Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T02:02:22.708Z Has data issue: false hasContentIssue false

Chapter 6 - Biosynthesis and growth

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Bothe, H., Schmitz, O., Yates, M. G. & Newton, W. E. (2010). Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiology and Molecular Biology Reviews 74, 529551.CrossRefGoogle ScholarPubMed
Boyd, E. S, Costas, A. M. G., Hamilton, T. L., Mus, F. & Peters, J. W. (2015). Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism. Journal of Bacteriology 197, 16901699.CrossRefGoogle ScholarPubMed
Houlton, B. Z., Wang, Y. P., Vitousek, P. M. & Field, C. B. (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327330.CrossRefGoogle ScholarPubMed
Hu, Y. & Ribbe, M. W. (2016). Biosynthesis of the metalloclusters of nitrogenases. Annual Review of Biochemistry 85, 455483.CrossRefGoogle ScholarPubMed
McRose, D. L., Zhang, X., Kraepiel, A. M. L. & Morel, F. M. M. (2017). Diversity and activity of alternative nitrogenases in sequenced genomes and coastal environments. Frontiers in Microbiology 8, 267.CrossRefGoogle ScholarPubMed
Omairi-Nasser, A., Mariscal, V., Austin, J. R. & Haselkorn, R. (2015). Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Proceedings of the National Academy of Sciences of the USA 112, E4458E4464.CrossRefGoogle ScholarPubMed
Prell, J. & Poole, P. (2006). Metabolic changes of rhizobia in legume nodules. Trends in Microbiology 14, 161168.CrossRefGoogle ScholarPubMed
Seefeldt, L. C., Hoffman, B. M. & Dean, D. R. (2012). Electron transfer in nitrogenase catalysis. Current Opinion in Chemical Biology 16, 1925.CrossRefGoogle ScholarPubMed
Ward, B. B. & Jensen, M. M. (2014). The microbial nitrogen cycle. Frontiers in Microbiology 5, 00553.CrossRefGoogle ScholarPubMed
Zhang, C. C., Laurent, S., Sakr, S., Peng, L. & Bedu, S. (2006). Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Molecular Microbiology 59, 367375.CrossRefGoogle ScholarPubMed

Secondary Sources

Acera, F., Carmona, M. I., Castillo, F., Quesada, A. & Blasco, R. (2017). A cyanide-induced 3-cyanoalanine nitrilase in the cyanide-assimilating bacterium Pseudomonas pseudoalcaligenes strain CECT 5344. Applied and Environmental Microbiology 83, e0008917.CrossRefGoogle ScholarPubMed
Bender, R. A. (2010). A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae. Journal of Bacteriology 192, 48014811.CrossRefGoogle Scholar
Lewis, T. A., Glassing, A., Harper, J. & Franklin, M. J. (2013). Role for ferredoxin: NAD(P)H oxidoreductase (FprA) in sulfate assimilation and siderophore biosynthesis in pseudomonads. Journal of Bacteriology 195, 38763887.CrossRefGoogle ScholarPubMed
Liu, Y., Beer, L. L. & Whitman, W. B. (2012). Sulfur metabolism in archaea reveals novel processes. Environmental Microbiology 14, 26322644.CrossRefGoogle ScholarPubMed
Lochowska, A., Iwanicka-Nowicka, R., Zielak, A., Modelewska, A., Thomas, M. S. & Hryniewicz, M. M. (2011). Regulation of sulfur assimilation pathways in Burkholderia cenocepacia through control of genes by the SsuR transcription factor. Journal of Bacteriology 193, 18431853.CrossRefGoogle ScholarPubMed
Reitzer, L. (2003). Nitrogen assimilation and global regulation in Escherichia coli. Annual Review of Microbiology 57, 155176.CrossRefGoogle ScholarPubMed
Tripp, H. J., Kitner, J. B., Schwalbach, M. S., Dacey, J. W. H., Wilhelm, L. J. & Giovannoni, S. J. (2008). SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741744.CrossRefGoogle ScholarPubMed
van Heeswijk, W. C., Westerhoff, H. V. & Boogerd, F. C. (2013). Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiology and Molecular Biology Reviews 77, 628695.CrossRefGoogle ScholarPubMed
