefGoogle ScholarPubMed
Han, Y. & Perner, M. (2016). Sulfide consumption in Sulfurimonas denitrificans and heterologous expression of its three sulfide-quinone reductase homologs. Journal of Bacteriology 198, 12601267.CrossRefGoogle ScholarPubMed
Kelly, D. P. (1999). Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways. Archives of Microbiology 171, 219229.CrossRefGoogle Scholar
Liu, Y., Beer, L. L. & Whitman, W. B. (2012). Sulfur metabolism in archaea reveals novel processes. Environmental Microbiology 14, 26322644.CrossRefGoogle ScholarPubMed
Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N. & Nielsen, L. P. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218221.CrossRefGoogle ScholarPubMed
Rother, D., Ringk, J. & Friedrich, C. G. (2008). Sulfur oxidation of Paracoccus pantotrophus: the sulfur-binding protein SoxYZ is the target of the periplasmic thiol-disulfide oxidoreductase SoxS. Microbiology 154, 1980 –1988.CrossRefGoogle ScholarPubMed
Salman, V., Bailey, J. & Teske, A. (2013). Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie van Leeuwenhoek 104, 169186.CrossRefGoogle ScholarPubMed
Amouric, A., Brochier-Armanet, C., Johnson, D. B., Bonnefoy, V. & Hallberg, K. B. (2011). Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology 157, 111122.CrossRefGoogle ScholarPubMed
Bird, L. J., Bonnefoy, V. & Newman, D. K. (2011). Bioenergetic challenges of microbial iron metabolisms. Trends in Microbiology 19, 330340.CrossRefGoogle ScholarPubMed
Bonnefoy, V. & Holmes, D. S. (2012). Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environmental Microbiology 14, 15971611.CrossRefGoogle ScholarPubMed
Castelle, C., Guiral, M., Malarte, G., Ledgham, F., Leroy, G., Brugna, M. & Giudici-Orticoni, M.-T. (2008). A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. Journal of Biological Chemistry 283, 2580325811.CrossRefGoogle ScholarPubMed
Emerson, D., Fleming, E. J. & McBeth, J. M. (2010). Iron-oxidizing bacteria: an environmental and genomic perspective. Annual Review of Microbiology 64, 561583.CrossRefGoogle ScholarPubMed
Hedrich, S., Schlömann, M. & Johnson, D. B. (2011). The iron-oxidizing proteobacteria. Microbiology 157, 15511564.CrossRefGoogle ScholarPubMed
Summers, Z. M., Gralnick, J. A. & Bond, D. R. (2013). Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. mBio 4, 00420–12.CrossRefGoogle ScholarPubMed
Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. (2013). Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proceedings of the National Academy of Sciences of the USA 110, 330335.CrossRefGoogle ScholarPubMed
Fritsch, J., Lenz, O. & Friedrich, B. (2013). Structure, function and biosynthesis of O2-tolerant hydrogenases. Nature Reviews Microbiology 11, 106114.CrossRefGoogle ScholarPubMed
Greening, C., Constant, P., Hards, K., Morales, S. E., Oakeshott, J. G., Russell, R. J., Taylor, M. C., Berney, M., Conrad, R. & Cook, G. M. (2015). Atmospheric hydrogen scavenging: from enzymes to ecosystems. Applied and Environmental Microbiology 81, 11901199.CrossRefGoogle ScholarPubMed
Kim, Y. & Park, S. (2012). Microbiology and genetics of CO utilization in mycobacteria. Antonie van Leeuwenhoek 101, 685700.CrossRefGoogle ScholarPubMed
Koch, H., Galushko, A., Albertsen, M., Schintlmeister, A., Gruber-Dorninger, C., Lücker, S., Pelletier, E., Le Paslier, D., Spieck, E., Richter, A., Nielsen, P. H., Wagner, M. & Daims, H. (2014). Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345, 10521054.CrossRefGoogle ScholarPubMed
Kuhns, L. G., Benoit, S. L., Bayyareddy, K., Johnson, D., Orlando, R., Evans, A. L., Waldrop, G. L. & Maier, R. J. (2016). Carbon fixation driven by molecular hydrogen results in chemolithoautotrophically enhanced growth of Helicobacter pylori. Journal of Bacteriology 198, 14231428.CrossRefGoogle ScholarPubMed
