Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Notation
- 1 Sums of Independent Random Variables
- 2 The Central Limit Theorem
- 3 Infinitely Divisible Laws
- 4 Lévy Processes
- 5 Conditioning and Martingales
- 6 Some Extensions and Applications of Martingale Theory
- 7 Continuous Parameter Martingales
- 8 Gaussian Measures on a Banach Space
- 9 Convergence of Measures on a Polish Space
- 10 Wiener Measure and Partial Differential Equations
- 11 Some Classical Potential Theory
- References
- Index
10 - Wiener Measure and Partial Differential Equations
Published online by Cambridge University Press: 07 November 2024
- Frontmatter
- Dedication
- Contents
- Preface
- Notation
- 1 Sums of Independent Random Variables
- 2 The Central Limit Theorem
- 3 Infinitely Divisible Laws
- 4 Lévy Processes
- 5 Conditioning and Martingales
- 6 Some Extensions and Applications of Martingale Theory
- 7 Continuous Parameter Martingales
- 8 Gaussian Measures on a Banach Space
- 9 Convergence of Measures on a Polish Space
- 10 Wiener Measure and Partial Differential Equations
- 11 Some Classical Potential Theory
- References
- Index
Summary
Chapter 10 is an introduction to the connections between probability theory and partial differential equations. At the beginning of §10.1, I show that martingales provide a link between probability theory and partial differential equations. More precisely, I show how to represent in terms of Wiener integrals solutions to parabolic and elliptic partial differential equations in which the Laplacian is the principal part. In the second part of §10.1, I derive the Feynman–Kac formula and use it to calculate various Wiener integrals. In §10.2 I introduce the Markov property of Wiener measure and show how it not only allows one to evaluate other Wiener integrals in terms of solutions to elliptic partial differential equations but also enables one to prove interesting facts about solutions to such equations as a consequence of their representation in terms of Wiener integrals. Continuing in the same spirit, I show in §10.2 how to represent solutions to the Dirichlet problem in terms of Wiener integrals, and in §10.3 I use Wiener measure to construct and discuss heat kernels related to the Laplacian and discuss ground states (a.k.a. stationary measures) for them.
- Type
- Chapter
- Information
- Probability Theory, An Analytic View , pp. 334 - 383Publisher: Cambridge University PressPrint publication year: 2024