Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T11:26:09.261Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 January 2018

Geoffrey Grimmett
Affiliation:
Statistical Laboratory, University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Probability on Graphs
Random Processes on Graphs and Lattices
, pp. 240 - 260
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aaronson, J. An Introduction to Infinite Ergodic Theory, American Mathematical Society, Providence, RI, 1997.fields and IsingCrossRefGoogle Scholar
2. Ahlfors, L. Complex Analysis, 3rd edn, McGraw-Hill, New York, 1979.Google Scholar
3. Aizenman, M. Geometric analysis of ϕ4 fields and Ising models, Communications in Mathematical Physics 86 (1982), 1-48.CrossRefGoogle Scholar
4. Aizenman, M. The geometry of critical percolation and conformal invariance, in Proceedings STATPHYS 19 (Xiamen 1995) (H., Bai-Lin, ed.), World Scientific, 1996, pp. 104-120.Google Scholar
5. Aizenman, M. Scaling limit for the incipient infinite clusters, in Mathematics of Multiscale Materials (K., Golden, G., Grimmett, J., Richard, G., Milton, P., Sen, eds), IMA Volumes in Mathematics and its Applications, vol. 99, Springer, New York, 1998, pp. 1-24.Google Scholar
6. Aizenman, M., Barsky, D.J. Sharpness of the phase transition in percolation models, Communications in Mathematical Physics 108 (1987), 489-526.CrossRefGoogle Scholar
7. Aizenman, M., Barsky, D.J., Fernàndez, R. The phase transition in a general class of Ising-type models is sharp, Journal of Statistical Physics 47 (1987), 343-374.CrossRefGoogle Scholar
8. Aizenman, M., Burchard, A. Holder regularity and dimension bounds for random curves, Duke Mathematical Journal 99 (1999), 419-453.CrossRefGoogle Scholar
9. Aizenman, M., Chayes, J.T., Chayes, L., Newman, C.M. Discontinuity of the magnetization in one-dimensional 1/|x — y|2 Ising and Potts models, Journal of Statistical Physics 50 (1988), 1-40.Google Scholar
10. Aizenman, M., Duminil-Copin, H., Sidoravicius, V. Random currents and continuity of Ising model's spontaneous magnetization, Communications in Mathematical Physics 334 (2015), 719-742.CrossRefGoogle Scholar
11. Aizenman, M., Fernàndez, R. On the critical behavior of the magnetization in high-dimensional Ising models, Journal of Statistical Physics 44 (1986), 393-454.CrossRefGoogle Scholar
12. Aizenman, M., Grimmett, G.R. Strict monotonicity for critical points in percolation and ferromagnetic models, Journal of Statistical Physics 63 (1991), 817-835.CrossRefGoogle Scholar
13. Aizenman, M., Kesten, H., Newman, C.M. Uniqueness of the infinite cluster and related results in percolation, in Percolation Theory and Ergodic Theory of Infinite Particle Systems (H., Kesten, ed.), IMA Volumes in Mathematics and its Applications, vol. 8, Springer, New York, 1987, pp. 13-20.Google Scholar
14. Aizenman, M., Klein, A., Newman, C.M. Percolation methods for disordered quantum Ising models, in Phase Transitions: Mathematics, Physics, Biology, … (R., Kotecky, ed.), World Scientific, Singapore, 1992, pp. 129-137.Google Scholar
15. Aizenman, M., Nachtergaele, B. Geometric aspects of quantum spin systems, Communications in Mathematical Physics 164 (1994), 17-63.CrossRefGoogle Scholar
16. Aizenman, M., Newman, C.M. Tree graph inequalities and critical behavior in percolation models, Journal of Statistical Physics 36 (1984), 107-143.CrossRefGoogle Scholar
17. Aldous, D.J. Brownian excursions, critical random graphs and the multiplicative coalescent, Annals of Probability 25 (1997), 812-854.Google Scholar
18. Aldous, D.J. The random walk construction of uniform spanning trees and uniform labelled trees, SI AM Journal of Discrete Mathematics 3 (1990), 450-465.Google Scholar
19. Aldous, D., Fill, J. Reversible Markov Chains and Random Walks on Graphs, 2002 http: //www. stat. berkeley. edu/∼aldous/RWG/book. html.
20. Alexander, K. On weak mixing in lattice models, Probability Theory and Related Fields 110(1998), 441-471.CrossRefGoogle Scholar
21. Alexander, K. Mixing properties and exponential decay for lattice systems in finite volumes, Annals of Probability 32 (2004), 441-487.CrossRefGoogle Scholar
22. Alon, N., Spencer, J.H. The Probabilistic Method, Wiley, New York, 2000.CrossRefGoogle Scholar
23. Azuma, K. Weighted sums of certain dependent random variables, Tohoku Mathematics Journal 19 (1967), 357-367.CrossRefGoogle Scholar
24. Balint, A., Camia, F., Meester, R. The high temperature Ising model on the triangular lattice is a critical percolation model, Journal of Statistical Physics 139 (2010), 122-138.CrossRefGoogle Scholar
25. Barlow, R.N., Proschan, F. Mathematical Theory of Reliability, Wiley, New York, 1965.Google Scholar
26. Bauerschmidt, R., Duminil-Copin, H., Goodman, J., Slade, G. Lectures on self-avoiding-walks, in Probability and Statistical Physics in Two and More Dimensions (D., Ellwood, C., Newman, V., Sidoravicius, W., Werner, eds), Clay Mathematics Proceedings, vol. 15, American Mathematical Society, Providence, RI, 2012, pp. 395-476.Google Scholar
27. Baxter, R.J. Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.Google Scholar
28. Beaton, N.R., Bousquet-Mélou, M., de Gier, J., Duminil-Copin, H., Guttmann, A.J. The critical fugacity for surface adsorption of self-avoiding walks on the honeycomb lattice is 1 + V2, Communications in Mathematical Physics 326 (2014), 727-754.CrossRefGoogle Scholar