Ye, R. W. & Thomas, S. M. (2001). Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology 4, 307312.CrossRefGoogle ScholarPubMed
Fazius, F., Zaehle, C. & Brock, M. (2013). Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam antibiotics production. Applied Microbiology and Biotechnology 97, 37633772.CrossRefGoogle ScholarPubMed
Ferla, M. P. & Patrick, W. M. (2014). Bacterial methionine biosynthesis. Microbiology 160, 15711584.CrossRefGoogle ScholarPubMed
Hove-Jensen, B., Andersen, K. R., Kilstrup, M., Martinussen, J., Switzer, R. L. & Willemoës, M. (2017). Phosphoribosyl diphosphate (PRPP): biosynthesis, enzymology, utilization, and metabolic significance. Microbiology and Molecular Biology Reviews 81, e0004016.CrossRefGoogle ScholarPubMed
Itoh, Y., Bröcker, M. J., Sekine, S.-i., Hammond, G., Suetsugu, S., Söll, D. & Yokoyama, S. (2013). Decameric SelA•tRNASec ring structure reveals mechanism of bacterial selenocysteine formation. Science 340, 7578.CrossRefGoogle ScholarPubMed
Krzycki, J. A. (2013). The path of lysine to pyrrolysine. Current Opinion in Chemical Biology 17, 619625.CrossRefGoogle ScholarPubMed
Kulis-Horn, R. K., Persicke, M. & Kalinowski, J. (2014). Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microbial Biotechnology 7, 525.CrossRefGoogle ScholarPubMed
Mir, R., Jallu, S. & Singh, T. P. (2015). The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes. Critical Reviews in Microbiology 41, 172189.CrossRefGoogle ScholarPubMed
Radkov, A. & Moe, L. (2014). Bacterial synthesis of d-amino acids. Applied Microbiology and Biotechnology 98, 53635374.CrossRefGoogle ScholarPubMed
Risso, C., Van Dien, S. J., Orloff, A., Lovley, D. R. & Coppi, M. V. (2008). Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens. Journal of Bacteriology 190, 22662274.CrossRefGoogle ScholarPubMed
White, R. H. (2004). l-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43, 76187627.CrossRefGoogle Scholar
Buckel, W. & Golding, B. T. (2006). Radical enzymes in anaerobes. Annual Review of Microbiology 60, 2749.CrossRefGoogle ScholarPubMed
Martin, J. E. & Imlay, J. A. (2011). The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation. Molecular Microbiology 80, 319334.CrossRefGoogle ScholarPubMed
West, T. P. (2014). Pyrimidine nucleotide synthesis in Pseudomonas nitroreducens and the regulatory role of pyrimidines. Microbiological Research 169, 954958.CrossRefGoogle ScholarPubMed
Behrouzian, B. & Buist, P. H. (2002). Fatty acid desaturation: variations on an oxidative theme. Current Opinion in Chemical Biology 6, 577582.CrossRefGoogle Scholar
Broussard, T. C., Price, A. E., Laborde, S. M. & Waldrop, G. L. (2013). Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase. Biochemistry 52, 33463357.CrossRefGoogle ScholarPubMed
Chang, W.-c., Song, H., Liu, H.-w. & Liu, P. (2013). Current developments in isoprenoid precursor biosynthesis and regulation. Current Opinion in Chemical Biology 17, 571579.CrossRefGoogle ScholarPubMed
Köcher, S., Breitenbach, J., Müller, V. & Sandmann, G. (2009). Structure, function and biosynthesis of carotenoids in the moderately halophilic bacterium Halobacillus halophilus. Archives of Microbiology 191, 95104.CrossRefGoogle ScholarPubMed
Pini, C., Godoy, P., Bernal, P., Ramos, J.-L. & Segura, A. (2011). Regulation of the cyclopropane synthase cfaB gene in Pseudomonas putida KT2440. FEMS Microbiology Letters 32 1, 107114.CrossRefGoogle Scholar
Schujman, G. E. & de Mendoza, D. (2008). Regulation of type II fatty acid synthase in Gram-positive bacteria. Current Opinion in Microbiology 11, 148152.CrossRefGoogle ScholarPubMed
Schweizer, H. & Choi, K.-H. (2011). Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production. Archives of Microbiology 193, 227234.CrossRefGoogle ScholarPubMed