Oh, J.-I., Park, S.-J., Shin, S.-J., Ko, I.-J., Han, S. J., Park, S. W., Song, T. & Kim, Y. M. (2010). Identification of trans- and cis-control elements involved in regulation of the carbon monoxide dehydrogenase genes in Mycobacterium sp. strain JC1 DSM 3803. Journal of Bacteriology 192, 39253933.CrossRefGoogle ScholarPubMed
Parkin, A. & Sargent, F. (2012). The hows and whys of aerobic H2 metabolism. Current Opinion in Chemical Biology 16, 2634.CrossRefGoogle ScholarPubMed
Vignais, P. M. & Billoud, B. (2007). Occurrence, classification, and biological function of hydrogenases:  an overview. Chemical Reviews 107, 42064272.CrossRefGoogle ScholarPubMed
Anderson, C. R., Johnson, H. A., Caputo, N., Davis, R. E., Torpey, J. W. & Tebo, B. M. (2009). Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21. Applied and Environmental Microbiology 75, 41304138.CrossRefGoogle ScholarPubMed
Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609643.CrossRefGoogle ScholarPubMed
Heinrich-Salmeron, A., Cordi, A., Brochier-Armanet, C., Halter, D., Pagnout, C., Abbaszadeh-fard, E., Montaut, D., Seby, F., Bertin, P. N., Bauda, P. & Arsene-Ploetze, F. (2011). Unsuspected diversity of arsenite-oxidizing bacteria as revealed by widespread distribution of the aoxB gene in prokaryotes. Applied and Environmental Microbiology 77, 46854692.CrossRefGoogle ScholarPubMed
Johnson, H. & Tebo, B. (2008). In vitro studies indicate a quinone is involved in bacterial Mn(II) oxidation. Archives of Microbiology 189, 5969.CrossRefGoogle ScholarPubMed
Li, J., Wang, Q., Oremland, R. S., Kulp, T. R., Rensing, C. & Wang, G. (2016). Microbial antimony biogeochemistry: enzymes, regulation, and related metabolic pathways. Applied and Environmental Microbiology 82, 54825495.CrossRefGoogle ScholarPubMed
Wang, Q., Warelow, T. P., Kang, Y.-S., Romano, C., Osborne, T. H., Lehr, C. R., Bothner, B., McDermott, T. R., Santini, J. M. & Wang, G. (2015). Arsenite oxidase also functions as an antimonite oxidase. Applied and Environmental Microbiology 81, 19591965.CrossRefGoogle ScholarPubMed
Zargar, K., Conrad, A., Bernick, D. L., Lowe, T. M., Stolc, V., Hoeft, S., Oremland, R. S., Stolz, J. & Saltikov, C. W. (2012). ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environmental Microbiology 14, 16351645.CrossRefGoogle ScholarPubMed
Berg, I. A. (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Applied and Environmental Microbiology 77, 1925 –1936.CrossRefGoogle ScholarPubMed
Huegler, M., Huber, H., Stetter, K. O. & Fuchs, G. (2003). Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Archives of Microbiology 179, 160173.CrossRefGoogle Scholar
Jennings, R. d. M., Moran, J. J., Jay, Z. J., Beam, J. P., Whitmore, L. M., Kozubal, M. A., Kreuzer, H. W. & Inskeep, W. P. (2017). Integration of metagenomic and stable carbon isotope evidence reveals the extent and mechanisms of carbon dioxide fixation in high-temperature microbial communities. Frontiers in Microbiology 8, 88.CrossRefGoogle ScholarPubMed
Montoya, L., Celis, L., Razo-Flores, E. & Alpuche-Solís, Á. (2012). Distribution of CO2 fixation and acetate mineralization pathways in microorganisms from extremophilic anaerobic biotopes. Extremophiles 16, 805817.CrossRefGoogle ScholarPubMed
Cannon, G. C., Baker, S. H., Soyer, F., Johnson, D. R., Bradburne, C. E., Mehlman, J. L., Davies, P. S., Jiang, Q. L., Heinhorst, S. & Shively, J. M. (2003). Organization of carboxysome genes in the thiobacilli. Current Microbiology 46, 115119.CrossRefGoogle ScholarPubMed
Dangel, A. W. & Tabita, F. R. (2015). CbbR, the master regulator for microbial carbon dioxide fixation. Journal of Bacteriology 197, 34883498.CrossRefGoogle ScholarPubMed
Finn, M. W. & Tabita, F. R. (2004). Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic Archaea. Journal of Bacteriology 186, 63606366.CrossRefGoogle ScholarPubMed
Savage, D. F., Afonso, B., Chen, A. H. & Silver, P. A. (2010). Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327, 12581261.CrossRefGoogle ScholarPubMed