29. Beckner, W. Inequalities in Fourier analysis, Annals of Mathematics 102 (1975), 159—182.CrossRefGoogle Scholar
30. Beffara, V. Cardy's formula on the triangular lattice, the easy way, in Universality and Renormalization, Fields Institute Communications, vol. 50, American Mathematical Society, Providence, RI, 2007, pp. 39-45.Google Scholar
31. Beffara, V., Duminil-Copin, H. The self-dual point of the two-dimensional random-cluster model is critical for q>\, Probability Theory and Related Fields 153 (2012), 511-542.Google Scholar
32. Beffara, V., Duminil-Copin, H. Critical point and duality in planar lattice models, in Probability and Statistical Physics in St Petersburg (V., Sidoravicius, S., Smirnov, eds), Proceedings of Symposia in Pure Mathematics, vol. 91, American Mathematical Society, Providence, RI, 2016, pp. 58-105.Google Scholar
33. Beffara, V., Duminil-Copin, H., Smirnov, S. On the critical parameters of the q > 4 random-cluster model on isoradial graphs, Journal of Physics A: Mathematical and Theoretical 48 (2015) 484003.CrossRefGoogle Scholar
34. Benaï'm, M., Rossignol, R. Exponential concentration for first passage percolation through modified Poincaré inequalities, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 44 (2008), 544-573.Google Scholar
35. Ben-Or, M., Linial, N. Collective coin flipping, in Randomness and Computation (S., Micali, ed.), Academic Press, New York, 1990, pp. 91-115.Google Scholar
36. Benjamini, I., Kalai, G., Schramm, O. First passage percolation has sublinear distance variance, Annals of Probability 31 (2003), 1970-1978.Google Scholar
37. Benjamini, I., Lyons, R., Peres, Y., Schramm, O. Uniform spanning forests, Annals of Probability 29 (2001), 1-65.Google Scholar
38. Berg van den, J. Disjoint occurrences of events: results and conjectures, in Particle Systems, Random Media and Large Deviations (R., T. Durrett, ed.), Contemporary Mathematics no. 41, American Mathematical Society, Providence, RI, 1985, pp. 357-361.Google Scholar
39. Berg van den, J. Approximate zero-one laws and sharpness of the percolation transition in a class of models including 2D Ising percolation, Annals of Probability 36 (2008), 1880-1903.CrossRefGoogle Scholar
40. Berg, J. van den Jonasson, J. A BK inequality for randomly drawn subsets of fixed size, Probability Theory and Related Fields 154 (2012), 835-844.Google Scholar
41. Berg, J. van den Kesten, H. Inequalities with applications to percolation and reliability, Journal of Applied Probability 22 (1985), 556-569.Google Scholar
42. Bezuidenhout, C.E., Grimmett, G.R. The critical contact process dies out, Annals of Probability 18 (1990), 1462- 1482.Google Scholar
43. Bezuidenhout, C.E., Grimmett, G.R. Exponential decay for subcritical contact and percolation processes, Annals of Probability 19 (1991), 984-1009.CrossRefGoogle Scholar
44. Bezuidenhout, C.E., Grimmett, G.R. A central limit theorem for random walks in random labyrinths, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 35 (1999), 631-683.CrossRefGoogle Scholar
45. Billingsley, P. Convergence of Probability Measures, 2nd edn, Wiley, New York, 1999.CrossRefGoogle Scholar
46. Bjornberg, J.E. Graphical representations of Ising and Potts models, Ph.D. thesis, Cambridge University, arXiv: 1011.2683 (2009).
47. Bjornberg, J.E. Vanishing critical magnetization in the quantum Ising model, Communications in Mathematical Physics 337 (2015), 879-907.CrossRefGoogle Scholar
48. Bjornberg, J.E., Grimmett, G.R. The phase transition of the quantum Ising model is sharp, Journal of Statistical Physics 136 (2009), 231-273.CrossRefGoogle Scholar
49. Bollobás, B. The chromatic number of random graphs, Combinatorica 8 (1988), 49-55.CrossRefGoogle Scholar
50. Bollobás, B. Modern Graph Theory, Springer, Berlin, 1998.CrossRefGoogle Scholar
51. Bollobás, B. Random Graphs, 2nd edn, Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
52. Bollobás, B., Grimmett, G.R., Janson, S. The random-cluster process on the complete graph, Probability Theory and Related Fields 104 (1996), 283-317.CrossRefGoogle Scholar
53. Bollobás, B., Riordan, O. The critical probability for random Voronoi percolation in the plane is 1/2, Probability Theory and Related Fields 136 (2006), 417-468.CrossRefGoogle Scholar
54. Bollobás, B., Riordan, O. A short proof of the Harris-Kesten theorem, Bulletin of the London Mathematical Society 38 (2006), 470-484.CrossRefGoogle Scholar
55. Bollobás, B., Riordan, O. Percolation, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
56. Bonami, A. Étude des coefficients de Fourier des fonctions de LP(G), Annales de l'Institut Fourier 20 (1970), 335-402.Google Scholar
57. Borgs, C., Chayes, J.T., Randall, R. The van-den-Berg-Kesten-Reimer inequality: a review, in Perplexing Problems in Probability (M., Bramson R.T., Durrett, eds), Birkhauser, Boston, 1999, pp. 159-173.Google Scholar
58. Bourgain, J., Kahn, J., Kalai, G., Katznelson, Y., Linial, N. The influence of variables in product spaces, Israel Journal of Mathematics 11 (1992), 55-64.Google Scholar
59. Broadbent, S.R., Hammersley, J.M. Percolation processes I., Crystals and mazes, Proceedings of the Cambridge Philosophical Society 53 (1957), 629-641.CrossRefGoogle Scholar
60. Broder, A.Z. Generating random spanning trees, in Proceedings of the 30th IEEE Symposium on Foundations of Computer Science, 1989, pp. 442-447.