Villanueva, L., Damste, J. S. S. & Schouten, S. (2014). A re-evaluation of the archaeal membrane lipid biosynthetic pathway. Nature Reviews Microbiology 12, 438448.CrossRefGoogle ScholarPubMed
Zhang, Y. M. & Rock, C. O. (2008). Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology 6, 222233.CrossRefGoogle ScholarPubMed
Dailey, H. A., Dailey, T. A., Gerdes, S., Jahn, D., Jahn, M., O’Brian, M. R. & Warren, M. J. (2017). Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiology and Molecular Biology Reviews 81, e00048–16.CrossRefGoogle ScholarPubMed
Fontecave, M., Atta, M. & Mulliez, E. (2004). S-adenosylmethionine: nothing goes to waste. Trends in Biochemical Sciences 29, 243249.CrossRefGoogle ScholarPubMed
Kranz, R. G., Richard-Fogal, C., Taylor, J.-S. & Frawley, E. R. (2009). Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiology and Molecular Biology Reviews 73, 510528.CrossRefGoogle ScholarPubMed
Roessner, C. A. & Scott, A. I. (2006). Fine-tuning our knowledge of the anaerobic route to cobalamin (vitamin B12). Journal of Bacteriology 188, 73317334.CrossRefGoogle ScholarPubMed
Sanders, C., Turkarslan, S., Lee, D.-W. & Daldal, F. (2010). Cytochrome c biogenesis: the Ccm system. Trends in Microbiology 18, 266274.CrossRefGoogle ScholarPubMed
D’Elia, M. A., Henderson, J. A., Beveridge, T. J., Heinrichs, D. E. & Brown, E. D. (2009). The N-acetylmannosamine transferase catalyzes the first committed step of teichoic acid assembly in Bacillus subtilis and Staphylococcus aureus. Journal of Bacteriology 191: 40304034.CrossRefGoogle ScholarPubMed
Garufi, G., Hendrickx, A. P., Beeri, K., Kern, J. W., Sharma, A., Richter, S. G., Schneewind, O. & Missiakas, D. (2012). Synthesis of lipoteichoic acids in Bacillus anthracis. Journal of Bacteriology 194: 43124321.CrossRefGoogle ScholarPubMed
Guan, Z., Naparstek, S., Kaminski, L., Konrad, Z. & Eichler, J. (2010). Distinct glycan-charged phosphodolichol carriers are required for the assembly of the pentasaccharide N-linked to the Haloferax volcanii S-layer glycoprotein. Molecular Microbiology 78, 12941303.CrossRefGoogle Scholar
Pasquina, L. W., Santa Maria, J. P. & Walker, S. (2013). Teichoic acid biosynthesis as an antibiotic target. Current Opinion in Microbiology 16: 531537.CrossRefGoogle ScholarPubMed
Perez, C., Gerber, S., Boilevin, J., Bucher, M., Darbre, T., Aebi, M., Reymond, J.-L. & Locher, K. P. (2015). Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524, 433438.CrossRefGoogle ScholarPubMed
Sham, L.-T., Butler, E. K., Lebar, M. D., Kahne, D., Bernhardt, T. G. & Ruiz, N. (2014). MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220222.CrossRefGoogle ScholarPubMed
Albers, S.-V. & Meyer, B. H. (2011). The archaeal cell envelope. Nature Reviews Microbiology 9, 414426.CrossRefGoogle ScholarPubMed
Cava, F., Kuru, E., Brun, Y. V. & de Pedro, M. A. (2013). Modes of cell wall growth differentiation in rod-shaped bacteria. Current Opinion in Microbiology 16, 731737.CrossRefGoogle ScholarPubMed
Duong, A., Capstick, D. S., Di Berardo, C., Findlay, K. C., Hesketh, A., Hong, H.-J. & Elliot, M. A. (2012). Aerial development in Streptomyces coelicolor requires sortase activity. Molecular Microbiology 83, 9921005.CrossRefGoogle ScholarPubMed
Egan, A. J. F., Cleverley, R. M., Peters, K., Lewis, R. J. & Vollmer, W. (2017). Regulation of bacterial cell wall growth. FEBS Journal 284, 851867.CrossRefGoogle ScholarPubMed
Fagan, R. P. & Fairweather, N. F. (2014). Biogenesis and functions of bacterial S-layers. Nature Reviews Microbiology 12, 211222.CrossRefGoogle ScholarPubMed