Tabita, F. R., Hanson, T. E., Li, H., Satagopan, S., Singh, J. & Chan, S. (2007). Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiology and Molecular Biology Reviews 71, 576599.CrossRefGoogle ScholarPubMed
Witte, B., John, D., Wawrik, B., Paul, J. H., Dayan, D. & Tabita, F. R. (2010). Functional prokaryotic RubisCO from an oceanic metagenomic library. Applied and Environmental Microbiology 76, 29973003.CrossRefGoogle ScholarPubMed
Hugler, M., Huber, H., Molyneaux, S. J., Vetriani, C. & Sievert, S. M. (2007). Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae : evidence for two ways of citrate cleavage. Environmental Microbiology 9, 8192.CrossRefGoogle ScholarPubMed
Hugler, M., Wirsen, C. O., Fuchs, G., Taylor, C. D. & Sievert, S. M. (2005). Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the ε-subdivision of Proteobacteria. Journal of Bacteriology 187, 30203027.CrossRefGoogle ScholarPubMed
Miura, A., Kameya, M., Arai, H., Ishii, M. & Igarashi, Y. (2008). A soluble NADH-dependent fumarate reductase in the reductive tricarboxylic acid cycle of Hydrogenobacter thermophilus TK-6. Journal of Bacteriology 190, 71707177.CrossRefGoogle ScholarPubMed
Liew, F., Henstra, A. M., Winzer, K., Köpke, M., Simpson, S. D. & Minton, N. P. (2016). Insights into CO2 fixation pathway of Clostridium autoethanogenum by targeted mutagenesis. mBio 7, 00427–16.CrossRefGoogle ScholarPubMed
Russell, M. J. & Martin, W. (2004). The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences 29, 358363.CrossRefGoogle ScholarPubMed
Friedmann, S., Alber, B. E. & Fuchs, G. (2006). Properties of succinyl-coenzyme A:D-citramalate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. Journal of Bacteriology 188, 64606468.CrossRefGoogle ScholarPubMed
Herter, S., Fuchs, G., Bacher, A. & Eisenreich, W. (2002). A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. Journal of Biological Chemistry 277, 2027720283.CrossRefGoogle ScholarPubMed
Zarzycki, J., Brecht, V., Mueller, M. & Fuchs, G. (2009). Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proceedings of the National Academy of Sciences of the USA 106, 2131721322.CrossRefGoogle ScholarPubMed
Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. (2008). A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318, 17321733.Google Scholar
Berg, I. A., Ramos-Vera, W. H., Petri, A., Huber, H. & Fuchs, G. (2010). Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota. Microbiology 156, 256269.CrossRefGoogle ScholarPubMed
Jennings, R. d. M., Moran, J. J., Jay, Z. J., Beam, J. P., Whitmore, L. M., Kozubal, M. A., Kreuzer, H. W. & Inskeep, W. P. (2017). Integration of metagenomic and stable carbon isotope evidence reveals the extent and mechanisms of carbon dioxide fixation in high-temperature microbial communities. Frontiers in Microbiology 8, 88.CrossRefGoogle ScholarPubMed
Ramos-Vera, W. H., Labonte, V., Weiss, M., Pauly, J. & Fuchs, G. (2010). Regulation of autotrophic CO2 fixation in the archaeon Thermoproteus neutrophilus. Journal of Bacteriology 192, 53295340.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Chemolithotrophy
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Prokaryotic Metabolism and Physiology
  • Online publication: 04 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761625.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Chemolithotrophy
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Prokaryotic Metabolism and Physiology
  • Online publication: 04 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761625.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Chemolithotrophy
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Prokaryotic Metabolism and Physiology
  • Online publication: 04 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761625.010
Available formats
×