61. Brook, D. On the distinction between the conditional probability and joint probability approaches in the specification of nearest-neighbour systems, Biometrika 51(1964), 481-483.CrossRefGoogle Scholar
62. Burton, R.M., Keane, M. Density and uniqueness in percolation, Communications in Mathematical Physics 121 (1989), 501-505.CrossRefGoogle Scholar
63. Camia, F., Newman, C.M. Continuum nonsimple loops and 2D critical percolation, Journal of Statistical Physics 116 (2004), 157-173.CrossRefGoogle Scholar
64. Camia, F., Newman, C.M. Two-dimensional critical percolation: the full scaling limit, Communications in Mathematical Physics 268 (2006), 1-38.CrossRefGoogle Scholar
65. Camia, F., Newman, C.M. Critical percolation exploration path and SLE6: a proof of convergence, Probability Theory and Related Fields 139 (2007), 473-519.CrossRefGoogle Scholar
66. Cardy, J. Critical percolation in finite geometries, Journal of Physics A: Mathematical and General 25 (1992), L201.CrossRefGoogle Scholar
67. Cerf, R. The Wulff crystal in Ising and percolation models, in Ecole d'Eté de Probabilités de Saint Flour XXXIV-2004 (J., Picard, ed.), Lecture Notes in Mathematics, vol. 1878, Springer, Berlin, 2006.Google Scholar
68. Cerf, R., Pisztora, Á. On the Wulff crystal in the Ising model, Annals of Probability 28 (2000), 947-1017. Cerf, R., Pisztora, Á. Google Scholar
69. Cerf, R., Pisztora, Á. Phase coexistence in Ising, Potts and percolation models, Annales de l'In- stitut Henri Poincaré, Probability et Statistiques 37 (2001), 643-724.Google Scholar
70. Chayes, J.T., Chayes, L. Percolation and random media, in Critical Phenomena, Random Systems and Gauge Theories (K., Osterwalder, R., Stora, eds), Les Houches, Session XLIII, 1984, Elsevier, Amsterdam, 1986, pp. 1001-1142.Google Scholar
71. Chayes, J.T., Chayes, L. An inequality for the infinite cluster density in percolation, Physical Review Letters 56 (1986), 16191622.Google Scholar
72. Chayes, J.T., Chayes, L. The mean field bound for the order parameter of Bernoulli percolation, in Percolation Theory and Ergodic Theory of Infinite Particle Systems (H., Kesten, ed.), IMA Volumes in Mathematics and its Applications, vol. 8, Springer, New York, 1987, pp. 49-71.Google Scholar
73. Chayes, J.T., Chayes, L., Grimmett, G.R., Kesten, H., Schonmann, R.H. The correlation length for the high density phase of Bernoulli percolation, Annals of Probability 17 (1989), 1277-1302.CrossRefGoogle Scholar
74. Chayes, J.T., Chayes, L., Newman, C.M. Bernoulli percolation above threshold: an invasion percolation analysis, Annals of Probability 15 (1987), 1272-1287.CrossRefGoogle Scholar
75. Chayes, L., Lei, H.K. Cardy's formula for certain models of the bond-triangular type, Reviews in Mathematical Physics 19 (2007), 511-565.CrossRefGoogle Scholar
76. Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., Smirnov, S. Convergence of Ising interfaces to Schramm's SLE curves, Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathematique 352 (2014), 157-161.Google Scholar
77. Chelkak, D., Smirnov, S. Universality in the 2D Ising model and conformal invariance of fermionic observables, Inventiones Mathematicae 189 (2012), 515-580.CrossRefGoogle Scholar
78. Clifford, P. Markov random fields in statistics, in Disorder in Physical Systems (G., R. Grimmett D.J., A. Welsh, eds), Oxford University Press, Oxford, 1990, pp. 19-32.Google Scholar
79. Crawford, N., Ioffe, D. Random current representation for transverse field Ising model, Communications in Mathematical Physics 296 (2010), 447-474.CrossRefGoogle Scholar
80. Damron, M., Hanson, J., Sosoe, P. Sublinear variance in first-passage percolation for general distributions, Probability Theory and Related Fields 163 (2015), 223-258.CrossRefGoogle Scholar
81. Dobrushin, R.L. Gibbs state describing coexistence of phases for a three-dimensional Ising model, Theory of Probability and its Applications 18 (1972), 582-600.Google Scholar
82. Doeblin, W. Exposé de la théorie des chaï'nes simples constantes de Markoff á un nombre fini d'etats, Revue Mathématique de V Union Interbalkanique 2 (1938), 77- 105.Google Scholar
83. Doyle, P.G., Snell, J.L. Random Walks and Electric Networks, Carus Mathematical Monographs, vol. 22, Mathematical Association of America, Washington, DC, 1984.Google Scholar
84. Dudley, R.M. Real Analysis and Probability, Wadsworth, Brooks & Cole, Pacific Grove CA, 1989.Google Scholar
85. Duminil-Copin, H., Gagnebin, M., Harel, M., Manolescu, I., Tassion, V. Discontinuity of the phase transition for the planar random-cluster and Potts models with q > 4, arXiv:1611.09877 (2016).Google Scholar
86. Duminil-Copin, H., Manolescu, I. The phase transitions of the planar random-cluster and Potts models with q > 1 are sharp, Probability Theory and Related Fields 164 (2016), 865-892.Google Scholar
87. Duminil-Copin, H., Raoufi, A., Tassion, V. Sharp phase transition for the random-cluster and Potts models via decision trees, arXiv: 1705.03104 (2017).
88. Duminil-Copin, H., Raoufi, A., Tassion, V. Exponential decay of connection probabilities for subcritical Voronoi percolation in Rd, arXiv: 1705.07978 (2017).
89. Duminil-Copin, H., Sidoravicius, V., Tassion, V. Continuity of the phase transition for planar random-cluster and Potts models with 1 < q < 4, Communications in Mathematical Physics 349 (2017), 47-107.CrossRefGoogle Scholar
90. Duminil-Copin, H., Smirnov, S. The connective constant of the honeycomb lattice equals 2 + V2, Annals of Mathematics 175 (2012), 1653-1665.CrossRefGoogle Scholar
91. Duminil-Copin, H., Smirnov, S. Conformal invariance of lattice models, in Probability and Statistical Physics in Two and More Dimensions (D., Ellwood, C., Newman, V., Sidoravicius, W., Werner, eds), Clay Mathematics Proceedings, vol. 15, American Mathematical Society, Providence, RI, 2012, pp. 213-276.Google Scholar
92. Duminil-Copin, H., Tassion, V. A new proof of the sharpness of the phase transition for Bernoulli percolation on Zd, L'Enseignement Mathematique 62 (2016), 199-206.Google Scholar
93. Duminil-Copin, H., Tassion, V. A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model, Communications in Mathematical Physics 343 (2016), 725-745.CrossRefGoogle Scholar
94. Duplantier, B. Brownian motion, “diverse and undulating”, in Einstein, 1905-2005, Poincaré Seminar 1 (2005) (T., Damour, O., Darrigol, B., Duplantier, V., Rivasseau, eds), Progress in Mathematical Physics, vol. 47, Birkhauser, Boston, 2006, pp. 201-293.Google Scholar
95. Durrett, R.T. On the growth of one-dimensional contact processes, Annals of Probability 8 (1980), 890-907.CrossRefGoogle Scholar
96. Durrett, R.T. Oriented percolation in two dimensions, Annals of Probability 12 (1984), 999-1040.CrossRefGoogle Scholar
97. Durrett, R.T. The contact process, 1974-1989, in Mathematics of Random Media (W., E. Kohler, B. S., White, eds), American Mathematical Society, Providence, RI, 1992, pp. 1-18.Google Scholar
98. Durrett, R.T. Random Graph Dynamics, Cambridge University Press, Cambridge, 2007.Google Scholar
99. Durrett, R., Schonmann, R.H. Stochastic growth models, in Percolation Theory and Ergodic Theory of Infinite Particle Systems (H., Kesten, ed.), Springer, New York, 1987, pp. 85- 119.Google Scholar
100. Ehrenfest, P. Collected Scientific Papers (M. J., Klein, ed.), North-Holland, Amsterdam, 1959.Google Scholar
101. Erdős, P., Rényi, A. The evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17-61.Google Scholar
102. Ethier, S., Kurtz, T. Markov Processes: Characterization and Convergence, Wiley, New York, 1986.CrossRefGoogle Scholar
103. Falik, D., Samorodnitsky, A. Edge-isoperimetric inequalities and influences, Combinatorics, Probability, Computing 16 (2007), 693-712.CrossRefGoogle Scholar
104. Feder, T., Mihail, M. Balanced matroids, in Proceedings of the 24th ACM Symposium on the Theory of Computing, ACM, New York, 1992, pp. 26-38.Google Scholar
105. Ferrari, P.L., Spohn, H. Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process, Communications in Mathematical Physics 265 (2006), 1-44.CrossRefGoogle Scholar
106. Fisher, M.E. On the dimer solution of planar Ising models, Journal of Mathematical Physics 7 (1966,), 1776-1781.Google Scholar
107. Fitzner, R., van der Hofstad, R. Mean-field behavior for nearest-neighbor percolation in d > 10, Electronic Journal of Probability 22 (2017), Paper 43.Google Scholar