Frirdich, E. & Gaynor, E. C. (2013). Peptidoglycan hydrolases, bacterial shape, and pathogenesis. Current Opinion in Microbiology 16, 767778.CrossRefGoogle ScholarPubMed
Hanson, B. R. & Neely, M. N. (2012). Coordinate regulation of Gram-positive cell surface components. Current Opinion in Microbiology 15, 204210.CrossRefGoogle ScholarPubMed
Lee, T. K. & Huang, K. C. (2013). The role of hydrolases in bacterial cell-wall growth. Current Opinion in Microbiology 16, 760766.CrossRefGoogle ScholarPubMed
Sobhanifar, S., King, D. T. & Strynadka, N. C. J. (2013). Fortifying the wall: synthesis, regulation and degradation of bacterial peptidoglycan. Current Opinion in Structural Biology 23, 695703.CrossRefGoogle ScholarPubMed
Spirig, T., Weiner, E. M. & Clubb, R. T. (2011). Sortase enzymes in Gram-positive bacteria. Molecular Microbiology 82, 10441059.CrossRefGoogle ScholarPubMed
Wang, Y.-T., Missiakas, D. & Schneewind, O. (2014). GneZ, a UDP-GlcNAc 2-epimerase, is required for S-layer assembly and vegetative growth of Bacillus anthracis. Journal of Bacteriology 196, 29692978.CrossRefGoogle ScholarPubMed
Wirth, R., Bellack, A., Bertl, M., Bilek, Y., Heimerl, T., Herzog, B., Leisner, M., Probst, A., Rachel, R., Sarbu, C., Schopf, S. & Wanner, G. (2011). The mode of cell wall growth in selected archaea is similar to the general mode of cell wall growth in bacteria as revealed by fluorescent dye analysis. Applied and Environmental Microbiology 77, 15561562.CrossRefGoogle Scholar
Wu, C., Huang, I. H., Chang, C., Reardon-Robinson, M. E., Das, A. & Ton-That, H. (2014). Lethality of sortase depletion in Actinomyces oris caused by excessive membrane accumulation of a surface glycoprotein. Molecular Microbiology 94, 12271241.CrossRefGoogle ScholarPubMed
Cuthbertson, L., Mainprize, I. L., Naismith, J. H. & Whitfield, C. (2009). Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in Gram-negative bacteria. Microbiology and Molecular Biology Reviews 73, 155177.CrossRefGoogle ScholarPubMed
Dong, H., Xiang, Q., Gu, Y., Wang, Z., Paterson, N. G., Stansfeld, P. J., He, C., Zhang, Y., Wang, W. & Dong, C. (2014). Structural basis for outer membrane lipopolysaccharide insertion. Nature 511, 5256.CrossRefGoogle ScholarPubMed
Knowles, T. J., Scott-Tucker, A., Overduin, M. & Henderson, I. R. (2009). Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nature Reviews Microbiology 7, 206214.CrossRefGoogle Scholar
Rigel, N. W. & Silhavy, T. J. (2012). Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Current Opinion in Microbiology 15, 189193.CrossRefGoogle ScholarPubMed
Ruiz, N., Kahne, D. & Silhavy, T. J. (2009). Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nature Reviews Microbiology 7, 677683.CrossRefGoogle Scholar
Tommassen, J. (2010). Assembly of outer-membrane proteins in bacteria and mitochondria. Microbiology 156, 25872596.CrossRefGoogle ScholarPubMed
Beattie, T. R. & Reyes-Lamothe, R. (2015). A replisome’s journey through the bacterial chromosome. Frontiers in Microbiology 6, 562.CrossRefGoogle ScholarPubMed
Denamur, E. & Matic, I. (2006). Evolution of mutation rates in bacteria. Molecular Microbiology 60, 820827.CrossRefGoogle ScholarPubMed
Gao, F. (2015). Bacteria may have multiple replication origins. Frontiers in Microbiology 6, 324.CrossRefGoogle ScholarPubMed
Hayes, F. & Barilla, D. (2006). The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nature Reviews Microbiology 4, 133143.CrossRefGoogle ScholarPubMed
Kelman, L. M. & Kelman, Z. (2004). Multiple origins of replication in archaea. Trends in Microbiology 12, 399401.CrossRefGoogle ScholarPubMed
Kelman, L. M. & Kelman, Z. (2014). Archaeal DNA replication. Annual Review of Genetics 48, 7197.CrossRefGoogle ScholarPubMed