108. Fortuin, C.M. On the random-cluster model, Ph D. thesis, University of Leiden (1971).
109. Fortuin, C.M. On the random-cluster model. II., The percolation model, Physica 58 (1972), 393-418.CrossRefGoogle Scholar
110. Fortuin, C.M. On the random-cluster model. III., The simple random-cluster process, Physica 59 (1972), 545-570.Google Scholar
111. Fortuin, C.M., Kasteleyn, P.W. On the random-cluster model. I. Introduction and relation to other models, Physica 57 (1972), 536-564.Google Scholar
112. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J. Correlation inequalities on some partially ordered sets, Communications in Mathematical Physics 22 (1971), 89-103.CrossRefGoogle Scholar
113. Friedgut, E. Influences in product spaces: KKL and BKKKL revisited, Combinatorics, Probability, Computing 13 (2004), 17-29.CrossRefGoogle Scholar
114. Friedgut, E., Kalai, G. Every monotone graph property has a sharp threshold, Proceedings of the American Mathematical Society 124 (1996), 2993-3002.CrossRefGoogle Scholar
115. Georgii, H.-O. Gibbs Measures and Phase Transitions, Walter de Gruyter, Berlin, 1988.CrossRefGoogle Scholar
116. Gibbs, J.W. Elementary Principles in Statistical Mechanics, Charles Scribner's Sons, New York, 1902; http://www.archive.org/details/elementary princi00gibbrich.Google Scholar
117. Gilbert, E.N. Random graphs, Annals of Mathematical Statistics 30 (1959), 1141-1144.CrossRefGoogle Scholar
118. Ginibre, J. Reduced density matrices of the anisotropic Heisenberg model, Communications in Mathematical Physics 10 (1968), 140-154.CrossRefGoogle Scholar
119. Glauber, R.J. Time-dependent statistics of the Ising model, Journal of Mathematical Physics 4 (1963), 294-307.CrossRefGoogle Scholar
120. Gowers, W.T. How to lose your fear of tensor products, (2001); http: //www. dpmms. cam. ac . uk/∼wtglO/tensors3.html.
121. Graham, B.T., Grimmett, G.R. Influence and sharp-threshold theorems for monotonic measures, Annals of Probability 34 (2006), 1726-1745.CrossRefGoogle Scholar
122. Graham, B.T., Grimmett, G.R. Sharp thresholds for the random-cluster and Ising models, Annals of Applied Probability 21 (2011), 240-265.CrossRefGoogle Scholar
123. Grassberger, P., Torre de la, A. Reggeon field theory (Schögl's first model) on a lattice: Monte Carlo calculations of critical behaviour, Annals of Physics 122 (1979), 373-396.CrossRefGoogle Scholar
124. Grimmett, G.R. A theorem about random fields, Bulletin of the London Mathematical Society 5 (1973), 81-84.CrossRefGoogle Scholar
125. Grimmett, G.R. The stochastic random-cluster process and the uniqueness of random- cluster measures, Annals of Probability 23 (1995), 1461-1510.CrossRefGoogle Scholar
126. Grimmett, G.R. Percolation and disordered systems, in Ecole d'Eté de Probabilité's de Saint Flour XXVI-1996 (P., Bernard, ed.), Lecture Notes in Mathematics, vol. 1665, Springer, Berlin, 1997, pp. 153-300.Google Scholar
127. Grimmett, G.R. Percolation, 2nd edition, Springer, Berlin, 1999.CrossRefGoogle Scholar
128. Grimmett, G.R. Stochastic pin-ball, in Random Walks and Discrete Potential Theory (M., Picardello, W., Woess, eds), Cambridge University Press, Cambridge, 1999.Google Scholar
129. Grimmett, G.R. Infinite paths in randomly oriented lattices, Random Structures and Algorithms 18 (2001), 257-266.CrossRefGoogle Scholar
130. Grimmett, G.R. The Random-Cluster Model, corrected reprint (2009), Springer, Berlin, 2006; http: //www. statslab. cam. ac . uk/∼grg/books/rcm. html.CrossRefGoogle Scholar
131. Grimmett, G.R. Space-time percolation, in In and Out of Equilibrium 2 (V., Sidoravicius M.E., Vares, eds), Progress in Probability, vol. 60, Birkhauser, Boston, 2008, pp. 305-320.Google Scholar
132. Grimmett, G.R. Three problems for the clairvoyant demon, in Probability and Mathematical Genetics (N., H. Bingham C.M., Goldie, eds), Cambridge University Press, Cambridge, 2010, pp. 379-395.Google Scholar
133. Grimmett, G.R. Three problems in discrete random geometry, Probability Surveys 8 (2011), 403-441.CrossRefGoogle Scholar
134. Grimmett, G.R. Criticality, universality, and isoradiality, in Proceedings of the 2014 International Congress of Mathematicians, Seoul (S., Y. Jang Y.R., Kim D.-W., Lee, I., Yie, eds), vol. IV, Kyung Moon, Seoul, 2014, pp. 25-48.Google Scholar
135. Grimmett, G.R., Hiemer, P. Directed percolation and random walk, in In and Out of Equilibrium (V., Sidoravicius, ed.), Progress in Probability, vol. 51, Birkhauser, Boston, 2002, pp. 273-297.Google Scholar
136. Grimmett, G.R., Janson, S. Random even graphs, Paper R46, Electronic Journal of Combinatorics 16 (2009).Google Scholar
137. Grimmett, G.R., Janson, S., Norris, J.R. Influence in product spaces, Advances in Applied Probability 48A (2016), 145-152.CrossRefGoogle Scholar
138. Grimmett, G.R., Kesten, H., Zhang, Y. Random walk on the infinite cluster of the percolation model, Probability Theory and Related Fields 96 (1993), 33-44.CrossRefGoogle Scholar
139. Grimmett, G.R., Li, Z. Self-avoiding walks and the Fisher transformation, Electronic Journal of Combinatorics 20 (2013), Paper P47, 14 pp.Google Scholar
140. Grimmett, G.R., Li, Z. Self-avoiding walks and connective constants, arXiv: 1704.15884 (2017).
141. Grimmett, G.R., Manolescu, I. Bond percolation on isoradial graphs: criticality and universality, Probability Theory and Related Fields 159 (2013), 273-327.Google Scholar
142. Grimmett, G.R., Marstrand, J.M. The supercritical phase of percolation is well behaved, Proceedings of the Royal Society (London), Series A 430 (1990), 439-457.CrossRefGoogle Scholar
143. Grimmett, G.R., McDiarmid, C.J.H. On colouring random graphs, Mathematical Proceedings of the Cambridge Philosophical Society 77 (1975), 313-324.CrossRefGoogle Scholar
144. Grimmett, G.R., Menshikov, M.V., Volkov, S.E. Random walks in random labyrinths, Markov Processes and Related Fields 2 (1996), 69-86.Google Scholar
145. Grimmett, G.R., Osborne, T.J., Scudo, P.F. Entanglement in the quantum Ising model, Journal of Statistical Physics 131(2008), 305-339.CrossRefGoogle Scholar
146. Grimmett, G.R., Piza, M.S. Decay of correlations in subcritical Potts and random-cluster models, Communications in Mathematical Physics 189 (1997), 465-480.CrossRefGoogle Scholar
147. Grimmett, G.R., Stacey, A.M. Critical probabilities for site and bond percolation models, Annals of Probability 26 (1998), 1788-1812.Google Scholar
148. Grimmett, G.R., Stirzaker, D.R. Probability and Random Processes, 3rdedn, Oxford University Press, 2001.Google Scholar
149. Grimmett, G.R., Welsh, D.J.A. John Michael Hammersley (1920-2004), Biographical Memoirs of Fellows of the Royal Society 53 (2007), 163-183.Google Scholar
150. Grimmett, G.R., Welsh, D.J.A. Probability, an Introduction, 2nd edn, Oxford University Press, Oxford, 2014.Google Scholar
151. Grimmett, G.R., Winkler, S.N. Negative association in uniform forests and connected graphs, Random Structures and Algorithms 24 (2004), 444-460.CrossRefGoogle Scholar
152. Gross, L. Logarithmic Sobolev inequalities, American Journal of Mathematics 97 (1975), 1061-1083.CrossRefGoogle Scholar
153. Halmos, P.R. Measure Theory, Springer, Berlin, 1974.Google Scholar
154. Halmos, P.R. Finite-Dimensional Vector Spaces, 2nd edn, Springer, New York, 1987.Google Scholar
155. Hammersley, J.M. Percolation processes. Lower bounds for the critical probability, Annals of Mathematical Statistics 28 (1957), 790-795.CrossRefGoogle Scholar
156. Hammersley, J.M. Percolation processes II., The connective constant, Proceedings of the Cambridge Philosophical Society 53 (1957), 642-645.CrossRefGoogle Scholar
157. Hammersley, J.M., Clifford, P. Markov fields on finite graphs and lattices, unpublished (1971); http:// www. stat slab. cam.ac . uk/∼grg/books/hammf est/hamm- cliff . pdf.
158. Hammersley, J.M., Morton, W. Poor man's Monte Carlo, Journal of the Royal Statistical Society B 16 (1954), 23-38.Google Scholar
159. Hammersley, J.M., Welsh, D.J.A. Further results on the rate of convergence to the connective constant of the hypercubical lattice, Quarterly Journal of Mathematics. Oxford. Second Series 13 (1962), 108-110.Google Scholar
160. Hammersley, J.M., Welsh, D.J.A. First-passage percolation, subadditive processes, stochastic networks and generalized renewal theory, in Bernoulli, Bayes, Laplace Anniversary Volume (J., Neyman, L., LeCam, eds), Springer, Berlin, 1965, pp. 61-110.Google Scholar
161. Hara, T., Slade, G. Mean-field critical behaviour for percolation in high dimensions, Communications in Mathematical Physics 128 (1990), 333-391.CrossRefGoogle Scholar
162. Hara, T., Slade, G. Mean-field behaviour and the lace expansion, in Probability and Phase Transition (G. R., Grimmett, ed.), Kluwer, Dordrecht, 1994, pp. 87-122.Google Scholar
163. Harris, M. Nontrivial phase transition in a continuum mirror model, Journal of Theoretical Probability 14 (2001), 299-317.CrossRefGoogle Scholar
164. Harris, T.E. A lower bound for the critical probability in a certain percolation process, Proceedings of the Cambridge Philosophical Society 56 (1960), 13-20.CrossRefGoogle Scholar
165. Harris, T.E. Contact interactions on a lattice, Annals of Probability 2 (1974), 969-988.CrossRefGoogle Scholar
166. Higuchi, Y. A sharp transition for the two-dimensional Ising percolation, Probability Theory and Related Fields 97 (1993), 489-514.CrossRefGoogle Scholar
167. Hintermann, A., Kunz, H., Wu, F.Y. Exact results for the Potts model in two dimensions, Journal of Statistical Physics 19 (1978), 623-632.CrossRefGoogle Scholar
168. Hoeffding, W. Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 58 (1963), 13-30.CrossRefGoogle Scholar
169. Hofstad van der, R. Random Graphs and Complex Networks, Cambridge University Press, Cambridge, 2016.Google Scholar
170. Holley, R. Remarks on the FKG inequalities, Communications in Mathematical Physics 36 (1974), 227-231.CrossRefGoogle Scholar
171. Hughes, B.D. Random Walks and Random Environments, Volume I, Random Walks, Oxford University Press, Oxford, 1996.Google Scholar
172. Hutchcroft, T., Peres, Y. The component graph of the uniform spanning forest: transitions in dimensions 9, 10, 11,…, arXiv: 1702:05780 (2017).
173. Ising, E. Beitrag zur Theorie des Ferromagnetismus, ZeitschriftfiirPhysik 31 (1925), 253-258.Google Scholar
174. Janson, S. Graphons, Cut Norm and Distance, Couplings and Rearrangements, New York Journal of Mathematics Monographs, http: //ny jm. albany. edu/m/, vol. 4, 2013.Google Scholar
175. Janson, S., Knuth, D., & Luczak, T., Pittel, B. The birth of the giant component, Random Structures and Algorithms 4 (1993), 233-358.CrossRefGoogle Scholar
176. Janson, S., & Luczak, T., Ruciński, A. Random Graphs, Wiley, New York, 2000.CrossRefGoogle Scholar
177. Jensen, I., Guttmann, A.J. Self-avoiding walks, neighbour-avoiding walks and trails on semiregular lattices, Journal of Physics A: Mathematical and General 31 (1998), 8137- 8145.Google Scholar
178. Jössang, P., Jössang, A. Monsieur, C.S. M., Pouillet, de l'Académie, qui découvritlepoint “de Curie“ en … 1832, http://www.tribunes.com/tribune/art97/jos2f.htm, Science Tribune (1997).