Kuzminov, A. (2013). The chromosome cycle of prokaryotes. Molecular Microbiology 90, 214227.CrossRefGoogle ScholarPubMed
McHenry, C. S. (2011). DNA replicases from a bacterial perspective. Annual Review of Biochemistry 80, 403436.CrossRefGoogle ScholarPubMed
Michel, B. & Sandler, S. J. (2017). Replication restart in bacteria. Journal of Bacteriology 199, e0010217.CrossRefGoogle ScholarPubMed
Reyes-Lamothe, , Nicolas, R.E., & Sherratt, D. J. (2012). Chromosome replication and segregation in bacteria. Annual Review of Genetics 46, 121143.CrossRefGoogle ScholarPubMed
Robinson, A. O. & van Oijen, A. M. (2013). Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. Nature Reviews Microbiology 11, 303315.CrossRefGoogle ScholarPubMed
Wolański, M., Jakimowicz, D. & Zakrzewska-Czerwińska, J. (2014). Fifty years after the replicon hypothesis: cell-specific master regulators as new players in chromosome replication control. Journal of Bacteriology 196, 29012911.CrossRefGoogle ScholarPubMed
Borukhov, S. & Severinov, K. (2002). Role of the RNA polymerase sigma subunit in transcription initiation. Research in Microbiology 153, 557562.CrossRefGoogle ScholarPubMed
Grohmann, D. & Werner, F. (2011). Recent advances in the understanding of archaeal transcription. Current Opinion in Microbiology 14, 328334.CrossRefGoogle ScholarPubMed
Lee, D. J., Minchin, S. D. & Busby, S. J. W. (2012). Activating transcription in bacteria. Annual Review of Microbiology 66, 125152.CrossRefGoogle ScholarPubMed
Lewis, P. J., Doherty, G. P. & Clarke, J. (2008). Transcription factor dynamics. Microbiology 154, 18371844.CrossRefGoogle ScholarPubMed
Nickels, B. E. & Dove, S. L. (2011). NanoRNAs: a class of small RNAs that can prime transcription initiation in bacteria. Journal of Molecular Biology 412, 772781.CrossRefGoogle ScholarPubMed
Ray-Soni, A., Bellecourt, M. J. & Landick, R. (2016). Mechanisms of bacterial transcription termination: all good things must end. Annual Review of Biochemistry 85, 319347.CrossRefGoogle ScholarPubMed
Sankar, T. S., Wastuwidyaningtyas, B. D., Dong, Y., Lewis, S. A. & Wang, J. D. (2016). The nature of mutations induced by replication–transcription collisions. Nature 535, 178181.CrossRefGoogle ScholarPubMed
Stuart, K. & Panigrahi, A. K. (2002). RNA editing: complexity and complications. Molecular Microbiology 45, 591596.CrossRefGoogle ScholarPubMed
Cobucci-Ponzano, B., Rossi, M. & Moracci, M. (2012). Translational recoding in archaea. Extremophiles 16, 793803.CrossRefGoogle ScholarPubMed
Ivanova, N. N., Schwientek, P., Tripp, H. J., Rinke, C., Pati, A., Huntemann, M., Visel, A., Woyke, T., Kyrpides, N. C. & Rubin, E. M. (2014). Stop codon reassignments in the wild. Science 344, 909913.CrossRefGoogle ScholarPubMed
Jarrell, K. F., Ding, Y., Meyer, B. H., Albers, S.-V., Kaminski, L. & Eichler, J. (2014). N-linked glycosylation in archaea: a structural, functional, and genetic analysis. Microbiology and Molecular Biology Reviews 78, 304341.CrossRefGoogle ScholarPubMed
Keiler, K. C. (2015). Mechanisms of ribosome rescue in bacteria. Nature Reviews Microbiology 13, 285297.CrossRefGoogle ScholarPubMed
Lin, Z. & Rye, H. S. (2006). GroEL-mediated protein folding: making the impossible, possible. Critical Reviews in Biochemistry and Molecular Biology 41, 211239.CrossRefGoogle ScholarPubMed
Ling, J., O’ Donoghue, P. & Soll, D. (2015). Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nature Reviews Microbiology 13, 707721.CrossRefGoogle ScholarPubMed
McGary, K. & Nudler, E. (2013). RNA polymerase and the ribosome: the close relationship. Current Opinion in Microbiology 16, 112117.CrossRefGoogle ScholarPubMed