179. Kahn, J., Kalai, G., Linial, N. The influence of variables on Boolean functions, in Proceedings of the 29th Symposium on the Foundations of Computer Science, Computer Science Press, 1988, pp. 68-80.Google Scholar
180. Kahn, J., Neiman, M. Negative correlation and log-concavity, Random Structures and Algorithms 37 (2010), 367-388.CrossRefGoogle Scholar
181. Kalai, G., Safra, S. Threshold phenomena and influence, in Computational Complexity and Statistical Physics (A.G. Percus, G., Istrate, C., Moore, eds), Oxford University Press, New York, 2006.Google Scholar
182. Kasteleyn, P.W., Fortuin, C.M. Phase transitions in lattice systems with random local properties, Journal of the Physical Society of Japan 26 (1969), 11-14. Supplement.Google Scholar
183. Keane, M. Interval exchange transformations, Mathematische Zeitschrift 141 (1975), 25-31.CrossRefGoogle Scholar
184. Keller, N. On the influences of variables on Boolean functions in product spaces, Combinatorics, Probability, Computing 20 (2011), 83-102.CrossRefGoogle Scholar
185. Kennelly, A.E. Equivalence of triangles and three-pointed stars in conducting networks, Electrical World and Engineer 34 (1899), 413-414.Google Scholar
186. Kesten, H. The critical probability of bond percolation on the square lattice equals j, Communications in Mathematical Physics 74 (1980a), 41-59.CrossRefGoogle Scholar
187. Kesten, H. Percolation Theory for Mathematicians, Birkhauser, Boston, 1982.CrossRefGoogle Scholar
188. Kirchhoff, G. Uber die Aufiosung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Strome gefuhrt wird, Annalen der Physik und Chemie 72 (1847), 497-508.Google Scholar
189. Klein, A. Extinction of contact and percolation processes in a random environment, Annals of Probability 22 (1994), 1227-1251.CrossRefGoogle Scholar
190. Klein, A. Multiscale analysis in disordered systems: percolation and contact process in random environment, in Disorder in Physical Systems (G., R. Grimmett, ed.), Kluwer, Dordrecht, 1994, pp. 139-152.Google Scholar
191. Kotecký, R., Shlosman, S. First order phase transitions in large entropy lattice systems, Communications in Mathematical Physics 83 (1982), 493-515.CrossRefGoogle Scholar
192. Kozdron, M., Richards, L.M., Stroock, D.W. Determinants, their applications to Markov processes, and a random walk proof of Kirchhoff s matrix tree theorem, arXiv: 1306.2059 (2013).
193. Laanait, L., Messager, A., Miracle-Solé, S., Ruiz, J., Shlosman, S. Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin- Kasteleyn representation, Communications in Mathematical Physics 140 (1991), 81-91.CrossRefGoogle Scholar
194. Laanait, L., Messager, A., Ruiz, J. Phase coexistence and surface tensions for the Potts model, Communications in Mathematical Physics 105 (1986), 527-545.CrossRefGoogle Scholar
195. Langlands, R., Pouliot, P., Saint-Aubin, Y. Conformal invariance in two-dimensional percolation, Bulletin of the American Mathematical Society 30 (1994), 1-61.CrossRefGoogle Scholar
196. Lauritzen, S. Graphical Models, Oxford University Press, Oxford, 1996.Google Scholar
197. Lawler, G. Conformally Invariant Processes in the Plane, American Mathematical Society, Providence, RI, 2005.Google Scholar
198. Lawler, G. Scaling limits and the Schramm-Loewner evolution, Probability Surveys 8 (2011), 442-495.CrossRefGoogle Scholar
199. Lawler, G.F., Limic, V. Random Walk: A Modern Introduction, Cambridge University Press, Cambridge, 2010.CrossRefGoogle Scholar
200. Lawler, G.F., Schramm, O., Werner, W. The dimension of the planar Brownian frontier is 4/3, Mathematics Research Letters 8 (2001), 401-411.CrossRefGoogle Scholar
201. Lawler, G.F., Schramm, O., Werner, W. Values of Brownian intersection exponents III: two-sided exponents, Annales de l'Institut Henri Poincaré, Probabilité's et Statistiques 38 (2002), 109-123.Google Scholar
202. Lawler, G.F., Schramm, O., Werner, W. One-arm exponent for critical 2D percolation, Electronic Journal of Probability 7 (2002), Paper 2.CrossRefGoogle Scholar
203. Lawler, G.F., Schramm, O., Werner, W. Conformal invariance of planar loop-erased random walks and uniform spanning trees, Annals of Probability 32 (2004), 939-995.Google Scholar
204. Levin, D.A., Peres, Y., Wilmer, E.L. Markov Chains and Mixing Times, AMS, Providence, RI, 2009.Google Scholar
205. Lieb, E., Schultz, T., Mattis, D. Two soluble models of an antiferromagnetic chaïn, Annals of Physics 16 (1961), 407-466.CrossRefGoogle Scholar
206. Liggett, T.M. Interacting Particle Systems, Springer, Berlin, 1985.CrossRefGoogle Scholar
207. Liggett, T.M. Multiple transition points for the contact process on the binary tree, Annals of Probability 24 (1996), 1675-1710.Google Scholar
208. Liggett, T.M. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer, Berlin, 1999.CrossRefGoogle Scholar
209. Liggett, T.M. Interacting particle systems - an introduction, in ICTP Lecture Notes Series, vol. 17, 2004; http://publications.ictp.it/lns/vol17/vol17 toc. html.Google Scholar
210. Lima, B.N.B. A note about the truncation question in percolation of words, Bulletin of the Brazilian Mathematical Society 39 (2008), 183-189.Google Scholar
211. Lima, B.N., Sanchis, R., Silva, R.W.C. Percolation of words on Zd with long range connections, Journal of Applied Probability 48 (2011), 1152-1162.Google Scholar
212. Lindvall, T. Lectures on the Coupling Method, Wiley, New York, 1992.Google Scholar
213. Linusson, S. On percolation and the bunkbed conjecture, Combinatorics, Probability, Computing 20 (2011), 103-117.CrossRefGoogle Scholar
214. Linusson, S. A note on correlations in randomly oriented graphs, arXiv:0905.2881 (2009).
215. Lorentz, H.A. The motion of electrons in metallic bodies, I, II, III, Koninklijke Akademie van Wetenschappen te Amsterdam, Section of Sciences 7 (1905), 438-453. 585-593. 684-691.Google Scholar
216. Löwner, K. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I, Mathematische Annalen 89 (1923), 103-121.CrossRefGoogle Scholar
217. Lubetzky, E., Sly, A. Critical Ising on the square lattice mixes in polynomial time, Communications in Mathematical Physics 313 (2012), 815-836.CrossRefGoogle Scholar
218. Lubetzky, E., Sly, A. Cutoff for the Ising model on the lattice, Inventiones Mathematicae 191 (2013),719-755.CrossRefGoogle Scholar
219. Lubetzky, E., Sly, A. Information percolation and cutoff for the stochastic Ising model, Journal of the American Mathematical Society 29 (2016), 729-77.4.CrossRefGoogle Scholar
220. Lyons, R. Phase transitions on nonamenable graphs, Journal of Mathematical Physics 41(2001), 1099-1126.Google Scholar
221. Lyons, R., Peres, Y. Probability on Trees and Networks, Cambridge University Press, (2016), http: //mypage . iu. edu/∼rdlyons/prbtree/prbtree . html.CrossRefGoogle Scholar
222. Lyons, T.J. A simple criterion for transience of a reversible Markov chaïn, Annals of Probability 11 (1983), 393-402.CrossRefGoogle Scholar
223. Madras, N., Slade, G. The Self-Avoiding Walk, Birkhäuser, Boston, 1993.Google Scholar
224. Margulis, G. Probabilistic characteristics of graphs with large connectivity, Problemy Peredachi Informatsii (in Russian) 10 (1974), 101-108.Google Scholar
225. Martinelli, F. Lectures on Glauber dynamics for discrete spin models, in Ecole d'Eté de Probabilité de Saint Flour XXVII-1997 (P., Bernard, ed.), Lecture Notes in Mathematics, vol. 1717, Springer, Berlin, pp. 93-191.Google Scholar
226. McDiarmid, C.J.H. On the method of bounded differences, in Surveys in Combinatorics, 1989 (J., Siemons, ed.), LMS Lecture Notes Series 141, Cambridge University Press, Cambridge, 1989.Google Scholar
227. McDiarmid, C.J.H. On the chromatic number of random graphs, Random Structures and Algorithms 1 (1990), 435-442.CrossRefGoogle Scholar
228. Meester, R., Roy, R. Continuum Percolation, Cambridge University Press, Cambridge, 1996.CrossRefGoogle Scholar
229. Menshikov, M.V. Critical points in the mathematical theory of percolation, Doctoral Dissertation, University of Moscow (1987).
230. Menshikov, M.V. Coincidence of critical points in percolation problems, Soviet Mathematics Doklady 33 (1987), 856-859.Google Scholar
231. Menshikov, M.V., Molchanov, S.A., Sidorenko, A.F. Percolation theory and some applications, Itogi Nauki i Techniki (Series of Probability Theory, Mathematical Statistics, Theoretical Cybernetics) 24 (1986),53-110.Google Scholar
232. Moussouris, J. Gibbs and Markov random fields with constraints, Journal of Statistical Physics 10(1974), 11-33.CrossRefGoogle Scholar
233. Nachtergaele, B. A stochastic geometric approach to quantum spin systems, in Probability and Phase Transition (G., R. Grimmett, ed.), Kluwer, Dordrecht, 1994, pp. 237-246.Google Scholar
234. Nienhuis, B. Exact critical point and exponents of O(n) models in two dimensions, Physical Review Letters 49 (1982), 1062-1065.CrossRefGoogle Scholar
235. Onsager, L. Crystal statistics I, A two-dimensional model with an order-disorder transition, The Physical Review 65 (1944), 117-149.CrossRefGoogle Scholar
236. Peierls, R. On Ising's model of ferromagnetism, Proceedings of the Cambridge Philosophical Society 36 (1936), 477-481.Google Scholar
237. Pemantle, R. Choosing a spanning tree for the infinite lattice uniformly, Annals of Probability 19 (1991), 1559-1574.CrossRefGoogle Scholar
238. Pemantle, R. The contact process on trees, Annals of Probability 20 (1992), 2089-2116.CrossRefGoogle Scholar
239. Pemantle, R. Uniform random spanning trees, in Topics in Contemporary Probability and its Applications (J., L. Snell, ed.), CRC Press, Boca Raton, 1994, pp. 1-54.Google Scholar
240. Pemantle, R. Towards a theory of negative dependence, Journal of Mathematical Physics 41 (2000), 1371-1390.CrossRefGoogle Scholar
241. Petersen, K. Ergodic Theory, Cambridge University Press, Cambridge, 1983.CrossRefGoogle Scholar
242. Pólya, G. Über eine Aufgabe betreffend die Irrfahrt im Strassennetz, Mathematische Annalen 84 (1921), 149-160.CrossRefGoogle Scholar
243. Pólya, G. Two incidents, in Collected Papers (G., Pólya G.-C., Rota, eds), vol. IV, The MIT Press, Cambridge, Massachusetts, 1984, pp. 582-585.Google Scholar
244. Potts, R.B. Some generalized order-disorder transformations, Proceedings of the Cambridge Philosophical Society 48 (1952), 106-109.CrossRefGoogle Scholar
245. Propp, D., Wilson, D.B. How to get a perfectly random sample from a generic Markov chaïn and generate a random spanning tree of a directed graph, Journal of Algebra 27 (1998), 170-217.Google Scholar
246. Quas, A. Infinite paths in a Lorentz lattice gas model, Probability Theory and Related Fields 114(1999), 229-244.CrossRefGoogle Scholar
247. Ráth, B. Conformal invariance of critical percolation on the triangular lattice, Diploma thesis, http://www.math.bme.hu/∼rathb/rbperko.pdf (2005).