Petry, S., Weixlbaumer, A. & Ramakrishnan, V. (2008). The termination of translation. Current Opinion in Structural Biology 18, 7077.CrossRefGoogle ScholarPubMed
Schmeing, T. M. & Ramakrishnan, V. (2009). What recent ribosome structures have revealed about the mechanism of translation. Nature 461, 12341242.CrossRefGoogle ScholarPubMed
Shieh, Y.-W., Minguez, P., Bork, P., Auburger, J. J., Guilbride, D. L., Kramer, G. & Bukau, B. (2015). Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science 350, 678680.CrossRefGoogle ScholarPubMed
Kuzminov, A. (2013). The chromosome cycle of prokaryotes. Molecular Microbiology 90, 214227.CrossRefGoogle ScholarPubMed
Li, H. & Sourjik, V. (2011). Assembly and stability of flagellar motor in Escherichia coli. Molecular Microbiology 80, 886899.CrossRefGoogle ScholarPubMed
Marraffini, L. A., DeDent, A. C. & Schneewind, O. (2006). Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiology and Molecular Biology Reviews 70, 192221.CrossRefGoogle Scholar
Ruiz, N., Kahne, D. & Silhavy, T. J. (2006). Advances in understanding bacterial outer-membrane biogenesis. Nature Reviews Microbiology 4, 5766.CrossRefGoogle ScholarPubMed
Shajani, Z., Sykes, M. T. & Williamson, J. R. (2011). Assembly of bacterial ribosomes. Annual Review of Biochemistry 80, 501526.CrossRefGoogle ScholarPubMed
Whitfield, C. (2006). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annual Review of Biochemistry 75, 3968.CrossRefGoogle ScholarPubMed
Angert, E. R. (2005). Alternatives to binary fission in bacteria. Nature Reviews Microbiology 3, 214224.CrossRefGoogle ScholarPubMed
Bisson-Filho, A. W., Hsu, Y.-P., Squyres, G. R., Kuru, E., Wu, F., Jukes, C., Sun, Y., Dekker, C., Holden, S., VanNieuwenhze, M. S., Brun, Y. V. & Garner, E. C. (2017). Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739743.CrossRefGoogle ScholarPubMed
Busiek, K. K. & Margolin, W. (2015). Bacterial actin and tubulin homologs in cell growth and division. Current Biology 25, R243R254.CrossRefGoogle ScholarPubMed
den Blaauwen, T. (2013). Prokaryotic cell division: flexible and diverse. Current Opinion in Microbiology 16, 738744.CrossRefGoogle ScholarPubMed
Desmond-Le Quemener, E. & Bouchez, T. (2014). A thermodynamic theory of microbial growth. ISME Journal 8, 17471751.CrossRefGoogle ScholarPubMed
Duda, V. I., Suzina, N. E., Polivtseva, V. N., Gafarov, A. B., Shorokhova, A. P. & Machulin, A. V. (2014). Transversion of cell polarity from bi- to multipolarity is the mechanism determining multiple spore formation in Anaerobacter polyendosporus PS-1T. Microbiology–Moscow 83, 608615.CrossRefGoogle ScholarPubMed
Duggin, I. G., Aylett, C. H. S., Walsh, J. C., Michie, K. A., Wang, Q., Turnbull, L., Dawson, E. M., Harry, E. J., Whitchurch, C. B., Amos, L. A. & Lowe, J. (2015). CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362365.CrossRefGoogle ScholarPubMed
Erickson, H. P., Anderson, D. E. & Osawa, M. (2010). FtsZ in bacterial cytokinesis: Cytoskeleton and force generator all in one. Microbiology and Molecular Biology Reviews 74, 504528.CrossRefGoogle ScholarPubMed
Härtel, T. & Schwille, P. (2014). ESCRT-III mediated cell division in Sulfolobus acidocaldarius – a reconstitution perspective. Frontiers in Microbiology 5, 257.CrossRefGoogle ScholarPubMed
Lindas, A.-C. & Bernander, R. (2013). The cell cycle of archaea. Nature Reviews Microbiology 11, 627638.CrossRefGoogle ScholarPubMed
Pinho, M. G., Kjos, M. & Veening, J.-W. (2013). How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nature Reviews Microbiology 11, 601614.CrossRefGoogle ScholarPubMed
Samson, R. Y. & Bell, S. D. (2011). Cell cycles and cell division in the archaea. Current Opinion in Microbiology 14, 350356.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×