248. Reimer, D. Proof of the van den Berg-Kesten conjecture, Combinatorics, Probability, Computing 9 (2000), 27-32.CrossRefGoogle Scholar
249. Rohde, S., Schramm, O. Basic properties of SLE, Annals of Mathematics 161 (2005), 879-920.CrossRefGoogle Scholar
250. Rossignol, R. Threshold for monotone symmetric properties through a logarithmic Sobolev inequality, Annals of Probability 34 (2005), 1707-1725.Google Scholar
251. Rossignol, R. Threshold phenomena on product spaces: BKKKL revisited (once more), Electronic Communications in Probability 13 (2008), 35-44.CrossRefGoogle Scholar
252. Rudin, W. Real and Complex Analysis, 3rd edn, McGraw-Hill, New York, 1986.Google Scholar
253. Rudolph, D.J. Fundamentals of Measurable Dynamics, Clarendon Press, Oxford, 1990.Google Scholar
254. Russo, L. A note on percolation, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 43 (1978), 39-48.CrossRefGoogle Scholar
255. Russo, L. On the critical percolation probabilities, Zeitschriftfilr Wahrscheinlichkeitstheorie und Verwandte Gebiete 56 (1981), 229-237.Google Scholar
256. Russo, L. An approximate zero-one law, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 61 (1982), 129-139.CrossRefGoogle Scholar
257. Schonmann, R.H. Metastability and the Ising model, Documenta Mathematica, Extra volume (Proceedings of the 1998 ICM) III (1998), 173-181.Google Scholar
258. Schramm, O. Scaling limits of loop-erased walks and uniform spanning trees, Israel Journal of Mathematics 118 (2000), 221-288.CrossRefGoogle Scholar
259. Schramm, O. Conformally invariant scaling limits: an overview and collection of open problems, in Proceedings of the International Congress of Mathematicians, Madrid (M., Sanz-Sole et al., eds), vol. I, European Mathematical Society, Zurich, 2007, pp. 513-544.Google Scholar
260. Schramm, O., Sheffield, S. Harmonic explorer and its convergence to SLE4 , Annals of Probability 33 (2005), 2127-2148.CrossRefGoogle Scholar
261. Schramm, O., Sheffield, S. Contour lines of the two-dimensional discrete Gaussian free field, Acta Mathematica 202 (2009), 21-137.CrossRefGoogle Scholar
262. Schulman, L.S. Techniques and Applications of Path Integration, Wiley, New York, 1981.Google Scholar
263. Seppalainen, T. Entropy for translation-invariant random-cluster measures, Annals of Probability 26 (1998), 1139-1178.Google Scholar
264. Seymour, P.D., Welsh, D.J.A. Percolation probabilities on the square lattice, in Advances in Graph Theory (B., Bollobás, ed.), Annals of Discrete Mathematics 3, North-Holland, Amsterdam, 1978, pp. 227-245.Google Scholar
265. Slade, G. The Lace Expansion and its Applications, Lectures from the 34th Summer School on Probability Theory, Lecture Notes in Mathematics, vol. 1879 (J., Picard, ed.), Springer, Berlin, 2006.Google Scholar
266. Smirnov, S. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits, Comptes Rendus des Seances de l'Academie des Sciences. Serie I, Mathematique 333 (2001), 239-244.Google Scholar
267. Smirnov, S. Critical percolation in the plane. I. Conformal invariance and Cardy's formula. II. Continuum scaling limit, arXiv:0909.4499 (2001).
268. Smirnov, S. Towards conformal invariance of 2D lattice models, in Proceedings of the International Congress of Mathematicians, Madrid, 2006 (M., Sanz-Sole et al., eds), vol. II, European Mathematical Society, Zurich, 2007, pp. 1421— 1452.Google Scholar
269. Smirnov, S. Conformal invariance in random cluster models. I, Holomorphic fermions in the Ising model, Annals of Mathematics 172 (2010), 1435-1467.CrossRefGoogle Scholar
270. Smirnov, S., Werner, W. Critical exponents for two-dimensional percolation, Mathematics Research Letters 8 (2001), 729-744.CrossRefGoogle Scholar
271. Strassen, V. The existence of probability measures with given marginals, Annals of Mathematical Statistics 36 (1965), 423-439.CrossRefGoogle Scholar
272. Sun, N. Conformally invariant scaling limits in planar critical percolation, Probability Surveys 8 (2011), 155-209.CrossRefGoogle Scholar
273. Swendsen, R.H., Wang, J.S. Nonuniversal critical dynamics in Monte Carlo simulations, Physical Review Letters 58 (1987), 86-88.CrossRefGoogle ScholarPubMed
274. Szasz, D. Hard Ball Systems and the Lorentz Gas, Encyclopaedia of Mathematical Sciences, vol. 101, Springer, Berlin, 2000.Google Scholar
275. Talagrand, M. Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis' graph connectivity theorem, Geometric and Functional Analysis 3(1993), 295-314.CrossRefGoogle Scholar
276. Talagrand, M. On Russo's approximate zero-one law, Annals of Probability 22 (1994), 1576-1587.CrossRefGoogle Scholar
277. Talagrand, M. On boundaries and influences, Combinatorica 17 (1997), 275-285.CrossRefGoogle Scholar
278. Talagrand, M. On influence and concentration, Israel Journal of Mathematics 111 (1999), 275-284.CrossRefGoogle Scholar
279. Toth, B. Persistent random walks in random environment, Probability Theory and Related Fields 71 (1986), 615-625.CrossRefGoogle Scholar
280. Welsh, D.J.A. Percolation in the random-cluster process, Journal of Physics A: Mathematical and General 26 (1993), 2471-2483.CrossRefGoogle Scholar
281. Werner, W. Random planar curves and Schramm-Loewner evolutions, in Ecole d'Eté de Probability de Saint Flour XXXII-2002 (J., Picard, ed.), Springer, Berlin, 2004, pp. 107-195.Google Scholar
282. Werner, W. Lectures on two-dimensional critical percolation, in Statistical Mechanics (S., Sheffield, T., Spencer, eds), IAS/Park City Mathematics Series, Vol. 16, AMS, Providence, RI, 2009, pp. 297-360.CrossRefGoogle Scholar
283. Werner, W. Percolation et Modéle d'Ising, Cours Spécialisés, vol. 16, Société Math-ématique de France, 2009.
284. Wierman, J.C. Bond percolation on the honeycomb and triangular lattices, Advances in Applied Probability 13 (1981), 298-313.CrossRefGoogle Scholar
285. Williams, G.T., Bjerknes, R. Stochastic model for abnormal clone spread through epithelial basal layer, Nature 236 (1972), 19-21.CrossRefGoogle ScholarPubMed
286. Wilson, D.B. Generating random spanning trees more quickly than the cover time, in Proceedings of the 28th ACM on the Theory of Computing, ACM, New York, 1996, pp. 296-303.Google Scholar
287. Wood, De Volson Problem 5, American Mathematical Monthly 1 (1894), 99, 211-212.CrossRefGoogle Scholar
288. Wu, F.Y. The Potts model, Reviews in Modern Physics 54 (1982), 235-268.CrossRefGoogle Scholar
289. Wulff, G. Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der Krystallflächen, Zeitschrift für Krystallographie und Mineralogie 34 (1901), 449-530 Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Geoffrey Grimmett, Statistical Laboratory, University of Cambridge
  • Book: Probability on Graphs
  • Online publication: 12 January 2018
  • Chapter DOI: https://doi.org/10.1017/9781108528986.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Geoffrey Grimmett, Statistical Laboratory, University of Cambridge
  • Book: Probability on Graphs
  • Online publication: 12 January 2018
  • Chapter DOI: https://doi.org/10.1017/9781108528986.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Geoffrey Grimmett, Statistical Laboratory, University of Cambridge
  • Book: Probability on Graphs
  • Online publication: 12 January 2018
  • Chapter DOI: https://doi.org/10.1017/9781108528986.014
Available formats
×